第六章 平面直角坐标系LC
- 格式:doc
- 大小:134.50 KB
- 文档页数:5
【初一学习指导】七年级数学上册知识点第六章《平面直角坐标系》知识点总结【初一学习指导】七年级数学上册知识点-第六章《平面直角坐标系》知识点总结第六章平面直角坐标系6.1平面直角坐标系则6.1.1有序数对存有顺序的两个数a与b共同组成的数对,叫作存有序数对。
6.1.2平面直角坐标系平面内画两条互相横向、原点重合的数轴,共同组成平面直角坐标系则。
水平的数轴称作x轴或横轴,习惯上价值观念右为正方向;直角的数轴称作y轴或纵轴挑2向上方向为也已方向;两坐标轴的交点为平面直角坐标系则的原点。
平面上的任意一点都可以用一个有序数对来表示。
创建了平面直角坐标系则以后,座标平面就被两条坐标轴分成了ⅰ、ⅱ、ⅲ、ⅳ四个部分,分别叫作第一象限、第二象限、第三象限和第四象限。
坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用6.2.1用座标则表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴创建坐标系,挑选一个适度的参考点为原点,确认x轴、y轴的也已方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在座标平面内画出来这些点,写下各点的座标和各个地点的名称。
6.2.2用坐标表示平移在平面直角坐标系则中,将点(x,y)向右(或左)位移a个单位长度,可以获得对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或之下)位移b个单位长度,可以获得对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
第六章平面直角坐标系第一节:知识梳理一、学习目标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.能在方格纸上建立适当的坐标系,描述物体的位置.3.在同一坐标系中,感受图形变换后点的坐标变化.4.能灵活应用不同的方式确定物体的位置.二、知识网络根据知识网络结构图,按其中数码顺序,说出各个数码所指内容,以达到梳理知识的目的.三、思想方法1.“由特殊到一般”“由一般到特殊”的思想,如图形的平移过程是通过图形上的一个点或几个点的坐标变化研究的,这些都体现了“由特殊到一般”的思想,而“由点与图形的平移”规律去解决图形的平移问题,又体现了“由一般到特殊”的思想.2.对应的思想,具体表现在平面直角坐标系中的一个点对应着一对有序数对,即点的坐标;而每一对有序数对确定的坐标对应着平面中的一个点.3.数形结合的思想,具体表现在借助平面直角坐标系把几何问题转化为代数问题,同时也可以把代数问题转化为几何问题,就是每一个有序数对(坐标)对应着平面上的一个点.第二节、错解剖析【例1】小虎正确地描出了各点,把它们连接起来,涂上阴影,如图所示.小虎兴奋地说:“真没想到,分布在四个象限内的这些点,居然能连成一只可爱的小猫.”不料,此话一出,又遭到小新的反对:“你说的话有毛病,坐标系内的点并不是都分布在四个象限中,还有些点在坐标轴上,它们不属于任何一个象限.比如,本题中(-2,0),(2,0),(3,0)三个点在横轴上,(0,-2),(0,2),(0,4)三个点在纵轴上”.小虎马上更正:“我说错了,我忘了在坐标轴上的点不属于任何象限,就像在横轴上的点都不能在纵轴一样.”没想到,小新又纠正道:“这话也有问题,原点是一个特殊的点,它既在横轴上,也在纵轴上.”这时,老师又问了小虎一个问题:“你能根据这只猫眼睛的大致位置,说出它们的坐标分别是什么吗?”小虎思考了一下,答道:“它两只眼睛的坐标分别是(-1.5,2.5)和(-0.5,2.5).”老师肯定了他的回答,又布置了一道思考题:请在坐标系中,描出到横轴距离为4、到纵轴距离为5的点.小虎一听,不假思索地说:“这有什么难的,不就是描出坐标为(4,5)的点吗?”他边说边在图中画出点M,没等画完就发现自己错了,急忙更正:“哦——错了!到横距离为4,不是说横坐标为4;到纵轴距离为5,也不是说纵坐标为5.所以,这个点的坐标不是(4,5),而应该是(5,4),这个点N才符合条件——这次,总该没错了吧.”小新一听,说:“你考虑得不全面,还有三个点呢.你看,点P(5,-4),Q(-5,-4)和R(-5,4)三个点是不是也符合条件,别忘了距离是非负数,一个点到横轴的距离是它的纵坐标的绝对值,到纵轴的距离是它的横坐标的绝对值.”第三节、思维点拨一、坐标平面内三角形面积的求法1.有一边在坐标轴上或平行于坐标轴【例1】如图,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?【思考与解】根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值,所以三角形ABC的面积为S△ABC=BC×AO=×4×3=6.2.三边均不与坐标轴平行【例2】平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?【思考与分析】由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以三角形ABC的面积为(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.【小结】本题也可以把三角形ABC分割为两个三角形,转化为1中的情况求解,大家不妨试试.二、平面直角坐标系内四边形面积的求法【例3】如图,你能求出四边形ABCD的面积吗?【思考与分析】四边形ABCD是不规则的四边形,面积不能直接求,我们可以利用分割或补形来求.解法一:将四边形ABCD分割成如上图所示的直角三角形和直角梯形.由各顶点坐标可知DE=3,CE=2, EF=3,CF=5,BF=2,AF=4.所以四边形ABCD的面积为DE×CE+BF×CF+×(DE+AF)×EF=×3×2+×5×2+(3+4)×3=18.5.解法二:如下图,分别过点A、D作平行于y轴的直线,与过点C平行于x轴的直线交于点E、F.由各顶点坐标可知AB=6,AE=5,CE=4,EF=1,FC=3,DF=2.所以四边形ABCD的面积为(CE+AB)×AE-DF×CF-(DF+AE)×EF=×(4+6)×5-×2×3-(2+5)×1=18.5.三、由点的位置确定坐标【例4】如图,小强告诉小华,图中A 点和B 点的坐标分别为(-1,7)和(-3,5),小华一下就说出了C在同一坐标系下的坐标,你知道是多少吗?【思考与分析】我们先由A点和B 点的坐标确定它们所在的坐标系,从而确定C 点的位置.解: C点的坐标是(3,5).四、由坐标确定图的形状和位置【例5】在平面直角坐标系中,描出下列各组点,并用线段顺次连结起来,观察所得到的图形,说说它像什么?