提高催化加热炉运行可靠性技改
- 格式:doc
- 大小:159.50 KB
- 文档页数:6
锅炉优化升级建议:高效环保双重提升策略针对锅炉质量的提升,可以提出以下“金点子”,这些建议旨在提高锅炉的运行效率、降低能耗、延长使用寿命并减少环境污染:1. 优化锅炉设计与结构●改变炉拱结构:针对锅炉用煤质量低、燃烧不完全的问题,通过改变炉拱结构,使燃料在炉膛内更充分地燃烧,提高热效率。
●采用分层给煤燃烧装置:这种装置能更均匀地分布燃料,提高燃烧效率,减少不完全燃烧损失。
2. 提升燃料利用效率●使用添加剂:在燃料中加入适当的添加剂,可以优化燃料性能,降低烟垢生成,提高热效率。
●富氧燃烧技术:通过增加燃烧过程中的氧气含量,使燃料更充分地燃烧,提高燃烧效率和锅炉出力。
3. 加强锅炉房系统改造●更换高效风机:采用高效率风机,并通过变频调速等措施,优化锅炉房的风机系统,降低能耗。
●优化自动控制系统:采用先进的自动化控制系统,实时监测和调节锅炉的工作状态,确保锅炉稳定运行,提高整体运行效率。
4. 严格控制水质与水处理●水质控制:使用合适的水质控制技术,如软化器、水处理剂等,降低水中的杂质和溶解氧含量,减少水垢生成,提高锅炉热效率。
●定期清洗:定期清洗锅炉内部的管道、燃烧器和受热面,防止积灰和水垢的堆积,保持锅炉的清洁和高效运行。
5. 加强锅炉保温与密封●保温材料:采用质量好、性能优良的绝热材料(如硅酸铝耐火材料)对锅炉本体、管道进行保温,减少热损失。
●密封检查:定期检查锅炉本体、炉墙和管道的密封性,防止漏风现象,提高锅炉的保温效果。
6. 提高操作与维护水平●人员培训:加大对锅炉作业人员的培训力度,提高其操作水平和节能意识,确保锅炉在最佳工作状态下运行。
●定期检测与维护:定期对锅炉进行检测和维护,及时发现并处理潜在问题,防止故障发生,延长锅炉使用寿命。
7. 推广先进节能技术●烟气余热回收:安装烟气余热回收系统,将烟气中的余热利用起来,提高燃烧效率,减少能源消耗和排放物。
●高效换热技术:采用高效换热技术(如三维内外肋片管技术)提高锅炉的换热效率,降低排烟温度,提高锅炉效率。
提高加热炉效率措施及改造思路摘要:油田加热系统是油田的耗能大户,提高加热炉的效率是实施油田节能战略的关键。
油田开发20余年,由于产能递减,早期安装的加热炉部分出现负荷偏低、加热效率下降、腐蚀结垢严重等问题,因此,探讨加热系统的特点及寻求对应的效率措施成为当下油田必须实行的重要任务。
结合加热系统现状,对影响加热炉效率的因素进行分析,通过对近年在油田加热炉所采用的提高炉效措施的探讨和总结,对加热炉提高炉效潜力及技术的应用提出初步思路。
关键词: 加热炉;提高效率;措施;技术改造1 加热炉运行现状目前,大庆油田建有各类燃气加热装置包括有管式加热炉(高效炉)、火筒式直接加热炉(二合一、四合一、五合一、脱水加热炉、水套炉)、真空加热炉及锅炉等。
2 影响加热炉效率因素分析加热炉是油田的主要耗能设备。
因此,尽可能地提高加热炉的效率是油田节能的重要目标之一。
造成部分加热炉炉效偏低的因素主要有以下几个方面。
2.1 部分加热炉使用时间较长,加热炉损耗较大,热效率较低据统计,加热炉中运行时间在 11 年以上的有59台,占集输系统加热炉总数的47.2%,其中火筒炉42台,占该部分加热炉的71.1%。
该部分加热炉经过长时间的运行,普遍存在火筒及烟管腐蚀老化严重,各类故障发生频率高,导致加热炉损耗较大,炉效偏低。
