当前位置:文档之家› 第一章-复数与复变函数

第一章-复数与复变函数

第一章-复数与复变函数
第一章-复数与复变函数

复变函数教案

2012—2013学年度第二学期

任课教师郭城

课程名称复变函数

采用教材高教三版(钟玉泉编)

周课时数 4

数统学院数学教育专业2010 年级1班

引言

数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。

我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

=0的根,它求出形式的根为5和5,积为-+115

x x

(10)

4

--=.然而这只不过是一种纯形式的表示而已,当时,谁也说不上这25(15)40

样表示究竟有什么好处。

为了使负数开平方有意义,也就是要使上述这类方程有解,我们需要再一次扩大数系,于是就引进了虚数,使实数域扩大到复数域。但最初,由于对复数的有关概念及性质了解不清楚,用它们进行计算又得到一些矛盾,因而,长期以来,人们把复数看作不能接受的“虚数”。

直到十七世纪和十八世纪,随着微积分的发明与发展,情况才逐渐有了改变。另外的原因,是这个时期复数有了几何的解释,并把它与平面向量对应起来解决实际问题的缘故。复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔一欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西一黎曼条件”。关于复数理论最系统的叙述,是由瑞士数学家欧拉(Euler)作出的。他在1777年系统地建立了复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上,用符号“i”作为虚数的单位,也是他首创的。此后,复数才被人们广泛

承认和使用。

在复数域内考虑问题往往比较方便,例如,一元n次方程在复数域内恒有解。这就是著名的代数学基本定理,它用复变函数来解决是非常简洁的。又如,在实数域内负数的对数无意义,而在复数域内我们就可以定义负数的对数。

复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。在十九世纪,复变函数的理论经过法国数学家柯西(Cauchy)、德国数学家黎曼(Riemann)和维尔斯特拉斯(Weierstrass) 的巨大努力,已经形成了非常系统的理论,并深刻地渗人到代数学、解析数论、概率统计、计算数学和拓扑学等数学分支;同时,它在热力学、流体力学、和电学等方面也有很多的应用。二十世纪以来,复变函数已经被广泛应用到理论物理、弹性理论和天体力学等方面,与数学中其它分支的联系也Et益密切。致使经典的复变函数理论,如整函数与亚纯函数理论、解析函数的边值问题等有了新的发展和应用。并且,还开辟了一些新的分支,如复变函数逼近论、黎曼曲面、单叶解析函数论、多复变函数论、广义解析函数论以及拟保形变换等。另外,在种种抽象空间的理论中,复变函数还常常为我们提供新思想的模型。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。

从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中。现在。复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

第一章复数与复变函数

1.教学目的

复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。本章主要介绍复数和复变函数的基本概念,通过本章教学,使学生明确复变函数要研究的对象是解析函数,其理论基础是建立在复数域和复平面上。

2.教学基本要求

理解复数、区域、单连通区域、多连通区域、约当曲线、光滑(逐段光滑)曲线、无穷远点、扩充复平面等概念;理解复数的性质,掌握复数的运算,理解复数的模和辐角的性质;理解并掌握复变函数极限与连续性的概念与性质;进一步认识复数域的结构,并联系中学的复数教学。

3.教学重点和难点

重点是复变函数的概念、极限与连续性;难点是无穷远点及无穷远点邻域。4.学法指导

以自习为主,通过讲授1节习题课来加强学生对该章主要概念的理解。5.教学内容与课时分配

教学内容

§1 复数

教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复

数的乘积与商﹑幂与根运算.

重点:德摩弗()DeMoiVre 公式.

难点:德摩弗()DeMoiVre 公式.

课时:2学时.

1. 复数域

形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为

复数z 的实部和虚部,记为Re x z =,Im y z = i =

两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分.

实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记为

()x iy x iy +=- 或 x iy x iy -=+

设复数111z x iy =+,222z x iy =+,则复数四则运算规定:

121212()()z z x x i y y ±=±±±

1212121221()()z z x x y y i x y x y =-++

11212211222222

22222(0)z x x y y x y x y i z z x y x y +-=+≠++ 容易验证复数的四则运算满足与实数的四则运算相应的运算规律.

全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域中,复数是不能比较大小的.

2.复平面

从上述复数的定义中可以看出,一个复数z x iy =+实际上是由一对有序实数(,)x y 唯一确定.因此,如果我们把平面上的点(,)x y 与复数z x iy =+对应,就建立了平面上全部的点和全体复数间的一一对应关系.

由于x 轴上的点和y 轴上非原点的点分别对应着实数和纯虚数,因而通常称x 轴为实轴,称y 轴为虚轴,这样表示复数z 的平面称为复平面或z 平面.

引进复平面后,我们在“数”与“点”之间建立了一一对应关系,为了方便起见,今后我们就不再区分“数”和“点”及“数集”和“点集”.

3.复数的模与幅角

由图1.1中可以知道,复数z x iy =+与从原点到点z 所引的向量oz 也构成一一对应关系(复数O 对应零向量).从而,我们能够借助于点z 的极坐标r 和θ来

确定点z x iy =+,向量oz 的长度称为复数z 的模,记为图1.1

图1.1 220r z x y ==+≥. 显然,对于任意复数z x iy =+均有x z ≤,y z ≤,z x y ≤+ (1.1) 另外,根据向量的运算及几何知识,我们可以得到两个重要的不等式 1212z z z z +≤+ (1.2) (三角形两边之和≥第三边,图1.2)

图1.2

1212z z z z -≤- (1.3)

(三角形两边之差≤第三边,图1.3)

图1.3

(1.2)与(1.3)两式中等号成立的几何意义是:

复数1z ,2z 分别与12z z +及12z z -所表示的三个向量共线且同向.