(1)(1,1),(2,0),(7,0),(8,2),(6,1),(1,1);(2)(6,1),(6,8);(3)(5,7),(7,8),(7,3),(5,4),(5,7);(4)(2,1),(6,7).【思考与解】解决本题,首先要理解本题的顺次连结,就是将每一组中的各点顺次连结起来.建立平面直角坐标系,通过描点,连线,可以发现,所得到的图案是一只帆船(如图).五、由坐标确定坐标系【例6】如下图,B,C两点的坐标分别是B(2,3),C(4,3),那么(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)各是哪点的坐标?图中有和x轴平行的线段吗?有和y轴平行的线段吗?有互相平行的线段吗?【思考与分析】由B点和C点的坐标可知,图中的单位长度等于小正方形的边长,根据有序数对(a,b)的有序性,先在x轴上找到a,再在y轴找到b,分别过a,b作x,y轴的垂线,两垂线的交点就是有序数对(a,b)的对应点.解:(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)对应的点分别是O、A、D、G、F、E.BC、EF平行于x轴,CE、BF平行于y轴;BC平行于EF,BF平行于AG、CE. 【例7】在纸上建立直角坐标系,根据点的坐标描出下列各点:(0,0),(5,3),(3,0),(5,1),(5,-1),(4,-2),然后按照(0,0)→(5,3)→(3,0)→(5,1)→(5,-1)→(3,0)→(4,-2)→(0,0)的顺序用线段连结起来.(1)看看你得到的图案像什么?(2)如果把这些点的横坐标都加上1,纵坐标都减去2.再按照原来的顺序将得到的各点用线段连结起来,这个图案与原图案在大小、形状、位置上有什么变化?【思考与解】(1)建立平面直角坐标系,将各点描出,连结后我们可以得到一条可爱的小鱼,如图1.(2)如果把这些点的横坐标都加上1,纵坐标都减去2,再按原来的顺序连结,仍得到一条小鱼,这条小鱼的大小、形状与原来的完全一样,它的位置可以看作将原来的小鱼向右平移1个单位长度,然后再向下平移两个单位长度得到,如图2.【例8】如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,….对称中心分别是A、B、O、A、B、O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.【思考与解】根据所给的坐标可以知道O为坐标原点.由于点P1与点P2关于点A对称,且P1的坐标是(1,1),所以P2的坐标是(1,-1);点P2与点P3关于点B对称,所以P3的坐标是(-1,3);点P3与P4关于点O对称,所以P4的坐标是(1,-3);点P4与点P5关于点A对称,所以P5的坐标是(1,3);点P5与点P6关于点B对称,所以P6的坐标是(-1,-1);点P6与点P7关于点O对称,所以P7的坐标是(1,1),这样的话P7与P1重合.依次类推,反复循环,可以知道P8与P2重合、P9与P3重合、P10与P4重合、P11与P5重合、P12与P6重合、P13与P7重合(即与P1重合),由此推断,点Pn是以6为一个周期进行循环的.因此100除以6商是16余数为4,因此P n的坐标与P6的坐标相等为(1,-3).答案为P2(1,-1), P7(1,1),P100(1,-3).【小结】通过以上分析,在平面直角坐标系中,与点的坐标有关的探索问题中点的变化都是有周期性变化的.希望同学们认真探索、总结,以便做到熟能生巧.第四节、竞赛数学【例1】如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点P在第几象限?【分析】若抓住对称点的坐标特性这一解题关键,则可由点M(1-x,1-y)与点N(1-x,y-1)的横坐标相等、纵坐标互为相反数,知两点关于x轴对称,从而可确定出点N在第三象限.于是,点N关于原点的对称点P在第一象限.解法一:∵点M(1-x,1-y)在第二象限,∴1-x<0,1-y>0.∴y-1<0,则点N(1-x,y-1)在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.解法二:∵点M(1-x,1-y)与点N(1-x,y-1)关于x轴对称,且点M在第二象限,∴点N在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.【小结】(1)若不能根据题设条件获得1-x与y-1的正、负情况,就没有解法一;(2)若不能发现点M与点N之间的对称关系,就没有解法二.(3)有序实数对与坐标上的点一一对应,这就使得数与形结合起来.解题时可根据条件,运用数形结合的思想灵活解题.【例2】国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多;“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.【分析与解】注意行与列的区别,点(2,3)的意义是第3行、第2列.故“皇后Q”可控制整个第3行和第2列,还可以控制(1,4),(3,2),(4,1)和(1,2),(3,4).不能被该“皇后Q”所控制的四个位置是(1,1),(3,1),(4,2),(4,4). 【例3】如图.围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为________.【思考与解】本题平面直角坐标系中的横坐标用英文字母表示,根据坐标点位置的意义,易知白棋⑨的位置应记为(D,6).【例4】五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【思考与分析】由对弈规则可知:只有当任一方向(包括直线和斜线)上有五个子连在一起时才能获胜,观察棋盘,不难发现,甲必须首先截断乙方的(2,6),(3,5)和(4,4)三颗白子,故必须在(1,7)或(5,3)处落子,方可不败.解:甲必须在(1,7)或(5,3)处落子,因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.第五节、本章训练基础训练题1.如图,将平行四边形ABCD向右平移2个单位长度,可以得到平行四边形A′B′C′D′,再将平行四边形A′B′C′D′向上平移2个单位长度,可以得到平行四边形A″B″C″D″,画出平移后的图形,并写出平行四边形A″B″C″D″各个顶点的坐标.2.在如图所示的国际象棋棋盘中,双方四只马的位置分别是A(b,3),B(d,5),C(f,7),D(h,2),请在图中描出它们的位置.3.如图是一个8×8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处.请选择适当的坐标系,并用坐标表示各点的位置.答案1.