最新新编基础物理学上册5-6单元课后答案
- 格式:doc
- 大小:886.50 KB
- 文档页数:26
第1章 质点运动学一、选择题 题1.1 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m s22π提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,222r R π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴ 34t S =∴题1.16:解:(1)dv a kv dt ==- 0v tdvkdt v =-∴⎰⎰, 0ln v kt v =-(*)当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由上式:0kt v v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D] 提示:Ba BTTa A Tmg22A BAB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)2200112()22mv mv mgh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:θv 0v x v y由机械能守恒得20122mgh mv v gh =⇒= 0sin y v v θ=sin 2Gy Pmgv mg gh θ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,MmG r - h=0,x=0,r =∞ 相对值题2.19: 答案:02mg k ,2mg ,0mg k题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v Lg μ=-题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
物理学第五版习题答案物理学是一门探索自然界基本规律的科学,它不仅要求我们理解概念和原理,还要求我们通过解决实际问题来加深理解。
以下是《物理学第五版》习题的答案摘要,这些答案可以帮助你检验自己的学习成果。
# 第一章:力学基础1. 问题1:根据牛顿第一定律,一个物体在没有外力作用下,将保持静止或匀速直线运动。
2. 问题2:根据牛顿第二定律,物体的加速度与作用在其上的合力成正比,与物体的质量成反比。
# 第二章:运动学1. 问题1:位移是物体从初始位置到最终位置的直线距离,速度是物体位置随时间的变化率。
2. 问题2:匀加速直线运动的位移公式为:\( s = ut +\frac{1}{2}at^2 \),其中\( s \)是位移,\( u \)是初速度,\( a \)是加速度,\( t \)是时间。
# 第三章:动力学1. 问题1:牛顿第三定律表明,作用力和反作用力大小相等,方向相反。
2. 问题2:动量是物体运动状态的量度,其守恒定律表明在没有外力作用的系统中,总动量保持不变。
# 第四章:能量守恒1. 问题1:能量守恒定律表明,在一个封闭系统中,能量既不能创造也不能消失,只能从一种形式转换为另一种形式。
2. 问题2:机械能包括动能和势能,总机械能在没有非保守力作用的系统中是守恒的。
# 第五章:热力学1. 问题1:温度是衡量热力学平衡状态的物理量,热量是能量的一种形式,通过热传递改变物体的内能。
2. 问题2:理想气体状态方程为\( PV = nRT \),其中\( P \)是压强,\( V \)是体积,\( n \)是摩尔数,\( R \)是理想气体常数,\( T \)是温度。
# 结束语物理学习题的解答不仅仅是为了得到正确答案,更重要的是通过解题过程加深对物理概念和原理的理解。
希望这些答案能够帮助你更好地掌握物理学的基础知识,为进一步的学习打下坚实的基础。
如果在学习过程中遇到任何困难,不要犹豫,及时寻求帮助和指导。
第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。
物理学第五版上册答案第一章:运动学1.如何计算物体的平均速度?–平均速度可以通过物体运动的总位移除以运动的时间来计算。
2.什么是加速度?–加速度是物体在单位时间内速度的变化量。
它的计算公式为:加速度 = (末速度 - 初始速度)/ 时间。
3.什么是匀速运动和变速运动?–匀速运动是指物体在单位时间内移动的距离相等,速度保持不变的运动。
–变速运动是指物体在单位时间内移动的距离不等,速度发生变化的运动。
4.什么是速度-时间图?–速度-时间图是一种用来描述物体运动轨迹的图表。
横轴表示时间,纵轴表示速度。
通过画出物体在不同时间点的速度,可以得到物体的运动方式。
第二章:力学1.什么是牛顿第一定律(惯性定律)?–牛顿第一定律表明,物体如果没有外力作用于其上,将保持静止或匀速直线运动的状态。
2.什么是牛顿第二定律(动力定律)?–牛顿第二定律表明,物体受力时,加速度与施加力成正比、与物体质量成反比。
其数学公式为:加速度 = 施加力 / 物体质量。
3.什么是牛顿第三定律(作用-反作用定律)?–牛顿第三定律表明,任何一个物体施加一个力在另一个物体上,那么第二个物体也会对第一个物体施加一个大小相等、方向相反的力。
这两个力被称为作用力和反作用力。
4.弹簧的弹性力是怎样计算的?–弹簧的弹性力可以通过胡克定律来计算。
胡克定律表明,弹簧的弹性力正比于其伸长或压缩的距离。
其数学公式为:弹性力 = 弹簧常数 * 伸长或压缩的距离。
第三章:能量和功1.什么是功?–功是力与物体位移的乘积,即力乘以物体移动的距离。
