广东省惠州市2014届下学期高三年级4月模拟考试数学试卷(理科)
- 格式:doc
- 大小:688.00 KB
- 文档页数:14
惠州市2014届高三第二次调研考试数 学 (理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式: 球的体积公式:343V R π=一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.复数2(1)(1i z i i-=+为虚数单位)的虚部为( ).A 1.B 1- .C 1± .D 02.设集合{3213}A x x =-≤-≤,集合B 为函数lg(1)y x =-的定义域,则A B = ( ) .A (1,2) .B [1,2].C [1,2).D (1,2]3.设n S 是等差数列{}n a 的前n 项和,1532,3,a a a ==,则9S =( ).A 72- .B 54- .C 54 .D 724. 按右面的程序框图运行后,输出的S 应为( ) .A 26 .B 35 .C 40 .D 575.“1a =”是“直线1l :210ax y +-=与2l :(1)40x a y +++=平行”的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是 ( ).A 16π .B 14π .C 12π .D 8π7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为 ( ).A 7 .B 9 .C 10 .D 158.已知函数2342013()12342013x x x x f x x =+-+-++ 且函数()f x 的零点均在区间[],a b (,,)a b a b Z <∈内,圆22x y b a +=-的面积的最小值是().A π .B 2π .C 3π .D 4π二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.若向量(2,3),(4,7),BA CA ==则BC = .10. 若tan()2πα-=,则sin 2α= .11. 已知变量,x y 满足约束条件21110x y x y y +≥⎧⎪-≤⎨⎪-≤⎩则2z x y =-的最大值为 .12.若62(x x-展开式的常数项是60,则常数a 的值为 .13.已知奇函数3(0)()()(0)x a x f x g x x ⎧+≥=⎨<⎩则(2)g -的值为 .(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
广东省惠州市2014届高三4月模拟考试数 学 试 题(文科) 2014.04本试卷共5页,21小题,满分150分。
考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.函数3)(+=x x g 的定义域为( )A .{}3-≥x xB .{}3->x xC .{}3-≤x xD .{}3-<x x2.已知向量)3,2(),5,1(=-=,则向量+2的坐标为( )A .)3,1(B .)4,2(C .)4,5(D .)13,0( 3.不等式021≥+-xx的解集为( ) A .]1,2[- B .]1,2(- C .),1()2,(+∞--∞ D .),1(]2,(+∞--∞4.i 是虚数单位,若i i z )1(+=,则z 等于( )A .2B .2C .1D .22 5.如图,一个空间几何体的主视图、左视图、俯视图为全等 的等腰直角三角形,如果学科网直角三角形的直角边长为1,那么这 个几何体的体积为 ( ) A .1 B .21 C .31D .61 6.用二分法求方程x x -=3lg 的近似解,可以取的一个区间是( ) A .)1,0( B .)2,1( C .)3,2( D .)4,3(7. 已知椭圆110222=-+-my m x 的长轴在x 轴上,焦距为4,则m 等于 ( ) A .8 B .7 C .6 D .58.设n m 、是两条不同的直线,βα、是两个不同的平面。
下列四个命题正确的是( ) A.ββαα//,//,m m 则若⊂ B.βαββα//,//,//,则、若n m n m ⊂ C.n m n m ⊥⊥⊥则若,//,,ββαα D.βαγβγα⊥⊥⊥则若,, 9.已知1123456(1)n n s n +=-+-+-++-⋅,则61015s s s ++等于( )A .5-B .1-C .0D .6左视图主视图 俯视图P10.设命题p :函数)32sin(π+=x y 的图象向左平移6π个单位长度得到的曲线关于y 轴对称; 命题q :函数13-=xy 在[)+∞-,1上是增函数.则下列判断错误..的是( ) A .p 为假 B .q ⌝为真 C .q p ∧为假 D .q p ∨为真 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知点),(y x 满足⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则x y u -=的最小值是 .12. 程序框图(即算法流程图)如下图所示,其输出结果是 . 13.设一直角三角形的两条直角边长均是区间)1,0(上 的任意实数,则斜边长小于43的概率为 . (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系下,曲线)(22:1为参数t ty a t x C ⎩⎨⎧-=+=,曲线)(sin 22cos 2:2为参数θθθ⎩⎨⎧+==y x C .