向量oz 与实轴正向间的夹角θ满足y x

θ=tan 称为复数z 的幅角()Argument ,记为Argz θ= 由于任一非零复数z 均有无穷多个幅角,若以Argz 表示其中的一个特定值,并称满足条件 Argz ππ-<≤ (1.4)

的一个值为Argz 的主角或z 的主幅角,则有

arg 2Argz z k θπ==+ (1.5)

(0,1,2,)k =±±

注意:当0z =时,其模为零,幅角无意义.

从直角坐标与极坐标的关系,我们还可以用复数的模与幅角来表示非零复数z ,即有

(cos sin )z r i θθ=+ (1.6)

同时我们引进著名的欧拉()Euler 公式:

cos sin i e i θθθ=+ (1.7)

则(1.6)可化为i z re θ= (1.8)

(1.6)与(1.8)式分别称为非零复数z 的三角形式和指数形式,由(1.8)式几指数性质即可推得复数的乘除有

12121122()121212()111222i i i i i i z z r e r r r e z r e r e z r r θθθθθθθθ+-?==??==??

(1.9) 因此 1212z z z z =,1122

z z z z = 2(0)z ≠ (1.10) 12121122()Argz z Argz Argz z Arg Argz Argz z =+???=-??

(1.11) 公式(1.10)与(1.11)说明:两个复数1z ,2z 的乘积(或商),其模等于这两个复数模的乘积(或商),其幅角等于这两个复数幅角的和(或差). 特别当21z =时可得 12()12i z z re θθ+= 此即说明单位复数()21z =乘任何数,几何上相当于将此数所对应的向量旋转一个角度.

另外,也可把公式(1.11)中的Argz 换成argz (某个特定值),若argz 为主值时,则公式两端允许相差2π的整数倍,即有

12121122()2()2Arg z z argz argz k z Arg argz argz k z ππ=++???=-+??

(1.12) 公式(1.9)可推广到有限个复数的情况,特别地,当12n z z z ===时,有

()(cos sin )n i n n in n z re r e r i θθθθ===+ 当1r =时,就得到熟知的德摩弗()DeMoiVre 公式:

(cos sin )cos sin n i n i n θθθθ+=+ (1.13)

例1.1求cos3θ及sin3θ用cos θ与sin θ表示的式子

解:3cos3sin 3(cos sin )i i θθθθ++()=

3223cos 3cos sin 3cos sin sin i i θθθθθθ=+--

323cos3cos 3cos sin 4cos 3cos θθθθθθ∴=-=-

233sin33cos sin sin 3sin 4sin θθθθθθ=-=-

4.曲线的复数方程

例1.2连接1z 及2z 两点的线段的参数方程为121()(01)z z t z z t =+-≤≤ 过1z 及2z 两点的直线(图 )的参数方程为121()()z z t z z t =+--∞≤≤+∞ 例1.3 z 平面上以原点为心,k 为半径的圆周的方程为z R =

z 平面上以0z 为心,R 为半径的圆周的方程为0z z R -=

例1.4 z 平面上实轴的方程为Im 0z =,虚轴的方程为Re 0z =.

作业:第42页 2,3,4

§2 复平面上的点集

教学目的与要求:平面点集的几个基本概念;掌握区域的概念;了解约当定理. 重点:区域的概念,约当定理.

难点:区域的概念.

课时:2学时.

1. 几个基本概念

定义1.1 满足不等式0z z ρ-<的所有点z 组成的平面点集(以下简称点集)称为点0z 的ρ-邻域,记为0N z ρ()

. 显然,0N z ρ()

即表示以0z 为心,以ρ为半径的圆的内部 定义1.2 设E 为平面上的一个点集,若平面上一点0z 的任意邻域内巨有E 的无穷多个点,则称0z 为E 的内点.

定义1.3 若E 的每个聚点都属于E ,则称E 为闭集.若E 的所有点均为内点,则称E 为开集

定义1.4 若0M ?>,z E ?∈,均有z M ≤则称E 为有界集,否则称E 为无界集.

2. 区域与约当()Jordan 曲线

定义1.5 若非空点集D 满足下列两个条件:

(1) D 为开集.

(2) D 中任意两点均可用全在D 中的折线连接起来,则称D 为区域. 定义1.6 若0z 为区域D 的聚点且0z 不是D 的内点,则称0z 为D 的界点,D 的所有界点组成的点集称为D 的边界,记为D ?,若0r ?>,使得0()r N z D ??=,则称0z 为D 的外点

定义1.7 区域D 加上它的边界C 称为闭区域,记为D D C =+有关区域的几个例子

例1.5 z 平面上以点0z 为心,R 为半径的圆周内部(即圆形区域):0z z R -< 例1.6 z 平面上以点0z 为心,R 为半径的圆周及其内部(即圆形闭区域)0z z R -≤

例1.5与例1.6所表示的区域都以圆周0z z R -=为边界,且均为有界区域 例1.7 上半平面 Im 0z >

下半平面 Im 0z <

它们都以实轴Im 0z =为边界,且均为无界区域.

左半平面 Re 0z >

右半平面 Re 0z <

它们都以虚轴Re 0z =为边界,且均为无界区域.