2.2 无法保证加热炉的运行状态达到最佳1)部分加热炉的参数设置不合理,空气过剩系数大,带走的热量也大,加热炉效率低;空气过剩系数小,燃料不能充分燃烧,加热炉效率低。
大部分加热炉燃烧器属于自动控制,只能依靠厂家调设,导致不能及时调整合理的燃气配比,影响了加热炉的效率。
2)个别加热炉排烟温度过高时,由于缺乏加热炉检测仪器及相关的技术人员,不能及时调节烟道挡板,影响了加热炉的效率。
3)由于加热炉工况的特殊性决定其需要定期维护保养,其中对燃烧器火嘴的维护工作是保证加热炉燃烧效果的重要环节,尤其是使用湿气的加热炉燃烧器火嘴,长时间运行火嘴容易结焦或腐蚀,如不及时清理或维修,必然会导致燃烧效果差,甚至偏烧,影响加热炉的系统效率,同时造成能源浪费。
如何提高加热炉的热效率为提高加热炉的热效率,我们可以从以下几个方面进行改进和优化。
1.炉壁材料优化:使用高热导率和低热扩散系数的材料作为炉壁材料,以提高炉壁对热能的传导效率,减少热量的散失。
2.加热炉绝热层设计:在炉体的外部增加一层绝热材料,如耐高温陶瓷纤维等,来减少热量的传导和辐射散失。
3.燃烧系统的优化:合理设计燃烧系统,确保燃料的充分燃烧,减少烟气中有用热量的损失。
可以采用高效燃烧器、给燃料加预热器等技术手段,提高燃烧效率。
4.炉膛结构的改进:合理设计炉膛结构,减小冷热风的混合程度,减少烟气中的冷风量,提高燃烧效率。
可以采用逆火焰、进排风分离等技术手段。
5.热回收技术的应用:利用烟气中的高温热量进行热回收,可以用于预热进入炉体的冷空气或水,提高能源利用效率。
可以采用换热器、烟气余热锅炉等设备,将废热转化为可利用的热能。
6.炉体的隔热和密封:优化炉体的隔热设计,减少热量的辐射和传导散失。
同时,加强炉体的密封性能,避免热量的流失和外界冷空气的进入。
7.控制系统的改进:改进加热炉的控制系统,实时监测和调节燃料的供给、炉内温度和烟气成分等参数,以提高炉内温度的稳定性和热能的利用效率。
8.定期维护和清洁:定期对加热炉进行维护和清洁,保持炉体内部的清洁和燃烧系统的正常运行,避免因积灰、结垢等问题导致的热量散失。
9.优化操作过程:优化加热炉的操作过程,合理调整加热时间、温度和过程参数,以减少不必要的热能损失。
10.人员培训和技术改进:提高员工的技术水平和操作技能,加强员工对加热炉的运行原理和特点的理解,以优化操作方式,减少能源的浪费和热能的散失。
通过以上的改进措施,可以有效提高加热炉的热效率,降低能源消耗和生产成本,实现资源的节约和环境的保护。
同时,这些改进也将对加热炉的运行安全性和产品质量的稳定性产生积极的影响。
摘要</strong> 提高加热炉热效率的途径很多,关键是减少炉子的热损失。
通过综合运用耐火纤维喷涂和耐高温辐射涂料技术,提高了加热炉的热效率,收到了较好的节能效果,取得了明显的经济效益。
<br /> 加热炉是石油化工行业最常用的设备之一,也是消耗能量最多的装置。
目前,公司各生产装置中的大小加热炉共有60余台,总负荷超过800MW,单台最大热负荷达到142MW,加热炉能耗占全公司能耗的30%以上。
如果再加上炼油800万t改扩建工程所增加的加热炉,其能耗还要大。
因此,重视现有老装置中加热炉的技术改造和新装置加热炉的新技术应用,提高加热炉热效率,是降低装置能耗、提高经济效益的关键所在。
<br /> <strong>一、现状分析</strong><br /> 加热炉运行过程中的热损失,主要是排烟与散热损失。
有效能的损失主要在燃烧传热的不可逆过程中。
因此,加热炉热效率的提高重点应放在燃烧和辐射段的散热损失上。