若曲线21,C C 有公共点,则实数a 的取值范围是____________.15.(几何证明选讲选做题)如右图所示,P 是圆O 外一点,过P 引圆O 的两条割线,PABPCD 、PA AB ==3CD PC ==,则 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知函数R x x x x x f ∈+=,cos sin cos )(2(1)求)6(πf 的值; (2)若53sin =α,且),2(ππα∈,求)242(πα+f .第12题图17.(本小题满分12分)某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计,得到如下频率分布表:(1)求分布表中s ,t 的值;(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这40名学生中抽取20名进行研究,问应抽取多少名第一组的学生?(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?18.(本小题满分14分)如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB . 现以AD 为一边向梯形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2. (1)求证:AM ∥平面BEC ; (2)求证:BDE BC 平面⊥; (3)求点D 到平面BEC 的距离.FE D CBA图1ABCDFE 图2M19.(本小题满分14分)已知正项数列{}n a 中,31=a ,前n 项和为n S )(*N n ∈,当2≥n=. (1)求数列{}n a 的通项公式;(2)记n T 是数列{}n b 的前n111,n n a a +的等比中项,求n T .20.(本小题满分14分)已知椭圆)0(12222>>=+b a b y a x 的左右顶点分别为)0,2(),0,2(B A -,离心率23=e .(1)求椭圆的方程;(2)若点C 为曲线E :422=+y x 上任一点(C 点不同于B A ,),直线AC 与直线2=x 交于点R ,D 为线段RB 的中点,试判断直线CD 与曲线E 的位置关系,并证明你的结论.21.(本小题满分14分)已知函数).(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围.广东省惠州市2014届高三4月模拟考试文科数学答案 2014.04一. 选择题题号 1 2 3 4 5 6 7 8 9 10 答案A DB B DC A A C D1.【解析】选A ,.303-≥≥+x x 可得 2.【解析】选D ,)13,0(2=+b a . 3.【解析】选B ,12020)2)(1(021≤<-⇔⎩⎨⎧≠+≥+-⇔≥+-x x x x x x.4.【解析】选B ,.2=Z 两边同时取模可得5.【解析】选D, 由三视图还原几何体可知11111326V ⨯=⨯⨯=.6.【解析】选C , 设3ln )(-+=x x x f ,当连续函数.,0)(0)()()()上有解在(时,满足b a x f b f a f x f =<7.【解析】选A ,8,4102,610102020102==+--=>>⎪⎩⎪⎨⎧->->->-m m m c m m m m m 由得8.【解析】选A ,有面面平行的性质可知A 正确.9.【解析】选C,相邻两项依次结合可得:0,81577,5,3151061515106=++∴=+-=+-=-=-=S S S a S S S 10. 【解析】选D ,[)..1-13),322sin(6)32sin(D q y p x y x y x 所以错误的命题为假上不单调,故,的图像可知其在由函数假;不是偶函数,故得到向左平移∞+-=+=+=πππ 二.填空题 11.1- 12. 127 13.649π14. 22a ≤( 或[2 ) 15. 211.【解析】,11 1.y x u u y u =+-≤≤为斜率为的平行直线系在轴上的截距,由数形结合可知 12.【解析】连续递推可得.12763==a a 输出时,再一次进入循环, 13.【解析】设两条直角边长为,a b ,222213()013944,(),0141164a a b p b ππ<<⎧+<==⎨<<⨯⎩由已知可知构造面积模型:子事件为所以其概率 14.【解析】化为普通方程后,圆心到直线的距离小于或等于圆的半径(r d ≤),解不等式即可.15.【解析】由割线定理可得,2PA PB PC PD PC ⋅=⋅=得G M AFBCD EN三.解答题16. (本小题满分12分) 解:(1)2213()cossincos()6666224f x πππ+=+=+⨯=…………………2分 (2) 21cos 21()cos sin cos sin 22x f x x x x x +=+=+ …………4分111(sin 2cos 2))22224x x x π=++=++ ……………………6分1())2422124f πππαα+=+++ ……………………8分111)(sin )2322πααα=++=++ …………10分 因为3sin 5α=,且(,)2παπ∈,所以4cos 5α=- ………11分所以1134()()242255f πα+=+⨯-=………12分 17.(本小题满分12分)解:(1)80.240s ==,10.10.30.250.15t s =----=. …………4分 (2)设应抽取x 名第一组的学生,则20440x =20,440x =得2x =. 