解:如图,A″(1,0),B″(5,0),C″(6,3),D″(2,3).2.解:如图:3.解:以A为坐标原点,则B(2,1),C(6,3),D(-1,6).提高训练题1.如图所示的直角坐标系中,四边形ABCD各顶点坐标分别为A(0,0),B(5,0),C(7,3),D(3,6),你能求出这个四边形的面积吗?2.已知长方形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,-2),则长方形的面积是多少?答案1.解:如图:S四边形ABCD = S四边形AEFG - S三角形ADG - S三角形BCE - S三角形CDF=7×6-×6×3-×(7-5)×3-×(7-3)×(6-3)= 42-9-3-6= 24.2.解:因为点B的坐标为(3,-2),所以AB=|-2|=2,BC=3.所以长方形的面积为2×3=6.强化训练题1.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.2.小明家在学校以东150m,再向北100m处,张明同学家在学校以西50m,再往南200m 处,王玲同学家在学校以南150m处,建立适当的直角坐标系,在直角坐标系中画出这三位同学家的位置,并用坐标表示出来.2.如图为一辆公交车的得驶路线示意图,“●”表示停靠点,现在请你帮助小明完成对该公交车行驶的路线描述:起点站→(1,1)→…→终点站.答案1.解:如图:2.解:如图:3.解:起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→(2,8).综合训练题一、填空题(每题7分,共35分)1.已知点M(-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M在新坐标系内的坐标为 .2.小红将直角坐标系中的点A的横坐标乘2再加2,纵坐标减2再除以2,点A恰好落在原点上,则点A的坐标是 .3.若A(a,6),B(0,2)两点在同一条直线上,则a的值为 .4.已知点(a,b)在x轴负半轴上,则点(a-b,b-a)在象限.5.如图所示,如果小力的位置可表示为(2,3),则小红的位置应表示为 .二、选择题(每题7分,共35分)6.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比().A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以37.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的().A.东南方向B.东北方向C.西南方向D.西北方向8.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A 与A′的关系是().A.关于x轴对称B.关于y轴对称C.关于原点对称D.将A点向x轴负方向平移一个单位9. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C(5,4),最后爬到D(5,5),则小虫一共爬行了()个单位.A. 7B. 6C. 5D. 410. 已知点M1(-1,0)、M2(0,-1)、M3(-2,-1)、M4(5,0)、 M5(0,5)、M6(-3,2),其中在x轴上的点的个数是().A. 1 个B. 2 个C. 3个D. 4个三、解答题(每题15分,共30分)1. 如图是某城市的交通网络图,横向的行称为“道”,如第一大道,第二大道等,纵向的列称为“路”,如1路,2路等. 如图中的车,就在“第一大道2路”的位置.(1)想一想,如果只用“道”或“路”能不能确定一个点的位置?(2)如图的车,要到第五大道3路处,又要使路程最短,你能想出几种方法?12.已知点P(2,3)(1)在坐标平面内画出点P;(2)分别求出点P关于x轴、y轴的对称点P1、P2.(3)求三角形P1PP2的面积.答案一、1. (-1,5) 2. (-1,2) 3. 04. 第二5. (3,4)二、6.A 7.B 8.B 9.B 10.B三、11. 【解题思路】(1)在平面上确定点的位置至少需要两个数据.(2)车到第五大道3路去的路线很多,可先列出几条较近的再择优选取.解:(1)只用“道”或“路”一个数,不能确定点的位置.(2)要使路程最短,共有五种方法.①(1,2)→(2,2)→(3,2)→(4,2)→(5,2)→(5,3)②(1,2)→(2,2)→(3,2)→(4,2)→(4,3)→(5,3)③(1,2)→(2,2)→(3,2)→(3,3)→(4,3)→(5,3)④(1,2)→(2,2)→(2,3)→(3,3)→(4,3)→(5,3)⑤(1,2)→(1,3)→(2,3)→(3,3)→(4,3)→(5,3)12.【解题思路】我们可以看到,本题分三问,每一问都是下一问的基础,因此我们不能因为前边的问题简单而麻痹大意,因为一步错,步步错.所以我们必须认真对待,一丝不苟的完成解:(1)如图:(2)P1(2,-3),P2(-2,3).(3)如图:=PP1×PP2=×6×4=12.。
第六章平面直角坐标系测试1平面直角坐标系学习要求认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y轴的负半轴上在原点2.如图,写出图中各点的坐标.A( , );B( , );C( , );D( , );E( , );F( , );G( , );H( , );L( , );M( , );N( , );O( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).(2)A (-5,-2)、B (-4,-1)、C (-3,0)、 D (-2,1)、E (-1,2)、 F (0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、 D (4,1)、 E (6,32)、 F (-1,-4)、G (-2,-2)、 H (-3,-34)、L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、H (3,5)、 L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限; (2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上; (4)若x <0,则点P 在______象限或在______上; (5)若y =0,则点P 在______上; (6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A(-2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.