二轮专题三 电场和磁场第2讲 带电粒子在磁场和复合场中的运动·习题
- 格式:doc
- 大小:292.00 KB
- 文档页数:10
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
带电粒子在复合场中的运动题型总结一.带电粒子在重力场、电场及磁场混合场中的运动1(2023秋•合肥期末)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,带电微粒由a 点进入该区域并刚好沿ab 直线向上运动,下列说法正确的是()A.微粒可能做匀变速直线运动B.微粒可能带正电C.微粒的电势能一定减小D.微粒的机械能一定减少2(2024•泉州二模)如图所示,速度选择器MN 两极板间的距离为d ,板间匀强磁场的磁感应强度大小为B ,O 为速度选择器中轴线上的粒子源,可沿OO ′方向发射速度大小不同、带电荷量均为q (q >0)、质量均为m 的带电粒子,经速度选择器后,粒子先后经过真空中两平行边界的匀强磁场区域到达足够大荧光屏;匀强磁场的磁感应强度分别为B 1、B 2,对应边界的宽度分别为d 1、d 2。
调节滑片P 可改变速度选择器M 、N 两极板间的电压,使粒子沿OO ′方向垂直磁场B 1边界进入B 1,经磁场B 1偏转后进入B 2,最后荧光屏恰好未发光,粒子重力不计,则MN 两极板间的电压大小是()A. B.C. D.3(2024•西城区校级开学)如图所示,两平行极板水平放置,两板间有垂直纸面向里的匀强磁场和竖直向下的匀强电场,磁场的磁感应强度为B 。
一束质量均为m 、电荷量均为+q 的粒子,以不同速率沿着两板中轴线PQ 方向进入板间后,速率为v 的甲粒子恰好做匀速直线运动;速率为v 2的乙粒子在板间的运动轨迹如图中曲线所示,A 为乙粒子第一次到达轨迹最低点的位置,乙粒子全程速率在v 2和3v 2之间变化。
研究一般的曲线运动时,可将曲线分割成许多很短的小段,这样质点在每一小段的运动都可以看作圆周运动的一部分,采用圆周运动的分析方法来处理。
不计粒子受到的重力及粒子间的相互作用,下列说法正确的是()A.两板间电场强度的大小为BvB.乙粒子从进入板间运动至A位置的过程中,在水平方向上做匀速运动C.乙粒子偏离中轴线的最远距离为D.乙粒子的运动轨迹在A处对应圆周的半径为4(2024•深圳一模)如图所示,整个空间存在一水平向右的匀强电场和垂直纸面向外的匀强磁场,光滑绝缘斜面固定在水平面上。
专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:122q Em B B d=质量122B B dqmE=作用:主要用于测量粒子的质量、比荷、研究同位素.5.回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:12qBfT mπ==(3)回旋加速器最后使粒子得到的能量,可由公式2222122Kq B RE mvm==来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c 和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).abcdSo专题二:带电粒子在复合场中的运动(2)姓名______________1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,(O'与0点的竖直间距为d,水平间距可忽略不计).此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏0点的电子速度的大小.(2)推导出电子的比荷的表达式.3.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可). (5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域. (1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.B~RA B专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求: (1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.MNO O ´v图甲BE图乙Ot /s B /T0.8-0.85π15π 25π 35π10π20π 30π专题二:带电粒子在复合场中的运动(5)姓名______________1.如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(x轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy平面平行,且与x轴的夹角为︒45,重力加速度为g.(1)一质量为m、电荷量为q+的带电质点沿平行于z轴正方向以速度v0做匀速直线运动,求满足条件的电场强度的最小值minE及对应的磁感应强度B;(2)在满足(1)的条件下,当带电质点通过y轴上的点(0,,0)P h时,撤去匀强磁场,求带电质点落在Oxz平面内的位置;(3)当带电质点沿平行于z轴负方向以速度v0通过y轴上的点(0,,0)P h时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x轴,问电场强度E和磁感应强度B大小满足什么条件?zB专题二:带电粒子在复合场中的运动——参考答案(1) 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532dB U. 4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
