公开课平方差公式
- 格式:docx
- 大小:25.75 KB
- 文档页数:6
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
《平方差公式》的教案《平方差公式》的教案范文(精选11篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。
那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《平方差公式》的教案范文(精选11篇),希望能够帮助到大家。
《平方差公式》的教案篇1教学目标①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.③了解平方差公式的几何背景,体会数形结合的思想方法.教学重点与难点重点:平方差公式的推导及应用.难点:用公式的结构特征判断题目能否使用公式.教学准备卡片及多媒体课件教学设计引入同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.举例再举几个这样的运算例子.注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.验证我们再来计算(a+b)(a-b)=公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例归纳猜想验证用数学符号表示.注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.概括平方差公式及其形式特征教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.应用教科书第152页例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(a+b)(a-b) a b a2b2 最后结果(3x+2)(3x-2) 2 (3x)2-22(b+2a)(2a-b)(-x+2y)(-x-2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.教科书第152页例2计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.教科书第153页练习1、2练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.解释你能根据下面的两个图形解释平方差公式吗?多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.小结谈一谈:你这一节课有什么收获?注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.作业1.必做题:教科书第156页习题15.2第1题2.选做题:计算:(1)x2+(y-x)(y+x)(2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y)(4)(a+ b)(a- b)-(3a-2b)(3a+2b)《平方差公式》的教案篇2教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。
《平方差公式》教学设计教学目标:1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.教学重点:1、 学会平方差公式的推导和应用2、理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点:能灵活运用公式进行运算.教学课时:一课时教学过程复习回顾:复习多项式乘法法则提问:(a+b )(m+n )=_____举例:计算(x + 2)( x +5)创设情境,导入新课问题:王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。
售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了数学课上刚学过的一个公式。
”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了.探索新知,尝试发现一、拼图游戏1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=18002、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800 由此得:(45+15)(45-15)= 452-152二、计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= _____________ ;(2)(2+ m)(2- m)=____________ ;(3)(2x+3)(2x-3)=____________ .依照以上三道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(a+b)(a- b)=a²- b².三、总结归纳,发现规律你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.22a-=b+-())(baab四、剖析公式,发现本质在平方差公式中,其结构特征为:(a+b)(a- b)=a²- b²(1)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内第一项的平方减去第二项的平方.(3) 公式中的a和b 可以代表数,也可以是代数式.五、巩固运用,内化新知例1 利用平方差公式计算:(1)(5+6x)(5−6x); (2) (x+2y)(2y−x); (3) (−a+2b)(−a−2b).解:(1)(5+6x)(5−6x)(2) (x+2y)(2y−x) (3)(−a+2b)(−a−2b)=5 ²-(6x)² =(2y+x)(2y-x) =(-a) ²-(2b) ²=25-36x ² =(2y) ²-x² =a²-4b²=4y²-x²注意:当“第一(二)数”是一分数或是数与字母的乘积时, 要用括号把这个数整个括起来,最后的结果又要去掉括号。
《平方差公式》教学设计龙山二中——吴九云一、教学目标1、知识与技能让学生了解平方差公式的特点,能辨别出平方差公式,进一步加深对平方差公式的理解。
2、过程与方法(1)通过创设问题情境,让学生在数学活动中建立平方差公式模型,感受数学公式的意义和作用。