例1.8 图1.4所示的带形区域表为12Im y z y <<.

图1.4x

其边界为1y y =与2y y =,亦为无界区域.

例1.9 图 所示的圆环区域表为r z R <<其边界为z r =与z R =,为有界区域. 定义1.8 设()x t 及()y t 是两个关于实数t 在闭区间[,]αβ上的连续实数,则由方程()()()z z t x t iy t ==+ ()t αβ≤≤ (1.13)

所确定的点集C 称为z 平面上的一条连续曲线,(1.13)称为C 的参数方程,()z α及()z β分别称为C 的起点和终点,对任意满足1t αβ<<及2t αβ<<的1t 与2t ,若12t t ≠时有12()()z t z t =,则点1()z t 称为C 的重点;无重点的连续曲线,称为简单曲线(约当曲线);()()z z αβ=的简单曲线称为简单闭曲线.若在t αβ≤≤上时,()x t '及()y t '存在节不全为零,则称C 为光滑(闭)曲线.

定义1.9 由有限条光滑曲线连接而成的连续曲线称为逐段光滑曲线. 定义1.1(约当定理) 任一简单闭曲线C 将z 平面唯一地分为C 、()I C 、()

E C 三个点集(图 1.5 ),它们具有如下性质:

图1.5

(1)彼此不交.

I C与()

E C一个为有界区域(称为C的内部),另一个为无界区域(称为C的

(2)()

外部)

E C,则P与C必有交

(3)若简单折线P的一个端点属于()

I C,另一个端点属于()

点.

对于简单闭曲线的方向,通常我们是这样来规定的:当观察这沿C绕行一周时,C的内部(或挖)始终在C的左方,即“逆时针”(或“顺时针”)方向,称为C 的正方向(或负方向).

定义1.10设D为复平面上的区域,若D内任意一条简单闭曲线的内部全含于D,则称D为单连通区域,不是单连通的区域称为多连通区域.

例如,例1.5 1.8

所示的区域均为单连通区域,例1.9所示的区域为多连通区域.(请同学们针对定义1.10自己作图思考)

作业: 第42页 6.(1) (3) (5) , 7, 8,9

§3复变函数

教学目的与要求:理解复变函数的概念;了解复变函数的极限与连续的概念. 重点:复变函数的概念.

难点:复变函数的几何表示.

课时:2学时.

1.复变函数概念

定义1.11 设E 为一复数集,若存在一个对应法则f ,使得E 内每一复数z 均有唯一(或两个以上)确定的复数u 与之对应,则称在E 上确定了一个单值(或多值)函数()w f z =()z E ∈,E 称为函数()w f z =的定义域,w 值的全体组成的集合称为函数()w f z =的值域.

例如w z =,w z =及11

z w z +=

- (1)z ≠均为单值函数

,w =及w Argz =(0)z ≠ 均为多值函数.

今后如无特别说明,所提到的函数均为单值函数.

设()w f z =是定义在点集E 上的函数,若令z x iy =+,w u iv =+则u 、

v 均随着x 、y 而确定,即u 、v 均为x 、y 的二元实函数,因此我们常把()w f z =写成()(,)(,)f z u x y iv x y =+ (1.14)

若z 为指数形式,i z re θ=,则()w f z =又可表为(,)(,)w p r i r θθθ=+ (1.15) 其中(,)p r θ,(,)Q r θ均为r 、θ的二元实函数.

由(1.14)和(1.15)两式说明,我们可以把复变函数理解为复平面z 上的点集和复平面w 上的点集之间的一个对应关系(映射或变换),这是由于在复平面上我们不再区分“点”(点集)和“数”(数集).故今后我们也不再区分函数、映射和变换.

3. 复变函数的极限和连续性

定义1.12 设()w f z =于点集E 上有定义,0z 为E 的聚点,若存在一复数0w ,使得0ε?>,0δ?>,当00z z δ<-<时有0()f z w ε-< ()z Z ∈则称()f z 沿E

于0z 有极限0w ,记为lim ()0()

f z w z z z E =→∈

定义1.12的几何意义是:对于0ε?>,存在相应的0δ>,使得当z 落入0z 的

去心δ-邻域时,相应的()f z 就落入0w 的ε-邻域.这就说明lim ()0()

f z z z z E →∈与0z z →的路径无关.即不管z 在E 上从哪个方向趋于0z ,只要z 落入0z 的去心δ-邻域内,则相应的()f z 就落入0w 的ε-邻域内,而在数学分析中,0lim ()x x f x →中x 只能在x 轴上沿着0x 的左,右两个方向趋于0x ,这正是复分析与数学分析不同的根源.

今后为了简便起见,在不致引起混淆的地方,lim ()0()

f z z z z E →∈均写成lim ()0f z z z → 可以类似于数学分析中的极限性质,容易验证复变函数的极限具有以下性质:

(1)若极限存在,则极限是唯一的.

(2)lim ()0f z z z →与lim ()0

g z z z →都存在,则有 lim [()()]lim ()lim ()000f z g z f z g z z z z z z z ±=

±→→→ lim ()()lim ()lim ()000f z g z f z g z z z z z z z =→→→

lim ()()0lim lim ()lim ()000f z z z f z g z g z z z z z z z →=→→→ (()0)g z ≠

另外,对于复变函数的极限与其实部和虚部的极限的关系问题,我们有下述定理:

定理1.2 设函数()(,)(,)f z u x y iv x y =+于点集E 上有定义,000z x iy =+为E 的聚点,则lim ()0

f z a ib z z η==+→的充要条件0lim (,)x x u x y a →=及0lim (,)y y v x y b →= 证明:因为()[(,)][(,)]f z u x y a i v x y b η-=-+-

从而由不等式1.1可得(,)()(,)()u x y a f z v x y b f z ηη-≤-???-≤-??