功可以用来衡量能量的转移和转化。
2.什么是功率?–功率是单位时间内所做的功或能量转化的速率。
其计算公式为:功率 = 功 / 时间。
3.什么是动能?–动能是物体由于其运动而具有的能量。
动能的大小取决于物体的质量和速度。
其计算公式为:动能= 1/2 * 质量 * 速度的平方。
4.什么是势能?–势能是物体由于其位置或状态而具有的能量。
1.已知质点的运动方程为; a = 4i j -+。
2.说明质点做何种运动时; 变速率曲线运动;变速率直线运动 3.一质点运动方程为26x t t =-; 8m;10m 4.飞轮作加速转动时; 26m s ; 24m s ;5.一个力F 作用在质量为kg 0.1的质点上;16N S ; 176J ;6.如图为一圆锥摆; 0 ;2m g πω ;2m gπω;7.一质量为m 的物体;0m v ;竖直向下; 8.一质量为m 小球;竖直向上;mgt;9.一颗子弹在枪筒里前进时; 0.003s; 0.6N*S; 2g ; 10.一质点在几个力同时作用下; 38J ; 11.一人把质量为10kg 的物体; 196 ; 216; 12.二质点的质量各为; 1211()G m m ab--;13.狭义相对论是建立在; 伽利略 ; 14.一光子以速度c 运动; c; 15.在测量物体长度中; 最长 ; 最短 ; 16.一观察者测量得沿尺长;32c ;17.静止时边长为a 的立方体;3221a u c -;18.一点电荷q 位于一立方体中心;6Oq ε; 0 ;24Oq ε;19.描述静电场性质的两个物理量是;E ;u ;F E q=;0u Pu E dl ==⎰;20.如图,真空中两个点电荷;O Q ε;0;201094QR πε;21.如图示,两个平行的无限大;2Oσε;32O σε;2Oσε; 方向向右; 方向向右; 方向向左;22.图中曲线表示一种球对称性静电场;均匀带电实心球; 23.真空中有一半径为R 的半圆细环;4O Q Rπε;4O qQ Rπε-;24.如图示,在带电量为q 的点电荷;11()4O abqq r r πε-;25.如图所示,负电荷Q 的电场中有b a ,两点;b; a ; 增加; 26.在点电荷q 的电场中;7210C --⨯;27一带电量为Q 的导体环;Q - ; Q ;28.一孤立金属球带电量Q +;径向方向向外;0;电荷均匀分布于金属球的外表面;29.在带电量为Q +的金属球外面;24Q rπ; Q ;204r Q rπεε;0rQεε;30.一平行板电容器,充电后与电源保持连接;r ε; 1; r ε; 31.半径为0.5cm 的无限长的直圆柱形导体上; 0 ;32.在安培环路定理;_环路所包围的所有稳恒电流的代数和;环路上的磁感应强度;环路内外全部电流所产生的磁场的叠加;33.在均匀磁场中放置两个面积相等;相等;34.一平面实验线圈的磁矩大小为;0.5T ;沿y 轴正向;35.如右图,无限长直导线中流有的电流分别为;不相等;0123()I I I μ--;01()I μ-;36.无限长直圆筒入在相对磁导率为;2Irπ;02r Irμμπ;37.三根无限长载流直导线;5I; 38.一自感线圈中;0.4H;39.产生动生电动势的非静电场力;洛伦兹 ; 涡旋电场;。
物理学第五版上册课后习题答案物理学第五版上册课后习题答案物理学是一门研究物质、能量以及它们之间相互作用的科学。
它的研究范围广泛,包括力学、热学、光学、电磁学等多个领域。
而对于学习物理学的学生来说,课后习题是非常重要的一部分,它可以帮助学生巩固知识、提高解题能力。
本文将为读者提供物理学第五版上册课后习题的答案,希望对学习物理学的读者有所帮助。
第一章:力学基础1. 一个物体质量为2kg,受到的力为10N,求物体的加速度。
答案:根据牛顿第二定律F=ma,将已知量代入计算,可得a=5m/s²。
2. 一个物体质量为0.5kg,受到的力为5N,求物体的加速度。
答案:同样根据牛顿第二定律F=ma,将已知量代入计算,可得a=10m/s²。
3. 一个物体质量为3kg,受到的力为15N,求物体的加速度。
答案:应用牛顿第二定律F=ma,将已知量代入计算,可得a=5m/s²。
第二章:运动学1. 一个物体以10m/s的速度匀速运动了5秒,求物体的位移。
答案:位移等于速度乘以时间,即位移=速度×时间=10m/s×5s=50m。
2. 一个物体以20m/s的速度匀速运动了10秒,求物体的位移。
答案:同样应用位移等于速度乘以时间的公式,位移=速度×时间=20m/s×10s=200m。
3. 一个物体以5m/s的速度匀速运动了2秒,求物体的位移。
答案:应用位移等于速度乘以时间的公式,位移=速度×时间=5m/s×2s=10m。
第三章:牛顿定律1. 一个物体质量为2kg,受到的力为10N,求物体的加速度。
答案:根据牛顿第二定律F=ma,将已知量代入计算,可得a=5m/s²。
2. 一个物体质量为0.5kg,受到的力为5N,求物体的加速度。
答案:同样根据牛顿第二定律F=ma,将已知量代入计算,可得a=10m/s²。
3. 一个物体质量为3kg,受到的力为15N,求物体的加速度。
第五章5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析 根据简谐振动频率公式比较即可。
习题六6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u = 2/0.4E m λρν==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m ππλλ== 2.5/u m s λν==(2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样? 分析无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标题图题图6-3t方向的正负关系)即可求解波的表达。