<br /> 目前,公司的大多数加热炉由于设备陈旧,衬里老化、脱落,钢板腐蚀穿孔等各种原因,导致加热炉散热损失增大,局部过热超温,引起热效率下降,热效率一般在80%~88%之间,达不到原设计值或公司考核要求,不但严重影响了设备的安全运行,还制约了单位加工费的降低,直接影响企业的经济效益。
<br /> 现在,单纯依靠传统的“三门一板”操作,控制烟气中的氧含量和排烟温度,以及对设备的修修补补,已很难获得明显的效果。
锅炉改进实施方案随着工业化进程的不断推进,锅炉作为工业生产中不可或缺的设备,其性能和效率对生产线的稳定运行起着至关重要的作用。
然而,在长期使用过程中,锅炉可能会出现一些问题,如能源消耗过大、排放污染物过多、运行效率低下等,这些问题直接影响到企业的生产成本和环境保护。
因此,对锅炉进行改进,提高其性能和效率,已成为许多企业亟需解决的问题。
一、锅炉性能分析首先,我们需要对现有锅炉的性能进行全面分析。
从能源消耗、排放情况、运行效率等方面进行评估,找出问题所在,为后续的改进工作提供依据。
二、技术改进方案1. 燃烧系统优化通过对锅炉燃烧系统的优化,可以提高燃烧效率,减少燃料消耗,降低能源成本。
采用先进的燃烧控制技术,保证燃烧过程的稳定性和高效性,同时减少对环境的污染。
2. 热能利用改进在锅炉烟气余热利用方面进行改进,可以有效提高锅炉的热能利用率。
通过安装余热回收装置,将烟气中的余热回收利用,用于加热水或发电,从而减少能源消耗,降低生产成本。
3. 污染物排放控制加强对锅炉污染物排放的控制,采用先进的污染物治理技术,减少对大气环境的影响。
安装烟气脱硫、脱硝设备,降低二氧化硫、氮氧化物等有害气体的排放,达到环保要求。
三、实施方案1. 制定改进计划根据对现有锅炉性能的分析和技术改进方案,制定具体的改进计划。
明确改进的目标和时间节点,确定改进所需的投资和资源,确保改进工作的顺利实施。
2. 技术改进实施按照制定的改进计划,进行技术改进的实施工作。
包括燃烧系统优化、热能利用改进、污染物排放控制等方面的具体工程项目,确保改进工作的质量和进度。
3. 运行监测和调整改进工作完成后,需要对锅炉的运行情况进行监测和调整。
通过实时监测锅炉的运行参数,及时发现问题并进行调整,保证改进效果的持续稳定。
四、效果评估改进工作完成后,需要对改进效果进行全面评估。
从能源消耗、排放情况、运行效率等方面进行对比分析,验证改进工作的效果,为后续工作提供经验和借鉴。
加热炉改造方案目录一、内容概述 (2)1.1 改造背景与意义 (2)1.2 方案编制依据与原则 (3)1.3 方案范围与内容 (5)二、加热炉现状分析 (5)2.1 设备概述 (6)2.2 运行状况评估 (8)2.3 存在问题及原因分析 (9)三、改造目标与任务 (10)3.1 改造目标设定 (12)3.2 主要改造任务 (13)3.3 预期改造效果 (14)四、改造方案设计 (15)4.1 设备选型与配置 (16)4.1.1 新型加热炉类型选择 (17)4.1.2 设备布局与配置原则 (18)4.2 工艺流程优化 (19)4.2.1 热效率提升措施 (20)4.2.2 能耗降低策略 (21)4.3 控制系统升级 (22)4.3.1 现有控制系统分析 (23)4.3.2 新控制系统的选型与配置 (25)4.4 环保与安全措施 (26)4.4.1 排放标准与治理措施 (26)4.4.2 安全防护措施 (27)五、改造工程实施计划 (28)5.1 工程进度安排 (29)5.2 资源需求与保障措施 (30)5.3 风险评估与应对措施 (31)六、改造方案经济评价 (32)6.1 投资估算与资金筹措 (34)6.2 收益预测与投资回报分析 (36)6.3 成本控制与节约措施 (37)七、结论与建议 (38)7.1 改造方案总结 (39)7.2 建议与展望 (41)一、内容概述本加热炉改造方案旨在提升工业生产过程中加热炉的效率、安全性和环保性能。