(1.16)

及 ()(,)(,)f z u x y a v x y b η-≤-+- (1.17)

故由(1.16)即可得必要性部分的证明.由(1.17)可得充分性部分的证明. 定义1.13设()w f z =于点集E 上有定义,0z 为E 的聚点,且0z z ∈,若0lim ()()f z f z =则称()f z 沿E 于0z 连续.

根据定义1.13,()f z 沿E 于0z 连续就意味着:0ε?>,0δ?>,当0z z δ-<时,有0()()f z f z ε-<

与数分中的连续函数性质相似,复变函数的连续性有如下性质:

(1)若()f z ,()g z 沿集E 于点0z 连续,则其和,差,积,商(在商的情形,要求分母0z 不为零)沿点集E 于0z 连续.

(2)若函数0()f z η=沿集E 于0z 连续,且()f E G ?,函数()w g η=沿集G 于00()f z η=连续,则复合函数0[()]w g f z =沿集E 于0z 连续.

其次,我们还有

定理1.3 设函数()(,)(,)f z u x y iv x y =+于点集E 上有定义,0z E ∈,则()f z 在点000z x iy =+连续的充要条件为:(,)u x y ,(,)v x y 沿E 于点00(,)x y 均连续.

事实上,类似于定理1.2的证明,只要把其中的a 换成00(,)u x y ,b 换成00(,)v x y 即可得到定理的证明.

例1.10 设1()()2z z f z i z

z =- (0)z ≠ 试证()f z 在原点无极限,从而在原点不连续.

证明:设(cos sin )z r i θθ=+,则

2

22

11()()()sin 222z z z z z z f z i i r zz θ-+-=== 因此000lim ()0z z f z z θπθ→→??=?→??当沿着正实轴=0时1当沿着正实轴=时4

故0

lim ()z f z →不存在,从而在原点不连续. 定义1.14 若函数()f z 在点集E 上每一点都连续,则称()f z 在E 上连续,或称()f z 为E 上的连续函数.

特别地,当E 为实轴上的区间[,]αβ时,则连续曲线(1.16)就是[,]αβ上的连续函数()z z t =

其次,若E 为闭区域D ,则D 上每一点均为聚点,考虑其边界上的点0z 的连续性时,0z z →只能沿D 的点z 来取.

与数学分析相同,在有界闭集E 上连续的伏辩函数具有以下性质:

(1)在E 上()f z 有界,即0M ?>,使得()()f z M z E ≤∈ (2)()f z 在E 上有最大值和最小值.

(3)()f z 在E 上一致连续,即0ε?>,0δ?>使对E 上任意两点1z ,2z ,只要12z z δ-<就有12()()f z f z ε-<

作业: 第43页 10(1) (3), 11(1)(3) 13 14 15 17

§4复球面与无穷远点

教学目的与要求:理解复球面的概念;了解与无穷远点相关的扩充复平面的几个

概念.

重点:复球面的概念.

难点:无穷远点与扩充复平面.

课时:1学时.

1. 复球面 复数还有一种几何表示方法,它是借助地图制图学中将地球投影到平面上的测地投影法,建立复平面与球面上的点的一一对应,这种说明引入无穷远点的合理性。

6.作业

习题(一)

2,3,4,6.(1)(3)(5) ,7,8,9,10(1)(3),11(1)(3),13,14,15,17,19,20 7.小结

本章主要介绍复数与复变函数的基本概念,复数的概念和性质在中学数学中已学过,学生比较容易理解。复变函数的极限理论与实函数的极限理论相似,但由于复变函数理论是建立在复数域或复平面上的,因此与实函数的理论又有所不同,学生在学习时应比较相同点和不同点,这样既对已经学过的知识进行总结复习,又能更快接受并理解新知识。

复数与复变函数

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100 z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2[cos( sec θπ θπ θ+++i (B ))]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B ) z z z z 222=- (C ) z z z z 222≤- (D )不能比较大小 5.设 y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向 量对应的复数是( ) (A )2 (B )i 31+ (C ) i -3 (D ) i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数

复变函数论第一章复数与复变函数

引言 复数理论的产生、发展经历了漫长而又艰难的岁月.复数是16世纪人们在解代数方程时引入的. 1545年,意大利数学物理学家H Cardan (卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x -的根,它求出形式的根为 5+525(15)40--=. 但由于这只是单纯从形式上推广而来引进,并且人民原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人民所接受.“虚数”这一名词就恰好反映了这一点. 直到十八世纪,,D Alembert (达朗贝尔):L Euler (欧拉)等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人民终于接受并理解了复数. 复变函数的理论基础是在十九世纪奠定的,主要是围绕..A L Cauchy (柯西),K Weierstrass (魏尔斯特拉斯)和B Riemann (黎曼)三人的工作进行的. 到本世纪,复变函数论是数学的重要分支之一,随着它的领域的不断扩大而发展成庞大的一门学科,在自然科学其它(如空气动力学、流体力学、电学、热学、理论物理等)及数学的其它分支(如微分方程、积分方程、概率论、数论等)中,复变函数论都有着重要应用. 第一章 §1 复数 教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算. 重点:德摩弗()DeMoiVre 公式. 难点:德摩弗()DeMoiVre 公式. 课时:2学时. 1. 复数域 形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的 实部和虚部,记为Re x z =,Im y z = i =,称为虚单位. 两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分. 实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记