(2)让学生感悟换元的思想方法,在运用公式解决实际问题的过程中培养学生的化归思想,逆向思维。
3、情感、态度与价值观(1)在合作交流中扩展思路,经过验证反思积累数学活动经验;(2)培养学生学习数学的兴趣,激发学生学习数学的情感。
二、教学重点、难点重点:让学生了解平方差公式结构的特点,进一步加深对平方差公式的理解;难点:学生能辨别出平方差公式,并掌握平方差公式的应用。
三、教学方法:以教师的精讲、引导为主,辅以引导发现、合作交流四、教学课时:一课时五、教学准备:多媒体课件六、教学过程:创设情境:小霞同学去商店买了单价10.2元/千克的糖果9.8千克,小霞同学马上说:“应付99.96元。
”售货员很惊讶:“你真是个神童!”小霞同学说:“过奖了,我只是利用了数学上刚学过的一个公式而已!”复习回顾:复习多项式乘法法则提问: ()()bn bm an am n m b a +++=++探索新知,尝试发现举例:计算(1)(x+1)(x -1); x 2-1 (2) (a+2)(a -2); a 2-4(3) (3-x)(3+x) ; 9-x 2 (4) (2x+1)(2x -1) 4x 2-1 观察上述算式,你能发现什么规律?运算出结果后,你又发现什么规律? 等号的左边:两个数的和与差的积,等号的右边:是这两个数的平方差平方差公式:(a +b )(a −b )=a 2−b 2两数和与这两数差的积等于这两数的平方差.找一找、填一填(a +b )(a −b )=a 2−b 2平方差公式特征:(1)左边括号中有两项完全相同,两项互为相反数.(2)右边是相同项的平方减去相反项的平方(3)公式中的a,b 可以表示 一个单项式也可以表示一个多项式.下列式子可用平方差公式计算吗? 为什么?如果能够,怎样计算?(1) (a+b)(-a-b) 不能(2) (a-b)(b-a) 不能(3) (a+2b)(2b-a) 不能(4) -(a-b)(a+b ) 能(5) (-2x+y)(y-2x) 不能例1、用平方差公式计算(1)(3x+2)(3x-2) (2)(-7+2m 2)(-7-2m 2).解:原式= (3x)2 - 22 解:原式=(-7)2-(2m2)2=9x 2 - 4 = 49-4m 4例2 计算:(1) 102×98 (2) (y +2) (y -2) – (y -1) (y +5)解:原式=()()2-1002100+ 解:原式=()542222-+--y y y 222-100= =54422+---y y y =10000-4 =-4y+1=9996例3计算:()()()4222+-+x x x 例4化简:()()()()4422y x y x y x y x +++- 解:原式=()()4422+-x x 解:原式 ()()()442222y x y x y x ++-= =164-x ()()4444y x y x +-= 88y x -=例5 计算:()()()1161412+++解:原式()()()()1++=21-2+16411()()()11-4+=+4161()()1=16+161-=1-256= 255小结:(a+b)(a-b)=a2-b2两个数的和与这两个数的差的积等于这两个数的平方差。
《平方差公式》教学设计教学目标:1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.教学重点:1、 学会平方差公式的推导和应用2、 理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点:能灵活运用公式进行运算.教学课时:一课时教学过程复习回顾:复习多项式乘法法则提问:(a+b )(m+n )=_____举例:计算(x + 2)( x +5)创设情境,导入新课问题:王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。
售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了数学课上刚学过的一个公式。
”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了.探索新知,尝试发现一、拼图游戏1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=18002、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800由此得:(45+15)(45-15)= 452-152二、计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= _____________ ;(2)(2+ m)(2- m)=____________ ;(3)(2x+3)(2x-3)=____________ .依照以上三道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(a+b)(a- b)=a²- b².三、总结归纳,发现规律你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.22a-=b+-())(baab四、剖析公式,发现本质在平方差公式中,其结构特征为:(a+b)(a- b)=a²- b²(1)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内第一项的平方减去第二项的平方.(3) 公式中的a和b 可以代表数,也可以是代数式.五、巩固运用,内化新知例1 利用平方差公式计算:(1)(5+6x)(5−6x); (2) (x+2y)(2y−x); (3) (−a+2b)(−a−2b).解: (1)(5+6x)(5−6x) (2) (x+2y)(2y−x) (3)(−a+2b)(−a−2b) =5 ²-(6x)² =(2y+x)(2y-x) =(-a) ²-(2b) ²=25-36x ² =(2y) ²-x² =a²-4b²=4y²-x²注意:当“第一(二)数”是一分数或是数与字母的乘积时, 要用括号把这个数整个括起来,最后的结果又要去掉括号。
用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
“§1.7 平方差公式(第一课时)”教学案(公开课)作者:吉利中学数学组 王水运一、学习目标:1、经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力;2、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;3、了解平方差公式的几何背景,体会数形结合的思想方法。