故应抽取2名第一组的学生. …………6分(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为12,a a ,2名女生为12,b b . 按时间用分层抽样的方法抽取2名第一组的学生共有6种结果,列举如下:121112212212,,,,,a a a b a b a b a b b b . ……………9分其中既有男生又有女生被抽中的有11122122,,,a b a b a b a b 这4种结果, ……10分 所以既有男生又有女生被抽中的概率为4263P ==.…………12分 18.(本小题满分14分)(1)证明:取EC 中点N ,连结BN MN ,. 在△EDC 中,,M N 分别为,EC ED 的中点,所以MN ∥CD ,且12MN CD =.由已知AB ∥CD ,12AB CD =,所以MN ∥AB ,且MN AB =. …………………………3分所以四边形ABNM 为平行四边形.所以BN ∥AM . …………………………4分 又因为⊂BN 平面BEC ,且⊄AM 平面BEC ,所以AM ∥平面BEC . ………………………5分 (2)在正方形ADEF 中,ED AD ⊥.又因为平面ADEF ⊥平面ABCD ,且平面ADEF 平面ABCD AD =,所以⊥ED 平面ABCD .所以ED BC ⊥. ………………………7分 在直角梯形ABCD 中,1==AD AB ,2=CD ,可得2=BC .在△BCD 中,2,2===CD BC BD , 所以222CD BC BD =+.所以BC BD ⊥. …………………………8分 所以BC ⊥平面BDE . …………………………10分(3)解法一:因为BC ⊂平面BCE , 所以平面BDE ⊥平面BEC . …………11分 过点D 作EB 的垂线交EB 于点G ,则⊥DG 平面BEC所以点D 到平面BEC 的距离等于线段DG 的长度 ………………………12分 在直角三角形BDE 中,DG BE DE BD S BDE ⋅=⋅=∆2121 所以3632==⋅=BE DE BD DG 所以点D 到平面BEC 的距离等于36. ………………………14分 解法二:BE ⊂平面BDE ,所以BC BE ⊥ 所以,1222121=⋅⋅=⋅=∆BC BD S BCD .26322121=⋅⋅=⋅=∆BC BE S BCE ………………………12分 又BCE D BCD E V V --=,设点D 到平面BEC 的距离为.h 则⋅=⋅∆3131DE S BCD h S BCE ⋅∆,所以 36261==⋅=∆∆BCE BCD S DE S h 所以点D 到平面BEC 的距离等于36. ………………………14分 19. (本小题满分14分)解析: (1)n s s -=d ∴===数列公差……………1分(1)n =-=, ……………2分 23n s n =即 …………………………………………3分 163(2)n n n a s s n n -∴=-=-≥………………………………………4分1n =当时,上式也成立*63()n a n n N ∴=-∈……………6分(2)111,n n nb a a +是的等比中项, 111(63)(63)n n n b a a n n +∴==-+ …………………………………7分 111()66363n n =--+ …………………………………9分 1111111()()...()6399156363n T n n ⎡⎤=-+-++-⎢⎥-+⎣⎦……………11分 111()6363n =-+ ……………………………………13分 9(21)nn =+ ………………………………………14分20.(本小题满分14分)解析:(1)由题意可得2a =,c e a==, ∴ c = …………2分 ∴2221b a c =-=, …………………3分所以椭圆的方程为2214x y +=. …………………4分 (2)曲线E 是以(0,0)O 为圆心,半径为2的圆。
2024届广东省惠州市惠阳高级中学全国高三模拟考试(六)数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .92.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .3.已知双曲线2222:10,0()x y C a b a b-=>>的左、右顶点分别为12A A 、,点P 是双曲线C 上与12A A 、不重合的动点,若123PA PA k k =, 则双曲线的离心率为( ) A .2B .3C .4D .24.已知随机变量X 的分布列是X12 3P1213a则()2E X a +=( ) A .53B .73C .72D .2365.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-6.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .157.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-8.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的-一个公共点,且1223F PF π∠=,设椭圆和双曲线的离心率分别为12,e e ,则12,e e 的关系为( ) A .2212314e e += B .221241433e e += C .2212134e e += D .221234e e +=9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺10.若复数z 满足(1)12i z i +=+,则||z =( )A .22B .32C .102D .1211.一个正三角形的三个顶点都在双曲线221x ay +=的右支上,且其中一个顶点在双曲线的右顶点,则实数a 的取值范围是( ) A .()3,+∞B .)3,+∞C .(,3-∞-D .(),3-∞-12.已知向量(2,4)a =-,(,3)b k =,且a 与b 的夹角为135︒,则k =( ) A .9-B .1C .9-或1D .1-或9二、填空题:本题共4小题,每小题5分,共20分。