带电粒子在复合场中的运动〔二〕题型二带电粒子在复合场中的运动1. 是否考虑粒子重力(1) 对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。
(2) 在题目中有明确说明是否要考虑重力的,按题目要求处理。
(3) 不能直接判断是否要考虑重力的,在进展受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
2.分析方法(1) 弄清复合场的组成。
如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等。
(2) 正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析。
(3) 确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(4)分析流程一、带电粒子在复合场中做直线运动1.带电粒子在复合场中做匀速直线运动【方法攻略】粒子所受合外力为零时,所处状态一定静止或匀速直线运动。
类型一:粒子运动方向与磁场平行时〔洛伦兹力为零〕,电场力与重力平衡,做匀速直线运动。
类型二:粒子运动方向与磁场垂直时,洛伦兹力、电场力与重力平衡,做匀速直线运动。
正确画出受力分析图是解题的关键。
【典例3】如下列图,匀强电场方向水平向右,匀强磁场方向垂直于纸面向里,一质量为m 、带电荷量为q 的粒子以速度v 与磁场垂直、与电场成450射入复合场中,恰能做匀速直线运动。
求电场强度E 的大小、磁感应强度B 的大小。
【答案】 q mgE =qvmgB 2=根据合外力为零可得︒=45sin qvB mg ① ︒=45cos qvB qE ②由①式得qvmgB 2=,由①②得q mg E =【典例4】 设在地面上方的真空中,存在的匀强电场和匀强磁场,电场强度和磁感应强度的方向一样,电场强度的大小E =4.0V/m ,磁感应强度的大小B =0.15T ,今有一个带负电的质点以v =20m/s 的速度在此区域内沿垂直于场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以与磁场所有可能的方向〔角度可以用角度的正切值表示〕。
考点四霍尔效应6.据报道,我国最近实施的“双星”计划所发射的卫星中放置一种磁强计,用于测定地磁场的磁感应强度等研究项目。
磁强计的原理如图所示,电路中有一段金属导体,它的横截面是宽为a 、高为b 的长方形,放在沿y 轴正方向的匀强磁场中,导体中通有沿x 轴正方向、电流强度为I 的电流。
已知金属导体单位体积中的自由电子数为n ,电子电量为e 。
金属导电过程中,自由电子所做的定向移动可视为匀速运动。
测出金属导体前后两个侧面间的电势差为U 。
(1)金属导体前后两个侧面哪个电势较高? (2)求磁场磁感应强度B 的大小。
考点五 带电体在复合场中的运动7.如图所示,在矩形ABCD 区域内,对角线BD 以上的区域存在有平行于AD 向下的匀强电场,对角线BD 以下的区域存在有垂直于纸面的匀强磁场(图中未标出),矩形AD 边长为L ,AB 边长为2L 。
一个质量为m 、电荷量为+q 的带电粒子(重力不计)以初速度v 0从A 点沿AB 方向进入电场,在对角线BD 的中点P 处进入磁场,并从DC 边上以垂直于DC 边的速度离开磁场(图中未画出),求:(1)电场强度E 的大小和带电粒子经过P 点时速度v 的大小和方向;(2)磁场的磁感应强度B 的大小和方向。
8.如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行.一质量为m 、电荷量为q 的粒子,从y 轴上的p (0,h )点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a (2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力.求:(1)电场强度E 的大小;(2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值.电场的方向竖直向下,有一正离子恰能以速率从右向左飞入,则该电子将向从右向左飞入,则该电子将向取=方向两两垂直,如图所示。
专题能力训练10 带电粒子在组合场、复合场中的运动(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分)1.右图为“滤速器”装置示意图。
a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B。
a、b板带上电荷,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直。
一带电粒子以速度v0经小孔O进入正交电磁场可沿直线OO'运动,由O'射出,粒子所受重力不计,则a板所带电荷量情况是()A.带正电,其电荷量为B.带负电,其电荷量为C.带正电,其电荷量为CBdv0D.带负电,其电荷量为2.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列说法正确的是()A.该束带电粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷越小3.如图所示,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面。