第1章 质点运动学一、选择题题1.1 :答案:[B]提示:明确∆r 与r ∆的区别题1.2:答案:[A]题1.3:答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4:答案:[C]提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5:答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6:答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项 题1.7:答案:[D] 北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6提示: 2915dx v t t dt ==-,t=0.6时,v=0题1.10:答案:(1)21192y x =- (2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-v a j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j , r 和v 垂直,即0•=r v ,得t=3s题1.11:答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt =====题1.12:答案:1/m sπ 提示: 200t dv v v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t gt =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14:答案:8, 264t 提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题题1.15: 解:(1)3t dv a t dt == 003v t dv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032s t ds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ= 2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 00v t dv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0kt v v e-= 0kt dx v e dt -=∴,000x t kt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题题2.1:答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同D .后半句错误,如:匀速圆周运动题2.2:答案:[B]提示:y 方向上做匀速运动:2y y S v t t ==x 方向上做匀加速运动(初速度为0),F a m= 202t x v adt t ==⎰,2023tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3:答案:[B]提示:受力如图MgF 杆'F 猫mg 设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D]提示:a a A22A B A B mg T ma T ma a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S ) 2A B a a =∴题2.5:答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos60)()1010m m v m v =+共 0=22v v 共题2.6:答案:[C]提示:R θθRh-R 由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7:答案:[B]提示: 运用动量守恒与能量转化题2.8:答案:[D]提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin G y P mgv mg ==∴题2.9:答案: [C]题2.10:答案: [B]提示: 受力如图f TF由功能关系可知,设位移为x (以原长时为原点)02()xF mg Fx mgx kxdx x kμμ--=⇒=⎰ 弹性势能 2212()2p F mg E kx kμ-== 二、填空题题2.11:答案:2mb提示: '2v x bt == '2a v b ==2F ma mb ==∴题2.12:答案:2kg 4m/s 2提示: 4N 8Nxy由题意,22/x a m s = 4x F N =8y F N = 2F m kg a== 24/y y F a m s m ==题2.13:答案: 75,1110提示: 由题意,32()105F a t m ==+ 207/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14:答案:180kg 提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15:答案: 11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W mgR -外题2.17:答案:-12提示:3112w Fdx J -==⎰题2.18: 答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19:答案: 02mg k ,2mg,题2.20:答案:+=0A ∑∑外力非保守力三、计算题题2.21: 解:(1)=m F xg L 重 ()m f L x g Lμ=- (2)1()(1)g a F f x g m Lμμ=-=+-重 (3)dv a v dx =,03(1)v L L g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。
