绝缘栅型场效应管之图解
- 格式:doc
- 大小:209.00 KB
- 文档页数:6
绝缘栅型场效应管之图解绝缘栅型场效应管之图解N 沟道绝缘栅型场效应管结构动画其他MOS 管符号绝缘栅型场效应管是一种利用半导体表面的电场效应,由感应电荷的多少改变导电沟道来控制漏极电流的器件,它的栅极与半导体之间是绝缘的,其电阻大于增强型:VGS=0时,漏源之间没有导电沟道, 漏源之间有导电沟道,在VDS 作用下iD 。
1.结构和符号(以在一块浓度较低的 覆盖二氧化硅绝缘层并引出一个电极作为栅极。
N 沟道增强型为例)P 型硅上扩散两个浓度较高的 P 衬底00 Qo在VDS 作用下无iD o 耗尽型:VGS=0时,N 型区作为漏极和源极,半导体表面DWSN 沟ifi 箭头问里 衬底斷开S 心1I衬底SN沟道衬底2.工作原理(以N沟道增强型为例)(1) VGS=0时,不管VDS极性如何,其中总有一个PN结反偏,所以不存在导电沟道。
VGS =0 ID =0VGS必须大于0管子才能工作。
(2) VGS>0时,在Sio2介质中产生一个垂直于半导体表面的电场,排斥P区多子空穴而吸引少子电子。
T|l戶-iHVosgTTId n -VGS 达到一定值时P 区表面将形成反型层把两侧的沟通,形成导电沟道。
VGS >A g 吸引电子7反型层7导电沟道 VGSf f 反型层变厚7 VDS ID ?⑶VGS> VT时而VDS较小时:VDS— ID tVT:开启电压,在VDS作用下开始导电时的VGSVT = VGS —VDS V DS V GSV GS3. 特性曲线(以N 沟道增强型为例)场效应管的转移特性曲线动画g =丿着-1)2 Aa (j 是%卅=2齐・|【寸的//丫4. 其它类型MOS 管制造时在栅极绝缘层中掺有大量的正离子, 所以即使在VGS=0时,N 区之间存在导电沟道(类似结型场效应管)。
4/D4-2-K 夹端轨迹\bs-6V壯严厲V s■ ■ _ _2y ;nI II I I ■2 4 6 8 iO 12(1) N 沟道耗尽型: 由于正离子的作用,PN 结 衬底-4 JVbs=5I ! ^GSg其它类型MOS 管(2) P 沟道增强型:VGS = 0时,ID = 0开启电压小于零,所以只有当 VGS < 0时管子才能工作。
绝缘栅型场效应管绝缘栅型场效应管(Insulated Gate Field Effect Transistor,IGFET)的栅极与源极、栅极与漏极之间均采用SiO2绝缘层隔离,因此而得名。
又因为栅极为金属铝,故又称为MOS(Metal-Oxide-Semicondutor)管。
a. N沟道增强型MOS管结构示意图b. 符号(符号中的箭头表示从P区(衬底)指向N区(N沟道),虚线表示增强型。
)与结型场效应管相同,MOS管也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种。
因此MOS管分为四种类型:N沟道增强型、N沟道耗尽型管、P沟道增强型管和P沟道耗尽型管。
(凡栅-源电压U GS为零时漏极电流也为零的管子,均属于增强型管;凡栅-源电压U GS为零漏极电流部位零的管子均属于耗尽型管。
)一、N沟道增强型MOS管N沟道增强型MOS管结构和符号如上图所示,它一块低掺杂的P型硅片为衬底,利用扩散工艺制作两上高掺杂的N+ 区,并引出两个电极,分别为源极s和漏极d,半导体之上制作一层SiO2绝缘层,再在SiO2之上制作一层金属铝,引出电极,作为栅极g。
通常衬底与源极接在一起使用。
这样,栅极和衬底各相当于一个极板,中间是绝缘层,形成电容。
当栅-源电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。
1、工作原理①栅-源电压U GS的控制作用①当U GS=0V时,漏源之间相当两个背靠背的二极管,在d、s之间加上电压也不会形成电流,即管子截止。
②当U DS=0且U GS>0V时(由于SiO2的存在,栅极电流为零,但是栅极金属层将聚集正电荷)→纵向电场→将靠近栅极下方的空穴向下排斥(使之剩下不能移动的负离子区)→耗尽层。
③再增加U GS →纵向电场↑→耗尽层增宽→将P区少子电子聚集到P区表面(耗尽层与绝缘层之间) →形成一个N型薄层,称为反型层,整个反型层就构成漏-源之间的导电沟道,如果此时加有漏源电压,就可以形成漏极电流i d。
