(2) (x+p)2-(x+q)2
分析:把x+p和x+q分别看成一个整体,在形 式上就具备了平方差公式的特点,所以可用平 方差公式分解。
解:(x+p)2-(x+q)2 =[(x+p)+(x+q)][(x+p)-(x+q)] =(2x+p+q)(p-q)
9
2、活用公式
例4、分解公因式
(1)x4-y4
n1 2n
五、小结
1、今天学习了利用平方差公式分解因式,你有哪 些收获?
2、平方差公式有哪些特点?你记住了吗? 3、分解因式要分解到多项式的每一项不能再分 解为止!
六、作业
1、P.117.练习2. 2、P.119.复习巩固.2. 3、P.119.综合运用.5.(3)
(2) a3b-ab
分析:a3b-ab有公因式ab,应先提取公因式, 再进一步分解。
解:a3b-ab =ab(a2-1) =ab(a+1)(a-1)
四、巩固提升
1、基础练习
(1) 下列多项式,哪些能用平方差公
式来分解因式,哪些不能?为什么?
m2 +4n2
m2 -4n2
_不__能__ __能__
m2 -4n2 __不_能__
解: ∵ a-b=1 ∴ a2-b2-2b =(a+b)(a-b)-2b =(a+b)×1-2b =a+b-2b =a-b =1
(2)已知:a2-b2=21, a-b=3,求代数式(a-3b)2 的值。 分析:把 a2-b2=21的左边分解因式得, (a+b)(a-b)=21,将a-b=3代入得a+b=7, 由a-b=3及a+b=7,可求出a、b的值。