(一)选择题(12*5=60分)1.【广东省惠州市2014届高三第一次调研考试】已知平面向量a ()1,2=-,b()4,m =,且a b ⊥ ,则向量53a b -=( )A. (7,16)--B.(7,34)--C.(7,4)--D.(7,14)-2. 【河北省唐山市2013-2014学年度高三年级摸底考试】已知点(6,2)A ,(1,14)B ,则与AB共线的单位向量为( )A .125(,)1313-或125(,)1313- B .512(,)1313- C .512(,)1313-或512(,)1313- D .512(,)1313-3. 【河南中原名校2013-2014学年上学期期中联考】已知向量a r=(cosθ,sinθ),向量b r1),则|2a r -b r|的最大值与最小值的和是( )A .B .6C .4D .16 【答案】C 【解析】因为|2|a b -===,故其最大值为416=,最小值为088=+-,它们的和为4,选C.4.【浙江温州市十校联合体2014届高三上学期期初联考数学】 已知()211||1,22a ab a b=⋅=-= ,,则a 与b 的夹角等于( ) A .30°B.45°C. 60°D. 120°5.【山东省青岛市2014届高三上学期期中考试】向量1(,tan )3a α= ,(cos ,1)b α=,且a ∥b ,则cos()2πα+=( )A.13 B. 13-C. 3-D. 3-6.【河北衡水中学2014届高三上学期期中考试】平面向量a 与b 的夹角为60°,(2,0),1,==a b 则2+=a b ( )B. C.4D.127.【安徽省示范高中2014届高三上学期第一次联考数学】在平面直角坐标系中,A ,B 点是以原点O 为圆心的单位圆上的动点,则||OA OB +的最大值是( )A .4B .3C .2D .18.【山东省青岛市2014届高三上学期期中考试】设a 、b都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A .13a b =-B .//a bC .2a b =D .a b ⊥9.【河北衡水中学2013~2014学年度上学期二调高三数学试卷】在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则⋅的值等于( )A .0B .49C .4D .49-10.【江西省2014届新课程高三第三次适应性测试】在等比数列{}n a 中,7a 是89,a a 的等差中项,公比q 满足如下条件:OAB ∆(O 为原点)中,(1,1)OA = ,(2,)OB q =,A∠为锐角,则公比q 等于( )A .1B .-1C .-2D .12-11.【山西省山大附中2014届高三9月月考数学】已知ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++= ,则 OC AB ⋅的值为( )A. 15-B. 15C. 65-D.6512.【浙江省温州八校2014届高三上学期期初联考数学试题】ABC ∆的三个内角A 、B 、C成等差数列,()0BA BC AC +⋅=,则ABC ∆一定是 ( )A .直角三角形B .等边三角形C .非等边锐角三角形D .钝角三角形(二) 填空题(4*5=20分)13.【湖北省武汉市2014届高三10月调研测试数学】已知△ABC 是边长为1的等边三角形,P 为边BC 上一点,满足→PC =2→BP ,则→AB ·→AP = .14.【浙江温州市十校联合体2014届高三上学期期初联考数学】P 是ABC ∆所在平面上的一点,满足02=++PC PB PA ,若ABC ∆的面积为1,则ABP ∆的面积为__________.15.【浙江省嘉兴一中2014届高三上学期入学摸底数学】在平面四边形ABCD 中,点F E ,分别是边BC AD ,的中点,且2=AB ,1=EF ,3=CD .若15=⋅BC AD ,则BDAC ⋅的值为____ .16.【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】设O 是ABC ∆的三边中垂线的交点,,,a b c 分别为角,,A B C 对应的边,已知2220b b c -+=,则BC AO --→--→⋅的范围是_____________.因2220,c b b =->解得02b <<,结合2BC AD b b ⋅=- 可求得1<24BC AD -≤⋅ .(三)解答题(10+5*12=70分)17. 【江苏启东中学2014届上学期期中模拟高三数学】已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||c =//c a ,求:c 的坐标(2)若||b = 2a b + 与2a b - 垂直,求a 与b 的夹角18. 