结型场/绝缘栅型场效应管的工作原理,有什么作用?三极管是由基极注入电流的大小来直接影响集电极电流大小的一种器件,是一种电流控制电流型器件。
还有一种半导体器件是利用输入电压来控制输出电流的器件,叫做场效应管。
结型场效应管场效应管分结型场效应管和绝缘栅型场效应管两种,上图所示是结型场效应管的结构和符号,结型场效应管又分为N沟道和P沟道两种,上图为N沟道结构示意图,它是在一块N型硅棒两端各引出一个电极,一端称为源极S,另一端称为漏极D;在两侧分别扩散一个高浓度杂质的P型区,形成两个PN结(图中橙色和灰色部分),把两个P型区相连引出一个电极就是栅极G。
工作原理:在工作时,内部两个PN结施加反偏电压VGS,在漏源之间加正向电压VDS,漏极和源极之间只有N型沟道是电流流通的路径。
打个比喻,把沟道想像成河流,把栅极比做两岸可以左右控制的闸门,由两岸各有一人向中间推拉闸门,进而控制水流的大小。
P沟道和N沟道原理差不多,只不过中间沟道是P型沟道,两边栅极是N型区,和N沟道正好相反,这里就不多说了。
绝缘栅型场效应管:绝缘栅型场效应管又名MOS管(以下简称MOS管),它的栅极和源漏极之间有一层二氧化硅的绝缘层,如上图所示。
MOS管也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此总共有四种类型:N沟道增强型、P 沟道增强型、N沟道耗尽型、P沟道耗尽型。
凡是栅源电压为零时,漏极电流也为零的管子都是增强型管。
凡是栅源电压为零时,漏极电流不为零时都属于耗尽型管。
上图是四种MOS管的电路符号,注意:衬底箭头朝内的是N沟道,衬底箭头朝外的是P沟道。
增强型MOS管工作原理:工作时,栅源之间不加电压时,漏源之间PN结是反向的,所以不存在导电沟道,即使漏源之间加了电压,导电沟电是关闭的,就不会有电流通过。
当栅源之间加正向电压到一定值时,在漏源之间就会形成导电通道,使导电沟道刚刚形成的这个栅源电压叫做开启电压VGS,栅源之间电压越大,导电沟道越宽,从而使流过的电流越大。
绝缘栅型场效应管的特性曲线 - 电子元器
件
由于绝缘栅型场效应管分增加型和耗尽型两种,我们仅以N沟道为例介绍绝缘栅型场效应管的特性曲线。
(1)转移特性曲线
增加型NMOS管的转移特性曲线如图(a)所示, U GS =0 时, I D =0 ;只有当 U GS U T 时才能使 I D 0 , U T 称为开启电压。
耗尽型NMOS管的转移特性曲线如图(b)所示,在 U GS =0 时,就有 I D ;若使 I D 减小, U GS 应为负值,当 U GS = U P 时,沟道被关断, I D =0 , U P 称为夹断电压。
对于增加型MOS在 U GS ≥ U T 时(对应于输出特性曲线中的恒流区), I D 和 U GS 的关系为 I D = I D0 ( U GS U T 1 ) 2 ,其中 I D0 是 U GS =2 U T 时的 I D 值。
耗尽型MOS管的转移特性与结型管的转移特性相像,所以在 U P ≤U GS ≤0的范围内(对应于输出特性曲线中恒流区), I D 和 U GS 的关系为 I D = I DSS ( 1 U GS U P ) 2 。
所不同是当 U GS >0时,结型场效应管的PN结将处于正向偏置状态而产生较大的栅极电流,这是不允许的;耗尽型MOS管由于 Si O 2 绝缘层的阻隔,不会产生PN结正向电流,而只能在沟道内感应出更多的负电荷,使 I D 更大。
(2)输出特性曲线
绝缘栅型场效应管的输出特性曲线和结型场效应管类似,同样也分成三个区:可调电阻区、恒流区(饱和区)、击穿区,含义与结型场效应管相同,跨导 g m = Δ I D Δ U GS 的定义及其含义也完全相同。
绝缘栅场效应晶体管工作原理及特性场效应管(MOSFET)是一种外形与普通晶体管相似,但控制特性不同的半导体器件。
它的输入电阻可高达1015W,而且制造工艺简单,适用于制造大规模及超大规模集成电路。
场效应管也称为MOS管,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。
在本文只简单介绍后一种场效应晶体管。
绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。