当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为()A.0B.2mgC.4mgD.6mg4.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电磁复合场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④5.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B束,下列说法正确的是()A.组成A、B束的离子都带负电B.组成A、B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直纸面向外6.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
知能提升训练1.图3-2-14(2011·海南单科)空间存在方向垂直于纸面向里的匀强磁场,图3-2-14中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大2.图3-2-15如图3-2-15所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里.电量为q、质量为m的带正电的粒子从磁场边缘A 点沿圆的半径AO方向射入磁场,离开磁场时速度方向偏转了60°.由此可知() A.粒子进入磁场后必将在AO下方离开磁场区域B.带电粒子在匀强磁场中做匀速圆周运动的半径为3rC.带电粒子在磁场中运动的时间为其周期的1 3D.若仅改变粒子的带电性质,则粒子离开磁场时的速度方向依旧将偏转60°3.图3-2-16如图3-2-16所示,在xOy 平面内,匀强电场的方向沿x 轴正向,匀强磁场的方向垂直于纸面向里.一电子在xOy 平面内运动时,速度方向保持不变.则电子的运动方向沿( )A .x 轴正向B .x 轴负向C .y 轴正向D .y 轴负向4.(2011·浙江高考)利用如图3-2-17所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )图3-2-17A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大5.如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B ,有一个带正电的小球(电荷量为+q ,质量为m )从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场是( )6.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图3-2-18所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为()图3-2-18A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正图3-2-197.如图3-2-19所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v-t图象如下图所示,其中正确的是()图3-2-208.如图3-2-20所示,在坐标系xOy中,y轴左方有垂直于纸面向外的匀强磁场,y轴右方没有磁场,在坐标为(-d,0)的A处放一粒子源,向各方向放出质量为m,电荷量为+q,速度为v的粒子流.(1)要使粒子恰好不能打到y轴右方,磁感应强度B0应为多大?(2)若磁场的磁感应强度为(1)中B0的13,其余条件不变,则粒子能从y轴上的什么范围内进入y轴右方?9.如图3-2-21所示,电源电动势E0=15 V,内阻r0=1 Ω,电阻R1=30 Ω,R2=60 Ω.间距d=0.2 m的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度B=1 T的匀强磁场.闭合开关S,板间电场视为匀强电场,将一带正电的小球以初速度v=0.1 m/s 沿两板间中线水平射入板间.设滑动变阻器接入电路的阻值为R x,忽略空气对小球的作用,取g=10 m/s2.图3-2-21(1)当R x=29 Ω时,电阻R2消耗的电功率是多大?(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角为60°,则R x是多少?10.如图3-2-22所示,在xOy平面内,离子源A产生的初速度为零的同种带正电离子,质量m=1.0×10-20 kg、带电荷量q=1.0×10-10 C.离子经加速电场加速后匀速通过准直管并从C点垂直射入匀强偏转电场,偏转后通过极板MN上的小孔O离开电场,且粒子在O点时的速度大小为v=2.0×106m/s,方向与x轴成30°角斜向上.在y轴右侧有一个圆心位于x轴、半径r=0.01 m的圆形磁场区域,磁场方向垂直纸面向外,磁感应强度B=0.01 T,有一垂直于x 轴的面积足够大的竖直荧光屏PQ置于坐标x0=0.04 m处.已知NC之间的距离d=0.02 m,粒子重力不计.