【学习重点】1、弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;2、会用平方差公式进行运算。
【学习难点】 会用平方差公式进行运算二、自主学习步骤:1、内容一:温故而知新(1)“a 与b 的平方差”用代数式可以表示成 ;“a 与b 的和”乘以“a 与b 的差” 用代数式可以表示成 ;(2)“ 1 与a 的平方差” 用代数式可以表示成 ;“1与a 的和”乘以“1与a 的差” 用代数式可以表示成 ;(3) 代数式22y x -可以读成“ ”;(4)一个数的平方等于81,这个数是 ;(5)计算:①=2)3(a ; ②=2)y 5( ; ③ 2)32(x -= ; (6) 填空: ① 2)(64= ② 2)(971= ③ 22)(4=m2、内容二:关于“平方差公式”的推导(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)若将阴影部分裁剪下来,重新拼成一个矩形如右图,它的宽是 ,长是 ,面积是 (写成整式乘法的形式);(3) 比较左、右两图的阴影部分面积,可以得到公式 (用式子表达),这个公式叫做 ;对应练习:当3,2-==y x 时,求下列代数式的值,并比较它们的值得大小。
①224y x -; ② )2)(2(y x y x -+3、内容三:例题1 利用平方差公式计算:(1)_____________)()()65)(65(22=-=-+x x ; (2)_____________)()()2)(2(22=-=+-y x y x (3)_____________)()())((22=-=--+-n m n m(4)________________________________________))(22(===-+n m n m 对应练习:(1)填空:① 22))((d a d a -=+ ②2221))(1(-=-y x xy (2)练一练:课本P 36 随堂练习1:①)2)(2(-+a a ②)23)(23(b a b a -+ 解: 原式 =22)()(- =③)1)(1(--+-x x ④)34)(34(--+-k k4、内容4:例题2利用平方差公式计算:(1))41)(41(y x y x +--- (2))8)(8(-+ab ab (3)()()23n m n m n +-+ 解: 原式=22)()(-=对应练习:(1)))((2x y x y x +-+ (2))1)(1)(1(2+-+a a a5、归纳与小结:(1)本节课学习的内容是利用“ ”进行多项式的乘法运算;(2)平方差公式22))((b a b a b a -=-+的特点:①左边是两个 的积,并且这两个多项式的两个项里有一项 ,另一项 ;②右边是两个数的 ;③ 公式可以逆向使用。
平方差公式教案(公开课)章节一:平方差公式的引入1. 教学目标让学生通过实际例子,感受平方差公式的实际意义,培养学生的数学思维能力。
2. 教学内容通过具体的数字例子,引导学生发现平方差公式的规律。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生计算它们的差值。
(2) 学生发现,这些差值都可以表示为平方差的形式,如2^2 1^2, 3^2 2^2, 4^2 3^2等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的理解和掌握程度。
章节二:平方差公式的应用1. 教学目标让学生掌握平方差公式的应用,能够灵活运用平方差公式解决实际问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的应用。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的应用理解和掌握程度。
章节三:平方差公式的拓展1. 教学目标让学生掌握平方差公式的拓展,能够运用平方差公式解决更复杂的问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的拓展。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的拓展理解和掌握程度。
章节四:平方差公式的运用1. 教学目标让学生能够灵活运用平方差公式解决实际问题,提高学生的数学应用能力。
平方差公式因式分解公开课平方差公式因式分解这堂课,那可真是数学世界里的一场奇妙探险!同学们,咱们今天来聊聊平方差公式因式分解这个神奇的玩意儿。
先举个例子哈,比如说 9x² - 25,这看着是不是有点复杂?但咱用平方差公式一分解,那就简单得不得了。
咱先来说说这平方差公式是啥。
就好比一把神奇的钥匙,能打开复杂式子的大门。
它就是 a² - b² = (a + b)(a - b)。
记住这个公式,就像记住你最喜欢的零食名字一样容易。
我记得有一次,我在菜市场买菜,卖菜的阿姨算错了账。
原本 5 块钱一斤的苹果,她称了 3 斤,结果她用 5×3 直接得出 15 块。
但我心里立马就想到,这其实就是 5² - 0² = 5×(5 - 0) = 25 - 0 = 25 嘛,这 3 斤苹果应该是 15 块钱。
你看,数学在生活中多有用!那咱回到平方差公式因式分解。
比如说 16x² - 9y²,这就可以写成(4x)² - (3y)²,然后根据公式,就变成了 (4x + 3y)(4x - 3y)。
是不是一下子就清晰明了啦?再来看 49m² - 121n²,这就是 7²m² - 11²n²,分解一下,就是 (7m +11n)(7m - 11n)。
同学们在做练习题的时候,一定要仔细,别马虎。
就像上次我们班的小王,做一道类似的题,本来应该是 (x + 5)(x - 5),他愣是写成了 (x + 5)(x + 5),这可就闹笑话啦。
咱们来总结一下哈,平方差公式因式分解,关键就是要找到那个“平方”的部分,然后按照公式去分解。
通过这堂课,希望大家都能熟练掌握平方差公式因式分解,以后再遇到这种式子,就能轻松应对,就像解决一道简单的算术题一样容易。
数学的世界很大,平方差公式只是其中的一小部分,但只要咱们认真学,每一部分都能变得有趣又有用!总之,平方差公式因式分解虽然看起来有点难,但只要咱们多练习、多思考,就一定能把它拿下!。
4.3.1公式法(1)
八年级数学学案 课题 平方差公式因式分解
通过平方差公式的逆向变形得出公式法因式分解的方法,发展我们的逆向思维和 推理能力,学生能够灵活运用平方差公式因式分解并且分解彻底 I 1 1 ▲ •
厶
、
<—»
「能否因式分解呢?