通过深入分析现有加热炉的技术参数、运行状况以及存在的问题,结合最新的工业发展趋势和技术创新,提出了一套全面的改造计划。
改造方案涵盖了加热炉的结构优化、节能技术应用、智能化控制系统的引入、环保排放标准的符合性改进等多个方面。
本文档将详细介绍改造方案的背景、目标、具体实施步骤、预期效果评估以及可能的风险及应对措施,为决策者提供科学、合理且实用的操作指南。
1.1 改造背景与意义随着科技的不断发展和市场竞争的日益激烈,企业需要不断提高生产效率、降低生产成本以保持竞争力。
加热炉系统改善举措随着工业和科技的不断发展,加热炉已经成为了各行各业不可或缺的设备。
然而,由于加热炉的使用环境以及经常使用,很多加热炉的系统设计存在诸多问题,导致其工作效率低下,造成资源的浪费和生产成本的提高。
因此,对加热炉进行系统改善举措,是一个非常值得重视的工作。
一、加热炉系统的问题在加热炉系统中,常见的问题有以下几种:(一)能源浪费:由于加热炉效率低下,导致能源的浪费。
在传统的加热炉中,采用的是间接加热方式,耗费大量的电能,同时还会大量排放废气和废热,造成能源浪费。
(二)温度不稳定:很多加热炉的控制系统不够完善,导致温度不稳定,从而影响热处理效果和产品质量。
(三)操作复杂:在传统加热炉中,操作比较复杂,需要经过多个步骤才能完成加热工作,给操作人员带来不便。
(四)安全问题:由于加热炉长时间工作,温度高,易导致设备出现安全事故。
以上问题的存在,需要通过加热炉系统的改善来解决。
二、加热炉系统改善举措为了解决加热炉系统存在的问题,我们可以采取以下举措:(一)采用高效加热方式:在传统加热炉中,采用的是间接加热方式,高温的废气和废热往往被直接排放掉,造成能源的浪费。
而采用直接加热方式,可以大大提高加热效率,减少能源的浪费。
(二)优化控制系统:以提高加热炉的温度控制精度为目标,对加热炉的控制系统进行优化,使温度能够保持较为稳定,从而保证良好的热处理效果和产品质量。
(三)简化操作流程:采用自动化控制系统可以实现对加热炉的自动开启、关闭,自动调节温度等操作,从而简化操作流程,提高加热炉的使用效率。
(四)强化安全防护措施:在加热炉系统中增设安全装置,如闸门、疏水器等,对加热炉进行全面安全防护,避免因不可预见的意外事故造成设备或工人安全问题。
三、怎么实现加热炉系统的改善?为了实现加热炉系统的改善,需要从以下几个方面入手:(一)加强技术研发:通过技术研发,开发出更加高效、更加稳定的加热炉系统。
同时,要加强与国外公司的合作,借鉴先进的技术和管理经验。
如何通过运行调整和技改措施提高锅炉热效率降低热损失摘要:在当前煤炭价格居高不小,供热成本增加,煤炭消耗是公司最大的生产成本,按照业财一体化要求,如何提高锅炉热效率,因此,采用合适的料压、氧量、炉膛差压、优化煤粒粒径级配等措施,是运行调整的核心,同时结合锅炉技术改造,通过综合措施深度提高锅炉热效率,降低锅炉热损失。
在提高锅炉燃烧效率的同时也降低了风机电耗,循环流化床锅炉炉内燃烧这一个非常复杂的过程,科学调控非常关键,既能提高运行水平,又保证循环流化床锅炉的安全、稳定、经济运行。