复变函数论第三版课后习题答案 2

第一章习题解答 (一) 1 .设z =z 及Arcz 。 解:由于3i z e π -== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 4 12 12222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

第一章复数与复变函数

第一章复数与复变函数 (Complex number and function of the complex variable) 第一讲 授课题目:§1.1复数 §1.2 复数的三角表示 教学内容:复数的概念、复数的四则运算、复平面、复数的模和辐角、复数的三角不等式、复数的表示、复数的乘方与开方. 学时安排:2学时 教学目标:1、掌握复数的乘方、开方运算及它们的几何意义 2、切实理解掌握复数的辐角 3、掌握复数的表示 教学重点:复数的乘方、开方运算及它们的几何意义 教学难点:复数的辐角 教学方式:多媒体与板书相结合. P思考题:1、2、3.习题一:1-9 作业布置: 27 板书设计:一、复数的模和辐角 二、复数的表示 三、复数的乘方与开方 参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社. 2、《复变函数与积分变换学习辅导与习题全解》,高 等教育出版. 课后记事:1、基本掌握复数的乘方、开方运算 2、不能灵活掌握复数的辐角(要辅导) 3、能灵活运用复数的三角表示进行复数的运算

教学过程:

引言 复数的产生和复变函数理论的建立 1、1545年,意大利数学家Cardan在解三次方程时,首先产生了负数开平方的思想.后来,数学家引进了虚数,这在当时是不可接受的.这种状况随着17、18世纪微积分的发明和给出了虚数的几何解析而逐渐好转. 2、1777年,瑞士数学家Euler建立了系统的复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们应用到水力学和地图制图学上.用符号i表示虚数单位,也是Euler首创的. 3、19世纪,法国数学家Cauchy、德国数学家 Riemann 和Weierstrass经过努力,建立了系统的复变函数理论,这些理论知直到今天都是比较完善的. 4、20世纪以来,复变函数理论形成了很多分支,如整函数与亚纯函数理论、解析函数的边值问题、复变函数逼近论、黎曼曲面、单叶解析函数论等等,并广泛用于理论物理、弹性物理和天体力学、流体力学、电学等领域. 5、复变函数课程主要任务为研究复变数之间的相互依赖关系.其中许多概念、理论和方法是实变函数在复变函数领域内的推广和发展,在学习过程中要注意它们相似之处和不同之处的比较.

复变函数第二章学习方法导学

第二章 解析函数 解析函数是复变函数论研究的中心和主要对象,它是一类具有某种特性的可微(可导)函数,并在理论和实际问题中有着广泛的应用. 本章,我们首先介绍复变函数的极限与连续,并从复变函数的导数概念出发,引入解析函数,导出复变函数可导和解析的主要条件——柯西—黎曼条件,并给出判断函数可导和解析的一类充分必要条件(它是用复变函数的实部和虚部两个二元实函数所具有的微分性质来表达的充要条件);其次,介绍几类基本初等解析函数,这些函数实际上是数学分析中大家所熟知的初等函数在复数域上的推广,并研究它们的有关性质. 一、基本要求 1.掌握复变函数的极限和连续的概念,能对照数学分析中极限和连续的性质,平行地写出复变函数的极限与连续的相应性质(比如极限和连续的四则运算性、极限和连续的局部不等性(由于复数没有大小的规定,因此,此性质是与局部保号性相对应的性质)、极限与连续的局部有界性、极限存在的柯西准则、极限的归结原则和复合函数的连续性等),并能熟练地运用四则运算性和复合函数的连续性求函数的极限或判断函数的连续性. 2.熟练掌握复变函数的极限和连续与其实部、虚部两个二元实函数的极限和连续的等价关系,能利用这种关系借助二元实函数的极限或连续简洁地求复变函数的极限或讨论复变函数的连续性;能利用这种关系借助有界闭集上二元连续函数的整体性质简洁地证明有界闭集上复变连续函数的整体性质(比如:有界性,最大模和最小模的存在性,一致连续性).另外,关于对具体函数的一致连续性的讨论,大家还要掌握利用下面的结论来判断函数不一致连续的有效方法,结论如下: 复变函数()f z 在点集E ?£上一致连续?对任意两个点列n z ,n z 'E ∈,只要0()n n z z n '-→→∞,总有()()0()n n f z f z n '-→→∞.

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

第一章 复数与复变函数

第一章 复数与复变函数 第一节 复数 1.复数域 每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。 复数111iy x z +=和2 22iy x z +=相等是指它们的实部与虚部分别相等。 如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。 复数的四则运算定义为: )2 1()21()22()11(b b i a a ib a ib a ±+±=+±+)1 221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222 a i b a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。 2.复平面 C 也可以看成平面2R ,我们称为复平面。 作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。 横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一 般称为z -平面,w -平面等。 3.复数的模与辐角 复数z x iy =+可以等同于平面中的向量。向量的长度称为复数的模,定 (,) x y