【浙江省温州市十校联合体2014届高三10月测试数学试题】 已知)),1(),-1,0(),1,-1(R m mOC OB OA ∈===(. (1)若C B A ,,三点共线,求实数m 的值;(2)证明:对任意实数m ,恒有 1CA CB ⋅≥成立所以恒有1CA CB ⋅≥.19.【山东省文登市2014届高三上学期期中统考】已知()2c o s ,2s i n a αα= ,()cos ,sin b ββ=,02αβπ<<<. (1)若a b ⊥,求2a b - 的值;(2)设()2,0c = ,若2a b c +=,求α、β的值.20.【2013年普通高等学校统一考试江苏卷】已知)sin ,(cos )sin ,(cos ββαα=b a ,=,0βαπ<<<.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求α,β的值.21.【苏州市2014届高三暑假自主学习测试】已知向量(cos ,sin )A A =-m ,(cos ,sin )B B =n ,cos2C ⋅=m n ,其中,,A B C 为ABC ∆的内角.(Ⅰ)求角C 的大小;(Ⅱ)若6AB =,且18CA CB ⋅=,求,AC BC 的长.22.【2013---2014学年第一学期赣州市十二县(市)期中联考】已知向量22,cos )m x x =+ ,(1,2cos )n x =,设函数n m x f ⋅=)(,x ∈R .(Ⅰ)求)(x f 的最小正周期与最大值;(Ⅱ)在ABC ∆中, c b a ,,分别是角C B A ,,的对边,若ABC b A f ∆==,1,4)(的面积为23,求a 的值.(四)附加题(15分)已知,A B 为抛物线22(0)x py p =>上两点,直线AB 过焦点F ,交抛物线与,A B 两点(1) 求OA OB ⋅的值;(2) 过点,A B 分别作抛物线的切线,设两切线交点为P ,求FP AB ⋅ ;第11 页共11 页。
广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。
广东省惠州市惠州中学2023-2024学年高一下学期4月期中考试数学试题一、单选题1.已知集合{2,1,0,1,2}A =--,{|ln 0}B x x =>,则A B =I ( ) A .{1}B .{2}C .{2,2}-D .{1,0,1}-2.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则 A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n4.如图,在ABC V 中,3,AC AN P =u u u r u u u r 是BN 上的一点,若1139AP m AB AC ⎛⎫=++ ⎪⎝⎭u u u r u u ur u u u r ,则实数m的值为( )A .19B .29C .23D .135.若函数221,1(),1x ax x f x ax x ⎧-+>=⎨≤⎩在其定义域内是一个单调递增函数,则实数a 的取值范围是( ) A .(]0,1B .20,3⎛⎤ ⎥⎝⎦C .[]0,1D .20,3⎡⎤⎢⎥⎣⎦6.已知一个圆锥的底面半径为3,其侧面积是底面积的2倍,则圆锥的体积为( )A .6πB .C .D .12π7.心理学家有时间用函数()()1e ktL t A -=-测定在时间t (单位:min )内能够记忆的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生需要记忆的量为200个单词,此时L 表示在时间t 内该生能够记忆的单词个数.已知该生在5min 内能够记忆20个单词,则k 的值约为(ln0.90.105≈-,ln 0.1 2.303≈-)( ) A .0.021B .0.221C .0.461D .0.6618.如图,O 是锐角三角形ABC 的外心,角A ,B ,C 所对的边分别为a ,b ,c ,且π3A =,若cos cos 2sin sin B C AB AC mAO C B+=u u u r u u u r u u u r ,则m =( )A .12B .2C D .1二、多选题 9.已知复数21iz =+(i 是虚数单位),则下列命题中正确的是( )A .z =B .z 在复平面上对应点在第二象限C .1i z =+D .z 的虚部为1-10.已知函数()πcos 26f x x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的图象关于π,012⎛⎫- ⎪⎝⎭对称C .()f x 的图象关于5π12x =对称 D .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减11.如图,在直三棱柱111ABC A B C -中,,E F 分别是棱11,B B C C 上的动点,11111224AA A B AC ===,111π3AC B ∠=,则下列说法正确的是( )A .直三棱柱111ABC ABC -的体积为B .直三棱柱111ABC A B C -外接球的表面积为16πC .若,E F 分别是棱11,B B C C 的中点,则异面直线1A F 与AE 所成角的余弦值为14D .1AE EF FA ++取得最小值时,1A F EF =三、填空题12.已知1sin 33πα⎛⎫-= ⎪⎝⎭,则cos 6πα⎛⎫+= ⎪⎝⎭.13.已知3,b a =r r 在b r 上的投影向量为12b r ,则a b ⋅r r 的值为.14.