图1 图2(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.9.选择题(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2)D.(0,1)(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).A.第一象限B.第二象限C.第三象限D.第四象限(4)如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在( ).A.第四象限B.第三象限C.第二象限D.第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内.A.1 B.2 C.3 D.410.点P(-m,m-1)在第三象限,则m的取值范围是______.11.若点P(m,n)在第二象限,则点Q(|m|,-n)在第______象限.12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.13.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.测试2 坐标方法的简单应用学习要求能建立适当的平面直角坐标系描述物体的位置.在同一直角坐标系中,感受图形变换后点的坐标的变化.(一)课堂学习检测1.回答下面的问题.(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B 表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是①建立______选择一个____________为原点,确定x轴、y轴的____________;②根据具体问题确定适当的______在坐标轴上标出____________;③在坐标平面内画出这些点,写出各点的______和各个地点的______.2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.(二)综合运用诊断一、填空4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是___________________________________ _______________________________________________________.二、选择题11.下列说法不正确的是( ).A.坐标平面内的点与有序数对是一一对应的B.在x轴上的点纵坐标为零C.在y轴上的点横坐标为零D.平面直角坐标系把平面上的点分为四部分12.下列说法不正确的是( ).A.把一个图形平移到一个确定位置,大小形状都不变B.在平移图形的过程中,图形上的各点坐标发生同样的变化C.在平移过程中图形上的个别点的坐标不变D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是( ).A.(3,-2)B.(-3,-2)C.(0,0)D.(0,-3)14.已知三角形内一点P(-3,2),如果将该三角形向右平移2个单位长度,再向下平移1个单位长度,那么点P的对应点P′的坐标是( ).A.(-1,1)B.(-5,3)C.(-5,1)D.(-1,3)15.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是( ).A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.17.(1)如果动点P (x ,y )的坐标坐标满足关系式试121+=x y ,在表格中求出相对应的值,并在平面直角坐标系里描出这些点:点的名称 A B C D E 点的横坐标x -2 2 点的纵坐标y-113(2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A 1、B 1、C 1、D 1、E 1,试画出这几个点,并分别写出它们的坐标.(三)拓广、探究、思考18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:1)请在所给的网格内画出以线段AB 、BC 为边的平行四边形ABCD ; 2)填空:平行四边形ABCD 的面积等于______.19.在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.全章测试一、填空题:1.若点P(a,b)在第四象限,则(1)点P1(a,-b)在第______象限;(2)点P2(-a,b)在第______象限;(3)点P3(-a,-b)在第______象限.2.在x轴上,若点P与点Q(-2,0)的距离是5,则点P的坐标是______.3.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是______.4.(1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.5.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).6.若点P(m-3,m+1)在第二象限,则m的取值范围是______.7.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.8.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.9.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.10.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______.二、选择题:11.若点P(a,b)的坐标满足关系式ab>0,则点P在( ).(A)第一象限(B)第三象限(C)第一、三象限(D)第二、四象限12.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).(A)原点(B)x轴上(C)y轴上(D)x轴上或y轴上13.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).(A)(1,2)(B)(2,1)(C)(1,2),(1,-2),(-1,2),(-1,-2)(D)(2,1),(2,-1),(-2,1),(-2,-1)14.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限15.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点( ).(A)(1,3) (B)(-2,1)(C)(-1,2) (D)(-2,2)16.