【探究活动一】 填一填
(1) (2)
(a b)(a b)
2
a b 2 ( )( ); (x 5)(x 5)
2
x 25 (
)( ); (3x y)(3x y)
9x 2
y 2 (
)(
观察与思考
(2)中三组等式,等式的左边有什么共同特征?等式的右边有什么共同特征?你能用语言 描述一
下吗? ①
学
习 目 标
重点 会用平方差公式进行因式分解
难点 ■填空
关键2
情 情3 旦
准确理解和掌握公式的结构特征,灵活运用平方差公式进行因式分解 形式表示)数或者两式的平方差形式-; ;
将多一 ______ )(3x+y
)观察+与思考):(1-
②
【探究活动二】
a 2
b 2
(a b )(a b )
观察公式的左右两边思考:什么样的多项式可以运用平方差公式来因式分解?
将下列多项式分解因式:
a ,
b 在下面题目中分别是什么?然后写出分解过程
(1)
4x 2
2
y
(5) 25a
2 1 ,2 —b
16
(2) 9 16x 2
(6)
a 2
b 2 0.04
(3) 4x 2
y 2
4xy
(7)
a 3 1 (4)
4x 2 y 2
(8)
(x
y)2 36
【探究活动三】
例1
(1
)
25 16x 2
解:
原式= 52 - (4x )2=(
5 + 4x)( 5 -
4x )
a2 -
b2 = ( a + b)( a - b )
(2
)
9a 2 1b 2
4
解 :原式 =3a 2 S 2
3a 丄 b 3a
^b
2
2
2
试一试:下列多项式能用平方差公式因式分解吗?若能,可以看成哪两个数或式的 平方差?若不能,说说你的理由
例2 思考:
⑴(X 3)2 x 2
2 2
(2) (m n) 9(m n)
4 4
⑶ 81x y
例3将下列多项式分解因式
⑴ 2x3 8x (2) 16p4 p1 2 3(3) x4 16y4
思考一下:分解因式的一般步骤?
1. 选择题:
(1)在多项式x2+y2, x 2-y2,-x 2+y2, -x 2-y 2中,能利用平方差公式分解的是()
A .1 个B.2 个C.3 个D.4 个
2
(2)4a-1分解因式的结果应是()
A.(4a+1)(4a-1)
B.( 2a-1)(2a-1)
C.(2a+1)(-2a+1)
D.(2a+1) (2a-1)
2. 把下列各式分解因式:
3 2 2 2
4 4
(1)a 4ab (2) 4( x y) 9(x y) (3) 16x 81y
3、如图,在一个边长为13.75米的正方形的苗圃中央建一个边长为 6.25米的正方形的花坛,花坛上种植鲜花,在苗圃上,花坛的周围种草,问草地的面积有多大?你是怎么做的,能用简便方法吗?
1、把下列各式因式分解
(1) 4x2 25y2
(3) 3xy3 27x3 y
2、你知道992-1能否被100整除吗?
3、如图,在边长为6.8cm正方形钢板上,挖去4个边长为1.6cm的小正方形,求剩余部分的面积。
(2) x2y y
.2 2 2 2
4a x 16a y。