关键词:运行调整;技改措施;锅炉热效率;热损失引言锅炉是热电厂设备的重要枢纽和核心,煤炭消耗是公司最大物资生产成本,占公司生产物资成本的80%以上,如何保证燃煤快速完全燃烧并最大限度保证受热面吸收烟气热量是提高锅炉热效率的最重要环节。
1.相关概述1.1简单介绍:热电厂主要工艺流程我们易通热电公司主要以煤为燃料(煤/水煤浆/天然气),燃料在锅炉燃烧,将化学处理的炉水加热到一定温度和压力合格的蒸汽。
蒸汽进入汽轮机做功拖动发电机组,最终输出电能,并外供蒸汽。
锅炉产生的烟气由受热面充分换热后,经脱硝→除尘→脱硫→湿式电除尘(超洁净标准,50/35/5mg/Nm³)国家超洁净标准后→烟囱排入大气。
也就是燃料在厂内实现化学能→→热能→→电能转换。
热水锅炉直接加热炉水并输送热量。
锅炉就是实现将燃料的化学能转换为热能的设备。
1.2热电厂设备基本分类(1)对于热电厂来说三大设备锅炉、汽机、发电机。
(2)对于锅炉设备又主要包括汽水系统(汽包、水冷壁、省煤器、过热器等)、燃烧系统(风、烟煤、灰等),锅炉是特种设备,司炉要持证上岗(跟司机一样);(3)锅炉主要安全附件:压力表、水位计、安全阀。
1.3锅炉是公司其他相关专业设备的重要枢纽和核心锅炉运行是否稳定直接连带其他专业,其他专业设备也直接影响到锅炉,牵一发动全身,有人说热电厂抓住了锅炉就抓住了电厂设备管理核心点。
提高催化加热炉及稳定系统
运行可靠性技改
一.项目背景介绍
180万吨/年催化裂化装臵设热圆筒辐射式蒸汽加热炉一台,主要用来提高中压蒸汽温度,使其满足装臵内两台背压式汽轮机所需进汽温度。
自装臵投产以来,加热炉运行正常,但由于加热炉燃料气来自全厂净化瓦斯管网系统,受外界影响较大,时常因瓦斯带水、瓦斯管网压力波动等导致加热炉熄炉,进而导致装臵降量或停工。
本装臵吸收稳定自产瓦斯直供至全厂非净化高压瓦斯系统,经联合三车间脱硫后再供应全厂各净化瓦斯用户。
因全厂非净化高压瓦斯管网存在一定压力,在事故情况下我车间稳定系统泄压存在一定滞后性,而直接泄压至非净化高压瓦斯管网会引起瓦斯管网压力的大幅波动,从而影响全厂各瓦斯用户压力波动。
再加榆林炼油厂位于北方冬季气温低,时常因仪表风带水引发调节阀失灵或故障。
若稳定系统瓦斯压控失灵或故障将导致稳定系统憋压,存在极大安全隐患。
为实现装臵安全、平稳、长周期运行,催化车间工艺组不断思考瓦斯系统改进,通过对现场瓦斯系统管网调查及分析,最终根据催化瓦斯系统设计及外界管网工艺等,提出瓦斯系统改造方案,并得到上级部门认可通过。
二.本项目实施的目的和意义
1. 在瓦斯管网压力波动的情况下,及时平稳加热炉燃料气压力,确保加热炉运行正常。
2.在瓦斯带水情况下装臵内能及时排液,并能直供装臵内瓦斯至加热炉,确保装臵加热炉运行正常,减少装臵停工次数。
3. 增加了蒸汽加热炉操作弹性。
4.为今后催化裂化因瓦斯压力波动、瓦斯带水致加热炉熄炉提供了技术示范。
5.在系统压力超高情况下能及时泄压,避免超压引发的安全事故。
三.详细的优化措施
经技术组分析,榆炼180万吨催化/年装臵加热炉在运行过程中存在下列问题:1.因本装臵吸收稳定自产瓦斯直接供至全厂瓦斯系统,经联合三车间脱硫后再供全厂净化瓦斯用户,并且全厂非净化高压瓦斯管网存在一定压力,在事故情况下系统泄压存在一定滞后性,并且直接泄压至瓦斯管网会引起瓦斯管网压力的波动,从而影响全厂瓦斯各用户波动;2.因榆林炼油厂位于中国北方冬季气温低,瓦斯压控阀因仪表风带水会发生压控失灵情况,导致稳定系统憋压。