每种又有增强型和耗尽型两类。
下面简单介绍它们的工作原理。
1、增强型绝缘栅场效应管2、图6-38是N沟道增强型绝缘栅场效应管示意图。
在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。
然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G。
另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。
它的栅极与其他电极间是绝缘的。
图6-38(b)所示是它的符号。
其箭头方向表示由P(衬底)指向N(沟道)。
图6-38 N沟道增强型场效应管场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。
从图6-39(a)可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。
当栅-源电压UGS=0时,即使加上漏-源电压UDS,而且不论UDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID≈0。
若在栅-源极间加上正向电压,即UGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。
当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。
绝缘栅型场效应管之图解
绝缘栅型场效应管之图解
绝缘栅型场效应管是一种利用半导体表面的电场效应,由感应电荷的多少改变导电沟道来控制漏极电流的器件,它的栅极与半导体之间是绝缘的,其电阻大于00Ω。
增强型:VGS=0时,漏源之间没有导电沟道,在VDS作用下无iD。
耗尽型:VGS=0时,漏源之间有导电沟道,在VDS作用下iD。
1. 结构和符号(以N沟道增强型为例)
在一块浓度较低的P型硅上扩散两个浓度较高的N型区作为漏极和源极,半导体表面覆盖二氧化硅绝缘层并引出一个电极作为栅极。
N沟道绝缘栅型场效应管结构动画
其他MOS管符号
2. 工作原理(以N沟道增强型为例)
(1) VGS=0时,不管VDS极性如何,其中总有一
个PN结反偏,所以不存在导电沟道。
VGS =0,ID =0
VGS必须大于0
管子才能工作。
(2) VGS>0时,在Sio2介质中产生一个垂直于半导体表面的电场,排斥P区多子空穴而吸引少子电子。
当VGS达到一定值时P区表面将形成反型层把两侧的N区沟通,形成导电沟道。
VGS >0→g吸引电子→反型层→导电沟道
VGS↑→反型层变厚→VDS ↑→ID↑
(3) VGS≥VT时而VDS较小时:
VDS↑→ID ↑
VT:开启电压,在VDS作用下开始导电时的VGS°
VT = VGS —VDS
3. 特性曲线(以N沟道增强型为例)
场效应管的转移特性曲线动画
4.其它类型MOS管
(1)N沟道耗尽型:制造时在栅极绝缘层中掺有大量的正离子,所以即使在VGS=0时,由于正离子的作用,两个N区之间存在导电沟道(类似结型场效应管)。
其它类型MOS管
(2)P沟道增强型:VGS = 0时,ID = 0开启电压小于零,所以只有当VGS < 0时管子才能工作。
(3)P沟道耗尽型:制造时在栅极绝缘层中掺有大量的负离子,所以即使在VGS=0 时,由于负离子的作用,两个P区之间存在导电沟道(类似结型场效应管)。
5. 场效应管的主要参数
(1) 开启电压VT :在VDS为一固定数值时,能产生ID所需要的最小|VGS | 值。
(增强)
(2) 夹断电压VP :在VDS为一固定数值时,使ID对应一微小电流时的|VGS | 值。
(耗尽)
(3) 饱和漏极电流IDSS :在VGS = 0时,管子发生预夹断时的漏极电流。
(耗尽)
(4) 极间电容:漏源电容CDS约为~1pF,栅源电容CGS和栅漏极电容CGD约为1~3pF。
(5) 低频跨导gm :表示VGS对iD的控制作用。
在转移特性曲线上,gm 是曲线在某点上的斜率,也可由iD的表达式求导得出,单位为S 或mS。
(6) 最大漏极电流IDM
(7) 最大漏极耗散功率PDM
(8) 漏源击穿电压V(BR)DS 栅源击穿电压V(BR)GS。