第五章5-1有一弹簧振子,振幅 A 2.0 10 2 m,周期T 1.0 s,初相 3 / 4.试写出它的振动位移、速度和加速度方程。
分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
、2解:振动方程为:x Acos[ t ] Acos[ t ]代入有关数据得:x 0.02 cos[2 t 3 ]( SI )4振子的速度和加速度分别是:v dx / dt0.04si n[2 t 34](SI) 4a d2x/dt20.082 cos[2 t3-](SI)45-2若简谐振动方程为x 0.1 cos[20 t / 4]m,求(1) 振幅、频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。
解: (1)可用比较法求解•根据x Acos[ t ] 0.1 cos[ 20 t / 4] 得:振幅A0.1 m,角频率20 rad / s,频率/210s 周期T 1/0.1 s,/ 4 rad(2)t 2s时,振动相位为:20 t / 4 (40/ 4) rad由x A cos , A sin2,a A cos2x得x0.0707m, 4.44 m/s, a279m/s25-3质量为2kg的质点,按方程x 0.2 sin[ 5t ( /6)]( SI )沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2 )作用于质点的力的最大值和此时质点的位置分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
2解:(1)跟据f ma m x,x 0.2 sin[ 5t ( /6)]将t 0代入上式中,得:f 5.0 N2(2)由f m x可知,当x A 0.2 m时,质点受力最大,为 f 10.0 N 5-4为了测得一物体的质量m将其挂到一弹簧上并让其自由振动,测得振动频率1 1.0Hz ;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为2 2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量分析根据简谐振动频率公式比较即可。
第五章5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析 根据简谐振动频率公式比较即可。
解:由m k /21πν=,对于同一弹簧(k 相同)采用比较法可得:mm '21=νν 解得:'4m m =5-5一放置在水平桌面上的弹簧振子,振幅m A 2100.2-⨯=,周期T=0.5s ,当t=0时, (1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在m x 2100.1-⨯=处,向负方向运动; (4)物体在m x 2100.1-⨯-=处,向负方向运动. 求以上各种情况的振动方程。
分析 根据旋转矢量图由位移和速度确定相位。
进而得出各种情况的振动方程。
解:设所求振动方程为:]4cos[02.0]2cos[ϕπϕπ+=+=t t TA x 由A 旋转矢量图可求出3/2,3/,2/,04321πϕπϕπϕϕ====(1)0.02cos[4]()x t SI π=(2)0.02cos[4]()2x t SI ππ=+ (3)0.02cos[4]()3x t SI ππ=+(4)20.02cos[4]()3x t SI ππ=+5-6在一轻弹簧下悬挂0100m g =砝码时,弹簧伸长8cm.现在这根弹簧下端悬挂250m g =的物体,构成弹簧振子.将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程.分析 在平衡位置为原点建立坐标,由初始条件得出特征参量。
解:弹簧的劲度系数l g m k ∆=/0。
题图5-5当该弹簧与物体m 构成弹簧振子,起振后将作简谐振动,可设其振动方程为:]cos[ϕω+=t A x角频率为m k /=ω代入数据后求得7/rad s ω=以平衡位置为原点建立坐标,有:000.04,0.21/x m v m s ==- 据2020)/(ωv x A +=得:0.05A m =据Ax 01cos -±=ϕ得0.64rad ϕ=±由于00v <,应取)(64.0rad =ϕ 于是,所求方程为:))(64.07cos(05.0m t x += 5-7 某质点振动的x-t 曲线如题图5-7所示.求: (1)质点的振动方程;(2)质点到达P 点相应位置所需的最短时间.分析 由旋转矢量可以得出相位和角频率,求出质点的振动方程。
并根据P 点的相位确定最短时间。