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.(A)(0,3),(0,1),(-1,-1)(B)(-3,2),(3,2),(-4,0)(C)(1,-2),(3,2),(-1,-3)(D)(-1,3),(3,5),(-2,1)三、解答题:17.一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.18.如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是______,△ABC的面积是______.19.已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.20.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案第六章平面直角坐标系测试11.(1)垂直、重合、数轴,x轴、横轴,向右方向;y轴、纵轴,向上方向;原点、平面(2)有序数对.A点的坐标,横坐标,纵坐标.(3)两条坐标轴,第一象限、第二象限、第三象限、第四象限、坐标轴上的点.(4)略2.A(2,5);B(-4,6);C(-7,2);D(-6,0);E(-5,-3);F(-4,-5);G(0,-6);H(2,-5);L(5,-2);M(5,0);N(6,3);O(0,0).3.(1) (2)4.(1) (2)5.B、D;A;E和F6.(1)一或三 (2)二或四(3)一或二象限或y轴正半轴上.(4)二或三象限或x轴的负半轴上.(5)x轴上.(6)y轴上.7.(1)A(4,0),B(4,4),C(0,4),D(0,0)(2)A(2,-2),B(2,2),C(-2,2),D(-2,-2)(3)A(2,-4),B(2,0),C(-2,0),D(-2,-4)(4)A(0,-4),B(0,0),C(-4,0),D(-4,-4)8.(1)任意实数,3;垂直,(0,3),平行,3.(2)-2,任意实数;垂直,(-2,0),平行,2.(3)相等,平分.9.(1)A;(2)D;(3)C;(4)C;(5)B.10.0<m<1.11.第四象限.12.(-6,2),(-6,-2).13.原点.14.m=-2,n=3.15.(-4,-6).16.以点B为原点,射线BC、射线BA分别为x轴、y轴正半轴建立直角坐标系.A(0,3),B(0,0),C(6,0),D(6,3).17.(1)提示:作AD⊥x轴于D点,S△ABC=15.(2)提示:作AD⊥y轴于D点,作BE⊥y轴于E点,S△ABC=S梯形ABED-S△ACD-S△BCE=12.18.(1)a=3,b=4;(2)a=-3,b=-4;(3)a=-3,b=4.19.(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1=0,解得m=1,所以P点的坐标为(6,0);(3)令m-1=(2m+4)+3,解得m=-8,所以P点的坐标为(-12,-9);(4)令m-1=-3,解得m=-2.所以P点的坐标为(0,-3).20.(1)当x=-1时,点P在x轴的负半轴上;(2)当x=1时,点P在y轴的正半轴上;(3)当x>1时,点P在第一象限;(4)当-1<x<1时,点P在第二象限;(5)当x<-1时,点P在第三象限;(6)点P不可能在第四象限.测试21.(1)A(-150,50),B(150,200),C(-250,300),D(450,-400),E(500,-100),F(350,400),G(-100,-300),H(300,-250),L(-150,-500).(2)略.2.略.3.(2)画图答案如图所示:①C1(4,4);②C2(-4,-4);③D(0,-1).4.x轴,y轴.5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).6.右,左,a个单位长度,上,下,b个单位长度.7.(-2,5),(-4,3).8.(1,2).9.2,4.10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.11.D12.C13.C14.A15.B16.(5,4).17.(1)点的名称 A B C D E点的横坐标x-4 -2 0 2 4点的横坐标y-1 0 1 2 3图略.(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.18.解:(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.(第18题答图)19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)(第19题答图)全章测试1.(1)一;(2)三;(3)二.2.(-7,0)或(3,0).3.(0,-3)或(0,9).4.(1)4,5;(2)2|n|,3|m|.5.A(-5,0),B(0,-3),C(5,-2),D(3,2),E(0,2),F(-3,3).6.-1<m<3.7.(-3,2).8.B'(-3,-6),(-4,-1).9.y轴.10.(2,-1).11.C;12.D;13.D;14.A;15.B;16.D.17.在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C18.(1)略;(2)(-2,2)或(-1,1);2或419.如图所示,可以画出三个平行四边形,即平行四边形ABD1C,平行四边形AD2BC,平行四边形ABCD3,其中D1(8,3),D2(0,-5),D3(-4,3).20.(1)S△ABC=4;(2)P1(-6,0)、P2(10,0)、P3(0,5)、P4(0,-3).。
第六章“平面直角坐标系”简介(新)伟大的法国数学家笛卡儿(Descartes 1596-1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点.他进而又创立了解析几何学,把相互对立着的“数”与“形”统一了起来,他的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域.正如恩格斯所说“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了.”平面直角坐标系架起了数与形之间的桥梁.提前安排平面直角坐标系是本套教科书体系安排上的一个特点.原教科书有关平面直角坐标系的内容只有2课时,放在初中三年级“函数”一章,作为学习函数的基础知识来安排的.这套教科书将“平面直角坐标系”单独设章,8个课时,放在7年级下学期学习,目的是让学生尽早接触平面直角坐标系这种数学工具,尽早感受数形结合的思想.