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进E 后,测得塔顶的仰角为4θ,则塔高为米.四、解答题15.已知向量()()1,23,1a b ==-r r,. (1)求3a b +r r ;(2)设,a b rr 的夹角为θ,求cos θ的值;(3)若向量k +r ra b 与-r r a kb 互相垂直,求k 的值.16.如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ;(2)证明:AD ⊥平面PAC .17.已知ABC V 的内角,,A B C 所对的边分别是()()(),,,sin sin sin a b c a b A B a c C +-=-. (1)求角B ;(2)若ABC V 外接圆的直径为ABC V 周长的取值范围.18.已知向量()π1π2cos ,1,cos ,,0,322a x b x x ⎛⎫⎛⎫⎡⎤==-+∈ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭r r .(1)若π3x =,求a b ⋅r r ;(2)记()f x a b =⋅r r ,若对于任意()()1212π,0,,2x x f x f x λ⎡⎤∈-≤⎢⎥⎣⎦恒成立,求λ的最小值.19.设A 是有序实数对构成的非空集,B 是实数集,如果对于集合A 中的任意一个有序实数对(),x y ,按照某种确定的关系f ,在B 中都有唯一确定的数z 和它对应,那么就称:f A B →为从集合A 到集合B 的一个二元函数,记作()(),,,z f x y x y A =∈,其中A 称为二元函数f 的定义域.(1)已知()()()1122,,,,f x y a x y b x y ==r r,若()()12121,2,1f a f b x x y y ==+=r r ,求();f a b +rr(2)非零向量()00,u x y =r ,若对任意的(),,,0x y D D A h ∈⊆>,记(),a x y =r,都有()()f a f a hu <+r r r ,则称f 在D 上沿u r方向单调递增.已知(),e e ,R,R x y x y f x y x y +-=+∈∈.请问f 在(){},,R x y x y ∈∣上沿向量()1,1方向单调递增吗?为什么? (3)设二元函数f 的定义域为D ,如果存在实数M 满足: ①(),x y D ∀∈,都有(),f x y M ≥, ②()00,x y D ∃∈,使得()00,f x y M =. 那么,我们称M 是二元函数f 的最小值.求()()()211,sin2cos ,,,,R,22f x y y x y x x y x y x y y ⎛⎫⎧⎫=++-∈∈≤≤⎨⎬ ⎪⎩⎭⎝⎭∣的最大值.。
(一) 选择题(12*5=60分)1. 【广东省广州市越秀区2014届高三上学期摸底考试(理)】设a ∈R ,则“1a =”是“直线10ax y -+=与直线10x ay --=平行”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2. 【改编自广东省惠州市2014届高三第一次调研考试】已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α( ) A .4π B.3πC. 23πD. 34π3. 【改编自2012年高考陕西卷理科】已知圆22:40C x y x +-=,l 过点(1,1)P 的直线,则( )(A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能4.【江苏省扬州中学2013—2014学年度第一学期月考高三数学】当且仅当m r n ≤≤时,两圆2249x y +=与22268250(0)x y x y r r +--+-=>有公共点,则n m -的值为 .5.【广东省六校2014届高三第一次联考试题】若动圆的圆心在抛物线212x y =上,且与直线30y +=相切,则此圆恒过定点( ) A.(0,2)B.(0,3)-C.(0,3)D.(0,6)6.【河北省唐山市2013-2014学年度高三年级第三次模拟考试】经过点1(1,)2,渐近线与圆22(3)1x y -+=相切的双曲线的标准方程为( )A .2281x y -= B .22241x y -= C .2281y x -= D .22421x y -=7.【改编自2012年高考安徽卷理科】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若A 点到准线的距离为3,则AOB ∆的面积为( )()A ()B ()C()D8.【江西省2014届新课程高三第三次适应性测试】设,P Q 是双曲线22x y -=于原点O 对称的两点,将坐标平面沿双曲线的一条渐近线l 折成直二面角,则折叠后线段PQ 长的最小值为( )A .B .C .D .49.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆ 为等边三角形时,则FPM ∆的外接圆的方程为( )A.. 5)5()3(22=±+-y x B. 48)34()3(22=±+-y x C. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x10.【山西省山大附中2014届高三9月月考数学理】已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线11.