复变函数 第一章 华科大
- 格式:ppt
- 大小:1.53 MB
- 文档页数:41
引言复数理论的产生、发展经历了漫长而又艰难的岁月。
复数是16世纪人们在解代数方程时引入的。
1545年意大利数学物理学家H Cardan ⋅在所著《重要的艺术》一书中列出并解出将10分成两部分,使其积为40的问题,即求方程(10)40x x -=的根。
他求出形式的根为55,积为25(15)40--=。
但由于这只是单纯从形式上推广而引进,并且人们原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人们所接受。
“虚数"这一名词就恰好反映了这一点。
直到十八世纪,J R D Alembert '⋅⋅,L Euler ⋅等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人们缍接受并理解了复数。
复数函数和理论基础是在十九世纪奠定的,主要是围绕Cauchy 、Weierstrass 和Riemann 三人的工作进行的。
到本世纪,复数函数论是数学的重要分支之一,随着它的领域不断扩大而发展成庞大的一门学科,在自然科学其它学科及数学的其它分支中,复数函数论都有着重要应用。
第一章 复数与复变函数教学重点: 复变函数的极限和连续性 教学难点: 复平面上点集的n 个概念教学基本要求:1、了解复数定义及其几何意义,熟练掌握复数运算 2、知道无穷远点邻域3、了解单连通区域与复连通区域 4、理解复变函数、极限与连续§1复数1、复数域形如z x iy =+或z x yi =+的数,称为复数,其中x 和y 均是实数,分别称为z 的实部和虚部,记作Re x z =,Im y z =;i =称为虚单位.两个复数111z x iy =+,222z x iy =+,12z z =1212,x x y y ⇔==.虚部为零的复数可看作实数。
因此,全体实数是全体复数的一部分.x iy +和x iy -称为互为共轭复数,记为x iy x iy +=-或x iy x iy -=+.复数四则运算规定为:121212()()z z x x i y y ±=+±+ 1212121221()()z z x x y y i x y x y =-++ 1121212122222222222(0)z x x y y y x x y i z z x y x y +-=+≠++易验证复数的四则运算满足与实数的四则运算相应的运算规律。
第一章复数和复平面§1.1复数1.复数的概念复数z = a + ib或空=。
+仞,其中d和b为实数,i称为虚单位,即是满足r =-1.Q与“分别称为复数z的实部和虚部,记作Q二Rez, /? = Im乙■2.复数的向量表示和复平面根据复数相等的定义,任何一个复数z = a + ib f都可以由一个有序实数对(a,b)惟一确定;,有序实数对@0)与平面直角坐标系屮的点是一一对应的.由此,可以建立复数集与平而直角坐标系中的点集之间的对应.我们说点z(a,b),与复数z = a + ib表示同一意义.如果z = a + ib ,则z = a —ib.复数z = a + ib还可以用rtl原点引向点z的向量丞來表示,这种表示方式建立了复数集Q与平面向量所成的集合的一一对应(实数0与零向量对应).向量丞的 < 度称为复数z 的模,记为|z|或儿因此有|z| =厂=J/ > 0 (1.1) 显然,|Rez| 5|z| 5|Rez| + |lmz|, |lmz| <|z| W|Rez| + |lmz|・考虑复平面□的不为零的点z = x + iy .如图1.3所示,这个点有极坐标(r,&):x = “os0,y =A*sin&.显然厂=忖,&是正实轴与从原点0到z的射线的夹角,称为复数z的幅角,记为& = Argz,英屮满足条件:一兀<05的值称为z = x + iy的主幅角,记为 6 = 6/rgz ,显然有 Argz = argz + 2k7T, k = 0,±l,±2,±3,…实部,虚部,模与幅角的关系:兀=厂cos&, y = rsin3 tan^ = —.|z| =厂=Jx 2 + 于V arctan —,x>0x y龙+ arctan —v 0,y > 0x y八--ZT +arctan —,x< 0,y < 06 = argz = x—,x = 0, y > 02 ”0,y<07T,x<0,y = 03.复数的运算设复数z, =a + ib,z 2 =c + id ,贝!J 由下式定义:加法:z 1 + z 2 = (a + c) + i(h + d) (1.2)减法:z }-z 2=(a- c) + i(b - d)a乘法:z }- z 2=ac + ihc + lad + rbd = (ac 一 hd) + i(hc +ad).除法 Z] _a + ib _(a + ib)(c-id) _ac + bd +jbc-ad z 2 c+ id (c + id)(c — id) c 2 +d 2 c 1 +d 2(1.4) (1-5)复数的模和共轨复数冇下面的性质:l)Rez = -(z + z), Imz =—(z-z);2 2i z — \----- _ _ __ _____ Z2)(z + vv) = z + zw = z iv; 一 \ /=二3工 0); w3)|zvv| = |z||w 心旦w |w|5)|z| = |z|.4.复数的三角表示和复数的方根 利用极坐标表示,攵数z 可以表示为 三角形式:z=r (cos 〃+rsin 〃).指数形式:z = 4|z | z —,Arg =• = Argz,- Argz 2. \Z 2\ Z 2 设复数z =沁&从而有:z n = (r(cos^ + zsin 3))n = F'(cos0 + isin&)" = r n (cos nO + i sin nO) = r n c ine .|z"|=|z|",英中n 为正整数.当r=\吋,得棣莫拂(de Moivre)公式(cos 0 + i sin &))" = cos n0 + i sin nd. (1.15)复数的“次方根是复数〃次乘幕的逆运算.下面我们介绍复数的川次方根的定义和求法. 设z =卅是已知的复数,〃为正整数,则称满足方程of - Z的所有的复数血为z 的77次方根,并且记为CO — yfz .O)k =(^z )k =^ze ”, "0,1,2,…,介 1 (1.16)若记©二仏吩,则©可表示为 .2kn CO k — CO ()e n , ^=1,2, •••, /7-1 (L17)§1.2复平面点集我们研究的许多对象一一解析函数、保角变换等等问题,首先遇到的是定义域和值域的 问题,这些都是复平面上的一种点集。