本章教学时间约需7课时,具体分配如下(仅供参考):6.1 平面直角坐标系 3课时6.2 坐标方法的简单应用 3课时数学活动小结 1课时一、教科书内容和课程学习目标(一)本章知识结构(二)内容安排本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容.教科书首先从实际中需要确定物体的位置(如确定电影院中座位的位置以及确定教室中学生座位的位置等)出发,引出有序数对的概念,指出利用有序数对可以确定物体的位置,由此联想到是否可以用有序数对表示平面内点的位置的问题,结合数轴上确定点的位置的方法,引出平面直角坐标系,学习平面直角坐标系的有关概念,如横轴、纵轴、原点、坐标、象限,建立点与坐标(整数)的对应关系等.对于坐标方法的简单应用,本章主要学习平面直角坐标系在确定地理位置和表示平移变换中的应用.用坐标表示地理位置体现了坐标系在实际生活中的应用.本章在安排这部分内容时,首先设置一个观察栏目,让学生观察地图上是怎样利用坐标表示一个地点的地理位置的,从中得到启发,来学习建立坐标系,确定一个地点的地理位置的方法.接下去教科书设置了一个探究栏目,要求学生画出一幅地图,标出学校和三位同学家的位置.要用平面直角坐标系表示地理位置,就要考虑如何建立坐标系的问题,首先是确定原点和坐标轴的正方向,教科书选用了以学校为原点,向东为x轴正方向,向北为y轴正方向建立坐标系,并确定一定的比例尺,根据三位同学家的位置情况,在坐标系中标出了这些地点的位置,并归纳给出绘制平面示意图的一般过程.用坐标表示平移,从数的角度刻画了第五章平移的内容,本章主要研究点(或图形)的平移(上、下、左、右平移)引起的点(或图形顶点)坐标的变化,以及点(或图形顶点)坐标的变化引起的点(或图形)的平移.教科书首先设置一个探究栏目,分析在平面直角坐标系中,将一个已知点向右(或向左)平移某个单位长度得到一个新点,这个点的坐标与平移前的点的坐标有什么关系,同样如果将这个点分别向上(或向下)平移某个单位长度得到新的点,这个点与平移前点的坐标又有什么关系,通过分析平移前后点的坐标的变化,发现坐标的变化规律,比如将一个点向右平移某个单位长度,平移后得到的点的坐标是纵坐标不变,横坐标加上这个单位长度;对于图形的平移引起的图形顶点坐标的变化,教课书是在练习中给出的,让学生自己完成.从这个练习的安排上可以看出,本套教材对于练习有一种新的考虑,就是练习不全是对正文内容的复习和巩固,有些练习是正文的一部分,是正文内容的延伸和拓展.接下去教科书讨论了一个三角形顶点坐标的某种有规律变化,引起的三角形的平移.比如,将三角形三个顶点的横坐标都减去某个正数,纵坐标不变,得到三个新的点,连接这三个点,得到一个新的三角形,这个新三角形与原来的三角形在大小、形状和位置上有什么关系等,通过探究发现这两个三角形大小形状完全相同,只是位置不同,实际上是对三角形进行了平移,在此基础上教科书归纳给出有关的规律.(三)课程学习目标1.通过实例认识有序数对,感受它在确定点的位置中的作用;2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数);3.能在方格纸中建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;4.在同一平面直角坐标系中,能用坐标表示平移变换.通过研究平移与坐标的关系,使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换;5.结合实例,了解可以用不同的方式确定物体的位置.二、本章编写特点(一)注意加强知识间的相互联系平面直角坐标系是以数轴为基础的,两者之间存在着密切的联系.平面直角坐标系是由两条相互垂直、原点重合的数轴构成的,坐标平面内点的坐标是根据数轴上点的坐标定义的,平面内点与坐标的对应关系类似于数轴上点与坐标的对应关系等.本章编写时注意突出了平面直角坐标系与数轴的联系.对于平面直角坐标系的引入,教科书首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,教科书类比着数轴,探讨了在平面内确定点的位置的方法,引出平面直角坐标系,给出平面直角坐标系的有关概念.这样通过加强平面直角坐标系与数轴的联系,可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡.(二)突出数形结合的思想,体现平面直角坐标系的作用无论是在数学还是在其他领域,平面直角坐标系都有着非常广泛的应用.在数学科学中,由于平面直角坐标系的引入,架起了数与形之间的桥梁,使得我们可以用几何的方法研究代数问题,又可以用代数的方法研究几何问题.对于平面直角坐标系的这种桥梁作用,本套教科书给予了充分重视.本章中,编写了利用坐标的方法研究平移的内容,从数的角度刻画平移变换,这就用代数的方法对几何问题进行了研究,体现了平面直角坐标系在数学中的作用.通过本章的学习,让学生看到平面直角坐标系的引入,加强了数与形之间的联系,它是解决数学问题的一个强有力的工具.用坐标表示地理位置体现了坐标系在实际生活中的应用.用经纬度表示地球上一个地点的地理位置,用极坐标表示区域内地点的位置,以及用平面直角坐标表示区域内地点的位置等,实际上都是利用了有序数对与点的对应关系,是坐标与点一一对应思想的表现.教科书突出了这种对应关系,利用这种对应关系研究了如何建立坐标系用坐标表示地理位置的问题,使学生体会坐标思想在解决实际问题中的作用.(三)注重学生的认知规律本章编写时,改变了原教科书从数学的角度引出坐标系的做法,而是将本章内容的编写仅仅围绕着确定物体的位置展开,从实际生活中确定物体的位置出发引出坐标系,也就是从实际需要引出坐标系这个数学问题,然后展开对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,最后再利用坐标系解决生活中确定地理位置的问题,让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.也就是经历了一个由实践—理论—实践的认识过程.(四)内容编写生动生动活泼本章编写时,注意结合本章内容的特点,将枯燥的数学问题赋予有趣的实际背景,使内容更符合学生的年龄特点,激发学生学习数学的兴趣.例如教科书习题6.2的第1题“三架飞机P、Q、R保持编队飞行,分别写出它们的坐标.30秒后,飞机P飞到P位置,飞机Q、R飞到了什么位置?分别写出这三架飞机新位置的坐标”,这个问题实际上是一个三角形平移的问题,再比如,让学生画出本学校的平面示意图,用坐标表示动画制作过程中小鸭子的位置变化,用坐标表示某地古树名木的位置等.从数学上讲,这些都是关于点与坐标对应关系的问题,本章编写时注意给这些数学问题加上一个有趣的背景,增加学生学习本章内容的兴趣.三、几个值得关注的问题(一)密切联系实际本章内容的编写仅仅围绕着确定物体的位置展开.