义为:||z 向量与正实轴之间的夹角称为复数的辐角,定义为: Arg arctan 2y z i x π=+(k Z ∈)。 复数的共轭定义为:z x iy =-; 复数的三角表示定义为:||(cos sin )z z Argz i Argz =+; 复数加法的几何表示: 设1 z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图: 关于两个复数的和与差的模,有以下不等式: (1)、||||||1212z z z z +≤+;(2)、||||||||1212 z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212 z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =; 例1.1试用复数表示圆的方程: 22()0a x y bx cy d ++++= (0a ≠) 其中a,b,c,d 是实常数。 解:方程为 0azz z z d ββ+++=,其中1()2 b i c β=+。 2z

复变函数论作业及答案

习题1 第一章 复数与复变函数 1.12z = =求|z|,Argz 解:123212 2 =??? ? ??+??? ??=z Argz=arctan 212-+2k π=23k π π+-, ,2,1,0±±=k 2.已知2 11i z += ,=2z i -3,试用指数形式表示2 1 21z z z z 及 解:2 11i z += i e 4 π = =2z i -3i e 6 2π -= 所以21z z =i e 6 2π -i e 4 πi e 12 2π - = 2 1z z i i i i e e e e 125)64(64 21212π π ππ π ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 则二次方程的根为 k w a = (k=0,1,2,3) =24k i e a ππ+? (k=0,1,2,3) 0w =4 i e a π? =234 4 1(1)2 i i a w e a e a i ππ π+?===-+

54 2(1)2i a w e a i π==-- 74 3(1)2 i a w e a i π==- 4 .设1z 、2z 是两个复数,求证: ),Re(2||||||212221221z z z z z z -+=- 证明:()() 21212 21z z z z z z --=- () 2 12 22 121212 2211 2212 221Re 2z z z z z z z z z z z z z z z z -+=--+=---= 5. 设123z ,z ,z 三点适合条件: 1230z z z ++=及1231z z z === 试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。 证明:设111z x iy =+,222z x iy =+,333z x iy =+ 因为1230z z z ++= ∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =-- 又因为1231z z z === ∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+ 而()()2 2 22112323x y x x y y +=+=+ ()()2 223231x x y y ∴+++= ()232321x x y y ∴+=- 同理=+)(22121y y x x ()()131********x x y y x x y y +=+=- 可知()()()()()()2 2 2 2 2 2 121223231313x x y y x x y y x x y y -+-=-+-=-+-

(完整版)复平面上的轨迹问题

复平面上的轨迹问题 一、教学目标: 1、了解通过复平面可以把复数与平面解析几何中的某些曲线联系起 来。 2、巩固复习复数的几何意义和解析几何中的求轨迹的方法。 3、理解并熟记常见曲线的复数方程。 4、掌握利用复数求轨迹的几种方法。 二、教学重点与难点重点:复数的几何意义的应用与复平面上的轨迹的求法难点:复数的几何意义与复平面上的轨迹的综合应用 三、教学过程 (一)、知识概述: 1、复数与轨迹:复数z x yi, x, y R 对应着复平面内的一个点(x,y),若复数的实部与虚部是一对变量,则它对应的点就构成了复平面上的动点,因此复数若按某种条件变化时,则复平面上的动点自然就构成了具有某种特征的曲线(或曲面)。 2、求复数的轨迹问题的核心问题:理解用复数形式表示复平面上的两点距离 d | z1 z2 | 。 3、熟练掌握以下几种复数形式的基本轨迹: 设动点Z 、定点Z0 、Z1 、Z2 分别对应于复数 z,z0,z1,z2,r1 0,r2 0,a 0 。

1)圆:|z z 0 | r,其中 r 为半径, Z 0为圆心;单位圆: |z| 1. 0 解题提示: z 1 R z zz zz zz 2)圆面(不包括圆周):| z z 0 | r 。 3)圆环面: r 1 |z z 0 | r 2 r 1 r 2 ,其中为 r 1内半径, r 2为外半 径,左边等 号成立,包括内圆周;右边等号不成立,不包 括外圆周。 4)线段的垂直平分线: |z z 1| |z z 2 |,其中 z 1、z 2 为对应线 段的两个 端点。 5)椭圆:|z z 1| |z z 2| 2a , 2a |z 1 z 2 | ,其中 z 1、 z 2为对 应椭圆的焦 点, 2a 为其长轴长(当 2a |z 1 z 2 |时,表示线 段 Z 1,Z 2;当 2a | z 1 z 2 |时,不表示任何图形) 。 6)双曲线:|z z 1| |z z 2 | 2a 2a |z 1 z 2 | ,其中 z 1、z 2为对 应双曲线的焦 点, 2a 为实轴长,(当 2a |z 1 z 2 |时,表示两 条射线 线段 Z 1Z 2 的延长线及其反向延长线;当 2a | z 1 z 2 |时,不表示任何图形) 。 例1、 设z 1 R ,求 z 在复平面内所对应的点的轨迹 z 例题分析:

复数与复变函数-难题解答

第一章 复数与复变函数 §习题 2.设12,,...,n z z z 是任意n 个复数,证明:1 1 ||||n n k k k k z z ==≤∑∑,并给出不等式中等号成立 的条件. (提示:可以用数学归纳法证明.等号成立的条件是12,,...,n z z z 线性相关). 3(Re Im )Re Im . z z z z z +≤≤+ 证明:设z a ib =+,则Re z a =,Im z b =,||z = .由题2知, z a bi a b ≤+=+ 故22 22 2222 2 22||2 2 22 a a b b a b a b a b ab z +++++= = +≤+=, (Re Im )Re Im . z z z z z +≤≤+ 4.若12||,0z z λλ=>,证明:21212||z z z z λλ-=-. 证明:不妨设2 2 2 21210.z z z z λ≠= 则2 2 2 2212122 121 112z z z z z z z z z z z z λλ-=-=-=- 即有21212||z z z z λλ-=-成立. 5.设|a |<1,证明:若|z|=1,则 11z a az -=-. 证明:由1z =得1zz = 故11z a z azz z az az -=-=-=-