试求:图3-2-22(1)偏转电场间电场强度的大小;(2)粒子在圆形磁场区域的运动时间;(3)若圆形磁场可沿x轴移动,圆心O′在x轴上的移动范围为(0.01 m,+∞),由于磁场位置的不同,导致粒子打在荧光屏上的位置也不同,求粒子打在荧光屏上点的纵坐标的范围.答案及解析1.【解析】 由于粒子比荷相同,由R =m v qB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确;对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πm qB 知所有粒子在磁场运动周期都相同,故A 、C 皆错误;再由t =θ2πT =θm qB 可知D 正确.【答案】 BD2.【解析】 粒子带正电、故沿AO 方向射入磁场后将向上偏转,A 错误;带电粒子在匀强磁场中做匀速圆周运动如图所示,由几何关系可得其半径为R =3r ,B 正确;由于带电粒子离开磁场时速度方向偏转了60°,可得其圆周运动的圆心角也为60°,故在磁场中运动的时间为其周期的16,C 错误;若仅改变粒子的带电性质,则粒子在磁场中的偏转方向将发生改变,但对其他条件没有影响,D 正确.【答案】 BD3.【解析】 速度方向不变,则合外力为零,对电子受力分析如图所示,根据左手定则,判断电子的运动方向为沿y 轴正向.【答案】 C4.【解析】 由左手定则可知粒子带负电,A 错;粒子运动最大半径为R =3d +L 2,由q v B =m v 2R 得v max =qBR m =qB (3d +L )2m ,B 对;粒子运动最小半径r =L 2,v min =qBr m =qBL 2m ,则v max -v min =3qBd 2m ,d 和L 不变,增大B ,(v max -v min )增大,C 正确,同理D 错误.【答案】 BC5.【解析】 在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若这三个力的合力正好为0,则小球将沿直线通过复合场,C 选项正确;D 图中小球只受到向下的重力和向上的电场力,都在竖直方向上,小球可能沿直线通过复合场,D 选项正确.【答案】 CD6.【解析】 血液中的正、负离子在磁场中受洛伦兹力作用,由左手定则可判断正离子向a 板移动,负离子向b 板移动,所以电极a 正、b 负;最终电场力与洛伦兹力平衡时电势差稳定,所以q U d =q v B ,所以v =U Bd ,代入数据得v =1.3m/s ,A 正确.【答案】 A7.【解析】 对带电小球进行受力分析如图所示,刚开始速度v 比较小,F 洛=q v B 比较小,F >F 洛,G -F f =ma ,即ma =G -μ(F -q v B ),随着速度v 的不断增大,a 也不断增大.当F =F 洛时,a 最大,为重力加速度g .再随着速度v 的不断增大,F <F 洛即ma =G -μ(q v B -F ),加速度a 不断减小,当a 减到零时,G =F f ,再往后做匀速运动.【答案】 C8.【解析】 (1)要使带电粒子恰好不能打到y 轴右方,则其在磁场中运动半径为r 0=d 2由q v B 0=m v 2r 0,解得B 0=2m v qd . (2)磁感应强度为B 0的13,则粒子在磁场中的运动半径变为原来的3倍,即r=1.5d如图所示,粒子能从y 轴上的-y 2到y 1范围内进入y 轴右方,则由几何关系可知y 1=(2r )2-d 2=22d y 2= r 2-(r -d )2=2d即粒子能从y 轴上的(0,-2d )到(0,22d )范围内进入y 轴右方.【答案】 (1)2m v qd (2)-2d ≤y ≤22d9.【解析】 (1)设R 1和R 2的并联电阻为R ,有:R =R 1R 2R 1+R 2① R 2两端的电压为:U =E 0R r 0+R +R x② R 2消耗的电功率为:P =U 2R 2③ 当R x =29 Ω时,联立①②③式,代入数据,解得:P =0.6 W .④(2)设小球质量为m ,电荷量为q ,小球做匀速圆周运动时,有: qE =mg ⑤E =U d ⑥设小球做圆周运动的半径为r ,有:q v B =m v 2r ⑦由几何关系有:r =d ⑧联立①②⑤⑥⑦⑧式,代入数据,解得:R x =54 Ω.⑨【答案】 (1)0.6 W (2)54 Ω10.【解析】 (1)将速度v 分解为如图所示的水平速度v 1和竖直速度v 2,得到:v1=v cos 30°①v 2=v sin 30°②离子在偏转电场中,由动能定理:Eqd =12m v 2-12m v 22③联立①②③解得:E =7.5×103 V/m.(2)离子在磁场中做匀速圆周运动,由洛仑磁力提供向心力,则有:q v B =m v 2R ④解得:R =0.02 m由于R =2r ,所以离子从x 轴上的D 点离开磁场.圆心角∠OO 1D =60°如图所示.离子在磁场中做圆周运动的周期T =2πm qB所以离子在磁场中的运动时间t =16T =π3×1018 s.(3)当圆心O ′在x =0.01 m 时,由几何关系可知,离子打在荧光屏的最低点,坐标为:y 1=-(x 0-2r )tan 30°=-1.15×10-2 m ⑤随着磁场向右移动,荧光屏上亮点的位置逐渐向上移动,当速度v 的方向与磁场边界相切时,离子将打在荧光屏的最高位置.其最高点的坐标为:y 2=x 0tan 30°=2.31×10-2 m故离子打在荧光屏上的范围为[-1.15×10-2 m,2.31×10-2 m].【答案】 (1)7.5×103 V/m (2)π3×10-8 s(3)[-1.15×10-2 m,2.31×10-2 m]。