教科书首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及确定教室中学生座位的位置等实际出发,引出有序数对,进而引入平面直角坐标系.通过对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,然后再利用坐标系解决生活中确定地理位置的问题(如确定同学家的位置等),让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.这样的一种处理,不是从数学角度引入平面直角坐标系,而是密切联系生活实际,从实际的需要出发学习直角坐标系.教学中可以结合学生的实际情况,利用学生周围熟悉的素材学习本章内容,让学生充分感受平面直角坐标系在解决实际问题中的作用.(二)准确把握教学要求对于某些重要的概念和方法,本套教科书采用了螺旋上升的编排方式.例如,对于平移变换,教课书首先在上一章“相交线与平行线”中安排了一节“平移”,探讨得出“对应点的连线平行且相等”等平移变换的基本性质;在本章又安排了一小节“用坐标表示平移”的内容,用坐标刻画了平移变换,从数的角度进一步认识平移变换;对平移变换以后还要继续学习,例如在八年级上册第13章“实数”进一步安排了在实数范围内研究平移的内容,在八年级下册“四边形”一章中,将对“对应点的连线平行且相等”这条平移变换的基本性质进行论证,为后续学习利用平移变换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.对于平面直角坐标系,本章只要求学生会建立直角坐标系,能根据坐标描出点的位置,能由点的位置写出点的坐标,其中点的坐标都是整数,这实际研究了点与有序整数对的对应关系,在第13章“实数”将把点的坐标扩展到实数范围,并建立点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等问题打下基础.因此,教学中要注意内容安排的这个特点,准确把握本章对于平移变换和平面直角坐标系的教学要求,以一个动态的、发展的观点看待教学要求.(三)注意留给学生思考的空间本章编写时,注意结合本章内容特点,利用一些“思考”“探究”“归纳”等栏目,给学生留出了较大的思考空间.例如,在第6.2.2小节中,教科书首先设置一个“探究”栏目,让学生探究将几个已知坐标的点上、下、左、右的平移后得到新的点,各对应点之间的坐标有怎样的变化规律,接下去就设置一个“归纳”栏目,栏目中留有空白,让学生写出平移过程中对应点的坐标的变化规律,这实际上让学生经历一个由特殊到一般的归纳过程.对于这个规律的获得,教科书仅用了两个栏目,很少的篇幅,这样实际上给学生留出了较大的探索空间,因此教学中,要注意留给学生足够的时间,使学生充分活动起来,通过探究发现并总结规律.对于这些规律,不要让学生死记硬背,要让学生在坐标系中,结合图形的变换理解这些结论.。
第六章“平面直角坐标系”简介1. 概述在数学中,平面直角坐标系是研究平面几何的重要工具之一。
它由两条互相垂直的直线所构成,分别称为x轴和y轴,它们的交点被定义为原点O。
平面上的点可以用有序实数对(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
本章将介绍平面直角坐标系的基本概念和性质,以及与其相关的常见概念和术语。
2. 坐标轴和坐标2.1 坐标轴平面直角坐标系由x轴和y轴组成,它们分别是垂直于水平方向和垂直于竖直方向的直线。
x轴和y轴的交点为原点O,通常将原点作为坐标系的起点。
2.2 坐标平面上的点可以用坐标表示,坐标形如(x, y)。
其中,x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴将平面分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。
每个象限都有特定的坐标范围。
3. 坐标系的性质3.1 坐标轴的正向在平面直角坐标系中,x轴的正向是由原点O指向正半轴,y轴的正向是由原点O指向正半轴。
根据右手定则,可以确定x轴和y轴的正向。
3.2 象限平面直角坐标系将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。
第一象限的x坐标和y坐标都是正数,第二象限的x坐标是负数,y坐标是正数,第三象限的x坐标和y坐标都是负数,第四象限的x坐标是正数,y坐标是负数。
3.3 单位长度在平面直角坐标系中,x轴和y轴的单位长度相等。
它们的单位长度可以根据需要进行调整,常用的单位长度有厘米、米等。
4. 常见概念和术语4.1 点点是平面上最基本的几何元素,用坐标表示。
一个点在平面上的位置可以通过其坐标(x, y)唯一确定。
4.2 直线直线是由无数个点组成的,它们在平面上的分布满足某种规律。
直线可以用方程或参数方程等形式表示。
4.3 斜率斜率是直线的重要属性,表示直线的倾斜程度。
斜率的计算方法为直线上两点之间的纵坐标差与横坐标差的比值。
4.4 距离平面上两点之间的距离可以用勾股定理计算。
第六章平面直角坐标系【课标要求】【知识梳理】1.平面直角坐标系的相关概念:平面直角坐标系的相关概念不要死记硬背,应紧密结合坐标系来理解;在坐标平面内会准确地描点,对于坐标平面内的点要借助图形准确地写出,特别注意各象限内点的坐标符号。
2.坐标平面内点的坐标特征:注意两坐标轴上点的坐标的不同,且x轴、y轴不属于任何一个象限。
3.不同位置点的坐标特征:对于平行于两坐标轴的直线上点的坐标特点应借助于平面直角坐标系来应用。
对于对称点的坐标特征应遵循:关于x轴对称的两点,横坐标不变,纵坐标相反;关于y轴对称的两点,横坐标相反,纵坐标不变;关于原点对称的两点,横纵坐标都互为相反数,或借助图形来完成,切忌死背。
注意P(x,y)到两坐标轴的距离与线段长度的区分。
【水平训练】一、填空题:1.已知点M(,)在第二象限,则的值是;2.已知:点P的坐标是(,),且点P关于轴对称的点的坐标是(,),则;3.点 A在第二象限,它到轴、轴的距离分别是、,则坐标是;4.点P在轴上对应的实数是,则点P的坐标是,若点Q在轴上对应的实数是,则点Q的坐标是,若点R(,)在第二象限,则,(填“>”或“<”号);5.点P(,)关于轴的对称点的坐标是,关于轴的对称点的坐标是,关于原点的对称点的坐标是;6.点A(,)到轴的距离是,到轴的距离是,到原点的距离是;7.若点在第一象限,则的取值范围是;8.若关于原点对称,则;9.已知,则点(,)在;10.等腰三角形周长为20cm,腰长为(cm),底边长为(cm),则与的函数关系式为,自变量的取值范围是;11.已知中自变量的取值范围是;12.函数中自变量的取值范围是__ ___;13.函数中,自变量的取值范围是;14.中自变量的取值范围是;15.函数中自变量的取值范围是_____ ___;16.函数中自变量的取值范围是;18.函数中,自变量的取值范围是________ __;19.