即证之. 6.设|a |<1,|z|<1.证明: 11z a az -<-. 证明:提示:( 11z a az -<-?2222||2Re ||12Re ||||;z az a az a z -+<-+ 而2 2 2 2 2 2 1||||||||(1||)(1||)0;a z a z a z --+=-->) 7.设12,,...,n z z z ,12,,...,n ωωω是任意2n 个复数,证明复数形式的Lagrange 等式: 22 2 2 1 1 1 1()(),n n n k j j j j j j k j j j j k n z z z z ω ωωω===≤<≤=- -∑∑∑∑ 并由此推出Cauchy 不等式: 22 2 1 11 n n n j j j j j j j z z ω ω===???? = ??? ???? ??? ∑∑∑. 证明:提示(记1212......n n z z z A ωωω?? = ??? , 1112' 2212...det det()0.........n n n n z z z z z AA z ωωωωωω?? ? ?? ?=≥ ? ??? ? ??? , 2 det det ||j k j j j k k j j k k k z z z z z z ωωωωωω?? ??=- ? ? ? ????? ,则原式=2 10k j j k j k n z z ωω≤<≤-≥∑.(1) 另外,2 111 112 22212 11...det det .........n n j j j j j n n n n j j j n j j n z z z z z z z z z ωωωωωωωωω====???? ? ??? ? ? = ? ? ??? ? ? ? ? ?? ??∑∑∑∑ 2 2 2 1 1 1 ()()0n n n j j j j j j j z z ωω ====- ≥∑ ∑∑.(2) 由(1)=(2)可得证.

复数与复平面

第一章 复数与复平面 第一节 复数及其几何表示 1、复数域 每个复数z 具有iy x +的形状,其中x 和R y ∈,1 -= i 是虚数单位;x 和y 分别 称为z 的实部和虚部,分别记作z x Re =,z y Im =。 复数111 iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。 如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。 复数的四则运算定义为: ) ()()()(21212211b b i a a ib a ib a ±+±=+±+)()())((122121212211b a b a i b b a a ib a ib a ++-=++ 22 22 211222 22 21212211)) ()(b a b a b a i b a b b a a ib a ib a +-+++= ++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。 2、复平面: C 也可以看成平面2 R ,我们称为复平面。 作映射:),(:2y x iy x z R C +=→,则在复数集与平面2 R 之建立了一个1-1 对应。 横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。 复数可以等同于平面中的向量,iy x z +=。向量的长度称为复数的模,定义为:2 2 ||y x z += ; 向量与正实轴之间的夹角称为复数的辐角,定义为: i x y z π2arctan Arg +=(Z k ∈)。 复数的共轭定义为:iy x z -=; ) ,(y x

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数论第四版第一章练习

复变函数论 第一章 练习题 2014-03 一、复数的表示、运算------充分掌握非零复数的三种表示及其互相转换(要善于根据不同问题选用适当的表示以简化计算);熟悉掌握复数运算,与共轭有关的等式,模的性质等,并能灵活运用。 1. 设(1)(2)(3)(3)(2) i i i z i i +--=++,求||.z 2. 将复数2 3(cos5sin 5)(cos3sin 3) i i θθθθ+-和复数tan ()2z i πθθπ=-<<分别化为指数形式和三角形式. 3. 设0,2x π <<试求复数1tan 1tan i x z i x -=+的三角形式,其中x 为实数. 4.求复数(1cos sin )n i θθ++()πθπ-<<的模和辐角. 5. 设3||),4z z i π=-= 求z . 6.已知210x x ++=,求1173x x x ++值. 7.若0,z ≠∈证22||2.z z zz -≤ 8. 试证:(1)1Re 0||1;1z z z -≥?≤+ (2)设||1,z =则|| 1.az b bz a +=+ 9. 设0,arg ,z z ππ≠-<≤ 证明|1|||1||arg z z z z -≤-+. 10.试证:满足||||2||z z ααβ-++=的复数z 存在的充要条件为||||αβ≤;求满足条件时||z 的最大值和最小值. 11. 设(1)(1)n n i i +=-,求整数n 之值. 12. 一个向量顺时针旋转 3π后对应的复数为1,求原向量对应的复数. 13. 24(49)0.z iz i ---=解方程 二、复数在几何上的应用 1. 设,x y 为实数,12,z x yi z x yi ==且有1212z z +=,则动点(,)x y 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线