面对上述问题如果能实现稳定瓦斯系统直接泄压至低压瓦斯放火炬,将解决稳定系统憋压的安全隐患。
3、当瓦斯管网
因其他原因导致瓦斯压力降低或带水时直接影响蒸汽加热炉瓦斯正常供应,导致加热炉因瓦斯中断而停炉,从而引起全装臵操作大幅波动以及停车事故发生。
为了解决这一问题,技术组决定,在2012年5月大修工作中对瓦斯系统做了以下技改,即:在催化瓦斯出装臵前配制一条泄压线至低压瓦斯系统和一条直供加热炉瓦斯线(见图1):
气
压
机
出
口
来
脱硫后瓦斯由瓦斯管网来蒸汽加热炉
图1 技改后流程图
同时,我们也做了其他方面的调整:
1.正常生产情况下低压瓦斯放火炬线不用,但必须保证此管线泄压顺畅,冬季每班安排活动一次压控阀是否动作,防止仪表风带水至调节阀失灵。
只有在稳定系统失控时才可通过泄压阀直接泄压至低压瓦斯放火炬系统,确保稳定系统不
发生超压及引发气压机喘振事故。
2.低压瓦斯放火炬泄压阀正常情况下打自动,给定压力比压控阀控制压力高0.05MPa,在系统压控出现故障以及操作工未及时发现压控异常的情况下,低压瓦斯放火炬自行调节吸收系统压力,从而保障了吸收系统不发生超压事故。
3.新配瓦斯线只有在异常情况下才可用来保障加热炉正常运行。
四.设备材料
技改所需材料:DN200-SCH40无缝管线30m, DN200-SCH40等径三通1个,DN200-SCH40 90°弯头8个,DN150调节阀两个,DN200闸阀6个,DN200法兰12片。
五.应用效果评价
2012年5月31日检修完毕,180万吨/年催化装臵恢复正常生产,这项技改随即投入使用。
通过对瓦斯系统改造,装臵在以后的运行过程中,再生塔压控均采用这种方法作为辅助控制,操作简便易行,有效避免了再吸收系统超压事故发生。
在外管网净化瓦斯系统出现异常时采用本装臵瓦斯直供,保障了加热炉正常运行,此操作简便易行,避免了因瓦斯压力临时波动或异常导致加热炉停炉,也保障了装臵长期平稳运行。
自从2012年6月装臵开车以来,发生过多次净化瓦斯压力大幅波动,但通过装臵内自产瓦斯补给加热炉,但到目前蒸汽加热炉没有发生过一次停炉事故,为整个催化
装臵长周期平稳运行奠定了良好的基础。
表1 技改前后相关数据
六.费用核算
装臵瓦斯系统技改需要5个人施工6天,人工费每人每天按200元计算,合计人工费为6000元。
每米管线费约5760元,管线费合计5760×30=172800元,每台阀门约2800元,阀门费合计2800×2=5600元,每片法兰约110元,法兰费合计110×12=1320元,每个弯头约980元,弯头费合计980×8=7840元,每个三通约980元,每台调节阀约15000元,调节阀合计15000×2=30000元,技改合计费用为6000+172800+5600+1320+7840+980+30000=22.454万元。
六.经济效益
装臵因瓦斯故障导致加热炉熄炉或切料,根据中石化长岭炼油厂核算经验,我装臵蒸汽加热炉停炉一次,每次大约损失45万元。
由于加热炉停炉导致催化切料一次,则每次经济损失约100万元(能顺利迅速恢复正常生产)。
此项技改用于实践后,蒸汽加热炉运行平稳,未因外界因素导致加热炉熄炉、稳定系统憋压或装臵切料事故发生,
从而确保装臵长周期平稳运行。
如果加热炉运行情况按技改前第一个检修周期计算,蒸汽加热炉停炉未切料一次,加热炉停炉导致切料一次,合计效益为45+100=145万元。
八.项目实施人员及其作用
提出项目技改人:高怀荣
项目技改组织实施人:李宏雷正刚杨世伟
项目技改实施人:白小春高文平高庆军张峰韩伟马今朝郑波冯继强。