函数的自变量的取值范围是;20.函数的自变量的取值范围是;二.选择题:21.若点P(,)到轴的距离是,到轴的距离是,则这样的点P 有()A1个B2个C3个D4个22.点A(,)关于轴对称的点的坐标是()A (,)B (,)C (, )D (,)23.点P(,)关于原点的对称点的坐标是()A.(,) B (,) C (,) D. (,)24.在直角坐标系中,点P(,)关于轴对称的点P1的坐标是()A(,) B(,) C(, ) D(,)25.若点P(, )在第二象限,则以下关系准确的是()A B C D26.点(,)不可能在()A 第一象限B 第二象限C 第三象限D 第四象限27.假如点P(,)与点P1(,)关于轴对称,则,的值分别为()A B C D28.函数中,自变量的取值范围是()A B C D29.在函数中,自变量的取值范围是()A ≥3B ≠3C D30.函数中,自变量的取值范围是()A. ≥1B.C. ≤1D.31.函数的自变量的取值范围是()A <3B ≤3且≠1C≤3 D 1<≤332.函数的自变量的取值范围是()A ≥2B ≥-2C >2D >-233.已知点P(,)在第三象限,则的取值范围是()A B 3≤≤5 C 或 D ≥5或≤334.函数中自变量的取值范围是()A ≥-1B ≠2C ≥-1或≠2 D ≥-1且≠235.函数中,自变量的取值范围是()A且BC且D≤2且36.以下五个命题:(1)若直角三角形的两条边长为3和4,则第三边长是5;(2)=a(a≥0);(3)若点P(a,b)在第三象限,则点P'(-a,-b+1)在第一象限;(4)连接对角线互相垂直且相等的四边形各边中点的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等。
第六章平面直角坐标系
一、选择题:
1、下列各点中,在第二象限的点是()
A.(2,3)B.(2,-3) C.(-2,3) D.(-2, -3)
2、已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()
A.第一象限B.第二象限C.第三象限D.第四象限
3、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()
A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)
4、点E(a,b)到x轴的距离是4,到y轴距离是3,则有()
A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±3
5、已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()
A、(-2,2),(3,4),(1,7)
B、(-2,2),(4,3),(1,7)
C、(2,2),(3,4),(1,7)
D、(2,-2),(3,3),(1,7)
6、将某图形的横坐标都减去2,纵坐标不变,则该图形()
A.向右平移2个单位B.向左平移2 个单位
C.向上平移2 个单位D.向下平移2 个单位
7、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()
A、(2,2)(3,4)
B、(3,4)(1,7)
C、(-2,2)(1,7)
D、(3,4)(2,-2)
8、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()
A、(2,2)
B、(3,2)
C、(3,3)
D、(2,3)
9、已知点P(a,b),a b>0,a+b<0,则点P在()
A.第一象限B.第二象限C.第三象限D.第四象限
10、点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()
A.(0,-2)B.( 2,0)C.( 4,0)D.(0,-4)
11、已知点P(x,x),则点P一定()
A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方12、若4
=b
a,且点M(a,b)在第三象限,则点M的坐标是()
,5=
A、(5,4)
B、(-5,4)
C、(-5,-4)
D、(5,-4)
13、已知点A()2
,2-,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C 点的坐标是()
A、()2,2
B、()2,2
-C、()1
,2-
-
,1-
-D、()2
二、填空题:
14、如果用(7,8)表示七年级八班,那么八年级七班可表示成 .
15、在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 .
16、点A(-3,5)在第象限,到x轴的距离为,到y轴的距离为_______。
171、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .
18、已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于19、,则a的值是________________.
20、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________.
21、如果p(a+b,ab)在第二象限,那么点Q (a,-b) 在第象限.
22、如果点M(a,b)第二象限,那么点N(b,a)在第象限。
23、已知点M()y
,2-
-关于x轴对称,则x + y = 。
x,与点N()3
24、已知点M()a
+4,3在y轴上,则点M的坐标为。
a-
三、解答题:
她利用平面直角坐标系画出了公园的景区地图,如
图所示。
可是她忘记了在图中标出原点和x轴、y
轴。
只知道游乐园D的坐标为(2,-2),你能帮她
求出其他各景点的坐标?
25、如图,(1)描出A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)四个点,线段AB 、CD 有什么关系?顺次连接A 、B 、C 、D 四点组成的图形是什么图形?
(2)请画出图形ABCD 向右平移2个单位, 再向下平移1个单位的图形A 'B 'C 'D ',
并分别写出A '、B '、C '、D '的坐标。
26、如图,在平面直角坐标系中,分别写出
△ABC 的顶点坐标,并请画出将△ABC 向右
平移4个单位长度后再向上平移2个单位长
度的图形。
27. 已知四边形ABCD 各顶点的坐标分别是A (0,0),B (3,4),C (-1,4),D (-3,2)
(1)请建立平面直角坐标系,并画出四边形ABCD 。
(2)画出将四边形ABCD 向左平移2个单位长度再向下平移1个单位长度的图形。
(3)求四边形ABCD 的面积。