复数与复变函数

第一讲 复数及复变函数 1.复数的基本概念 R ∈+=y x y i x z , , . 其中:x 称为复数z 的实部,y 称为复数z 的虚部.分别记为: Im , Re z y z x ==. 设两个复数222111 , y i x z y i x z +=+=,我们规定 212121 , y y x x z z ==?=. 当00 , 0i y x +==时称为复数零,仍用0表示. a .复数的运算 设222111 , y i x z y i x z +=+=,则 b .复数的模与幅角 复数集C 与平面点集R ,和平面中从原点发出的向量一一对应.所以我们将不加区别地使用. 容易证明,复数的加减法(1.1)与向量的加减法(平行四边形)法则相吻合. 复数与平面上的点一一对应,所以我们可用平面坐标表示复数.y i x z +=的坐标为()y x , .这样,平面上的点可以表示复数了.这个复化后的平面我们称之为复平面,仍用C 表示.x 轴称为实轴,y 轴称为虚轴. 设y i x z +=,称 为z 的模,而复向量z 与x 轴正向的夹角称为复数z 的幅角,记为 π2 Arg k z +=θ, 其中θ为z 的主幅角,ππ≤<-θ,记为z arg . 由此 Z ∈+=k k z z ,2arg Arg π. (1.2) c .复数的三角表示 设非零复数z 的模r z = ,幅角πk z 2 Arg +=θ,其中θ为主幅角.则 θθsin ,cos r y r x ==. 若记θθθsin cos e i i +=,则 θθθi r i r y i x z e )sin (cos =+=+=. (1.3)

复变函数试题(卷)和答案解析

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+-

复数与复数平面

§2-4 複數與複數平面甲. 複數的基本運算

(i) z z = (ii) 2121z z z z ±=± (iii) 2121z z z z ?=? (iv) 2 121)(z z z z = (v) 設C z ∈, 則z z R z =?∈ z 為一純虛數?z z z z -=≠, 例1. 設1-=i , 則下列何者正確? (A) i 12144=- (B) i 525-=- (C) 694-=-?- (D) i 2 3 4 9= -- (E) i 2 3 4 9= -. (A)(C) 類題. 化簡下列各式: (1) =---+-1882 . 0 (2) =--)2 5)(83)(42(2i i . 64 6 5- (3) 若0

(2) 若R b a ∈,, i i ab b a 45+=++, 求ab b a ,+及33b a +之值. 5, 4, 65 例 3. i -1為方程式0)3(2=+-+k x i x 的一個解, 則=k . –2 + 6i 類題. i +1為方程式0352=-++i kx x 的一個解, 則=k . –2 + 3i 例 4. (1) 設0,0<b a , 證明:b a b a - =. (3) 設b a ,為實數, 且9,13=-=+ab b a , 求2)(b a -之值. –7 類題. (1) 下列何者為真? (A) 632=-?- (B) 632-=?- (C) 3 23 2= -- (D) 3 2 3 2- =- (E) 3 2 3 2- =- (B)(C)(E)

第1章复变函数习题答案习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231+ 解: () ()() 13 234 9232323231231i i i i i i -=+-=-+-= + 实部:133231 = ??? ?? +i Re 虚部:132231- =??? ?? +i Im 共轭复数:1323231 i i +=? ?? ?? + 模: 13 113 232312 2 2= += +i 辐角:πππk arctg k arctg k i i Arg 232213 3 13 22231231+?? ? ??-=+-=+?? ? ??+=??? ??+arg 2) i i i -- 131 解: () ()() 2 532 3321 133******** i i i i i i i i i i i i i i -= -+-= ++-- -=+-+- =-- 实部:23 131=??? ??-- i i i Re 虚部:25 131-=??? ??-- i i i Im 共轭复数:2 53131i i i i +=? ?? ??-- 模: 2 344 342 531312 2 2= = += -- i i i 辐角:πππk arctg k arctg k i i i i i i Arg 2352232 52131131+??? ??-=+??? ? ? ??-=+?? ? ??--=??? ??--arg

3) ()() i i i 25243-+ 解: ()()()2 2672 2672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=? ? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292 522627252432 2= ? ? ? ??-+??? ??-= -+i i i 辐角:()()ππk arctg k arctg i i i Arg 27262272 26 25243+??? ??=+??? ? ? ??--=?? ? ??-+ 4) i i i +-2184 解:i i i i i i 31414218-=+-=+- 实部:()14218=+-i i i Re 虚部:()3421 8 -=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:103 142 221 8 =+=+-i i i 辐角:()()πππk arctg k arctg k i i i i i i Arg 23213244218218+-=+?? ? ? ?- =++-=+-arg 2. 当x 、y 等于什么实数时,等式() i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ? ? ?=-=+832 1y x ???==?111y x 即1=x 、11=y 时,等式成立。

复变函数论第三版课后习题标准答案

复变函数论第三版课后习题答案

————————————————————————————————作者:————————————————————————————————日期:

第一章习题解答 (一) 1.设132 i z -=,求z 及Arcz 。 解:由于3132 i i z e π--== 所以1z =,2,0,1,3 Arcz k k ππ=-+=±L 。 2.设121,312 i z z +==-,试用指数形式表示12z z 及12 z z 。 解:由于64121,322 i i i z e z i e ππ -+===-= 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 24 444 4 (),0,1,2,3k i i z a a e ae k ππ π+=-===。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321 ===z z z 。证明z 1,z 2,z 3是内 接于单位圆1=z 的一个正三角形的顶点。 证 由于1321===z z z ,知321z z z ?的三个顶点均在单位圆上。 因为 333 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

复数与平面向量的联系

课 题:研究性学习课题:复数与平面向量的联系 教学目的: 1. 理解复数与从原点出发的向量的对应关系 2. 了解复数加减法运算的几何意义 教学重点:复数与从原点出发的向量的对应关系. 教学难点:复数加减法运算的几何意义 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.若(,)A x y ,(0,0)O ,则(),OA x y = 2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1) 4.复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系 中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中 的点集之间可以建立一一对应的关系. 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系 来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴 实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所

相关主题
文本预览
相关文档 最新文档