00001cos()0,/2,031,325650.1cos()6320x A t t x A v t s t x t m P ωϕπϕππωπωππ=+==>=-=-=∴==-Q Q 解:()设所求方程为:从图中可见,由旋转矢量法可知;又故:()点的相位为0500.4630.4p p p t t t sP sππωϕ∴+=-==即质点到达点相应状态所要的最短时间为 5-8有一弹簧,当下面挂一质量为m 的物体时,伸长量为m 2108.9-⨯.若使弹簧上下振动,且规定向下为正方向.(1)当t =0时,物体在平衡位置上方m 2100.8-⨯,由静止开始向下运动,求振动方程. (2) 当t =0时,物体在平衡位置并以0.6m/s 的速度向上运动,求振动方程. 分析 根据初始条件求出特征量建立振动方程。
解:设所求振动方程为:)cos(ϕω+=t A x题图5-7其中角频率lgm l mgm k ∆=∆==//ω,代入数据得:10/rad s ω= (1)以平衡位置为原点建立坐标,根据题意有:000.08,0x m v =-= 据2020)/(ωv x A +=得:0.08A m =据Ax 01cos -±=ϕ得rad ϕπ=±由于0v =0,不妨取rad ϕπ= 于是,所求方程为:10.08cos(10)()x t SI π=+(2)以平衡位置为原点建立坐标,根据题意有:000,0.6/x v m s ==- 据2020)/(ωv x A +=得:0.06A m =据Ax 01cos -±=ϕ得/2rad ϕπ=±由于00v <,应取/2rad ϕπ= 于是,所求方程为:20.06cos(10/2)()x t SI π=+5-9 一质点沿x 轴作简谐振动,振动方程为)SI )(3t 2cos(104x 2π+π⨯=-,求:从 t=0时刻起到质点位置在x=-2cm 处,且向x 轴正方向运动的最短时间.分析 由旋转矢量图求得两点相位差,结合振动方程中特征量即可确定最短时间。
解: 依题意有旋转矢量图ϕπ∆=从图可见02(0)t t ϕωπ∆=∆=-而012t s ϕω∆==故所求时间为:5-10两个物体同方向作同方向、同频率、同振幅的简谐振动,在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡解答图5-9位置的方向运动,试利用旋转矢量法求它们的相位差.分析 由旋转矢量图求解。
根据运动速度的方向与位移共同确定相位。
解:由于2/10A x =、100v <可求得:4/1πϕ= 由于2/20A x =、200v >可求得:4/2πϕ-= 如图5-10所示,相位差:12/2ϕϕϕπ∆=-=5-11一简谐振动的振动曲线如题图5-11所示,求振动方程.分析 利用旋转矢量图求解,由图中两个确定点求得相位,再根据时间差求得其角频率。
解:设所求方程为)cos(ϕω+=t A x当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ϕπ==题图5-11题图5-11题图5-10当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 23/2t rad ϕπ==所以,2秒内相位的改变量203/22/35/6t t rad ϕϕϕπππ==∆=-=-= 据t ϕω∆=∆可求出:/5/12/t rad s ωϕπ=∆∆=于是:所求振动方程为:520.1cos()()123x t SI ππ=+5-12 在光滑水平面上,有一作简谐振动的弹簧振子,弹簧的劲度系数为K,物体的质量为m ,振幅为A .当物体通过平衡位置时,有一质量为'm 的泥团竖直落到物体上并与之粘结在一起.求:(1)'m 和m 粘结后,系统的振动周期和振幅;(2)若当物体到达最大位移处,泥团竖直落到物体上,再求系统振动的周期和振幅. 分析 系统周期只与系统本身有关,由质量和劲度系数即可确定周期,而振幅则由系统能量决定,因此需要由动量守恒确定碰撞前后速度,从而由机械能守恒确定其振幅。
解:(1)设物体通过平衡位置时的速度为v ,则由机械能守恒:221122K KA mv v Am==± 当'm 竖直落在处于平衡位置m 上时为完全非弹性碰撞,且水平方向合外力为零,所以(')'mv m m umu vm m =+=+ 此后,系统的振幅变为'A ,由机械能守恒,有2211'(')22'''KA m m u m m m A u AK m m =++==+系统振动的周期为: K'm m 2T +π=(2)当m 在最大位移处'm 竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A,周期为K'm m 2+π.5-13 设细圆环的质量为m,半径为R,挂在墙上的钉子上.求它微小振动的周期. 分析 圆环为一刚体须应用转动定律,而其受力可考虑其质心。
解: 如图所示,转轴o 在环上,角量以逆时针为正,则振动方程为θ-=θsin mgR dtd J 22 当环作微小摆动θ≈θsin 时, 2220d dtθωθ+=ω=22J mR =Q22T πω∴==5-14 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 此小物体是停在振动物体上面还是离开它?(2) 物体的振动方程;(3) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(4) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间.(5) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?分析 小物体分离的临界条件是对振动物体压力为零,即两物体具有相同的加速度,而小物体此时加速度为重力加速度,因此可根据两物体加速度确定分离条件。