【2013年普通高等学校招生全国统一考试数学浙江理】如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A.2 B.3 C.23D.2612.【江西师大附中高三年级2013-2014开学考试】抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为( )A .2BC .1D(二) 填空题(4*5=20分)13. 【江西抚州一中2013-2014学年高三年级第四次同步考试】已知实数y x ,满足01422=+-+x y x ,则xy的最大值为 .14.【2013年普通高等学校招生全国统一考试(江西卷)理】抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于A ,B 两点,若△ABF 为等边三角形,则p=___________.15.【江苏省南京市2014届高三9月学情调研】如图,已知过椭圆()222210x y a b a b+=>>的左顶点(),0A a -作直线l 交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为 .16.【山西省山大附中2014届高三9月月考数学理】已知121(0,0),m n m n+=>>当mn 取得最小值时,直线2y =+与曲线x x m+1y y n=的交点个数为(三) 解答题(10+5*12=70分)17. 【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.18.【广东省惠州市2014届高三第一次调研考试】在平面直角坐标系x o y 中,点(,)(0)P a b a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F P F 为等腰三角形.(1)求椭圆的离心率e ;(2)设直线2P F 与椭圆相交于,A B 两点,M 是直线2P F上的点,满足2A MB M =-,求点M 的轨迹方程.将2y =3c x y =-得210516x c x +=,19.【2014届吉林市普通高中高中毕业班复习检测】设F 为抛物线px y 22= (0>p )的焦点,,,R S T 为该抛物线上三点,若=++,且6=++ (Ⅰ)求抛物线22y px =的方程;(Ⅱ)M 点的坐标为(m ,0)其中0>m ,过点F 作斜率为1k 的直线与抛物线交于A 、B 两点,A 、B 两点的横坐标均不为m ,连结AM 、BM 并延长交抛物线于C 、D 两点,设直线CD 的斜率为2k .若421=k k ,求m 的值.20.【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边长为2且∠F 1B 1F 2为60的菱形的四个顶点.(1)求椭圆C 的方程;(2)过右焦点F 2 ,斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE 、AF 分别交直线3x =于点M 、N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.21.【2013年普通高等学校统一考试试题新课标数学(理)卷】平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线x y +-M 于A,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ι)求M 的方程;(Ⅱ)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形面积的最大值所以可得22.【河北省邯郸市2014届高三9月摸底考试数学理科】已知定点(3,0)G -,S 是圆22:(3)72C x y -+=(C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E .设点E 的轨迹为M.(1)求M 的方程;(2)是否存在斜率为1的直线l ,使得直线l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.化简得227m <,解得m -<<(四)附加题(15分)23. 【湖北省荆州中学2014届高三年级第一次质量检测数学】已知椭圆:22221x y a b+=(0a b >>)上任意一点到两焦点距离之和为离心率为3,左、右焦点分别为1F ,2F ,点P 是右准线上任意一点,过2F 作直 线2PF 的垂线2F Q 交椭圆于Q 点.(1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)点P 的纵坐标为3,过P 作动直线l 与椭圆交于两个不同点,M N ,在线段MN 上取点H ,满足MP MH PN HN=,试证明点H 恒在一定直线上.所以点H 恒在直线2320x y +-=上.。
2024年广东省惠州市中考数学模拟试题(四)一、单选题1.若 12024a =-,则 a -=( ) A .2024 B .2024- C .12024- D .120242.我国古代数学家祖冲之推算出圆周率(π)的近似值为355113.这一密率值是世界上最早提 出的,比欧洲早1000多年,所以有人主张叫它“祖率”也就是圆周率的祖先.它与π的 误差小于0.0000003,将0.0000003用科学记数法可以表示为( )A .6310-⨯B .6310⨯C .7310-⨯D .7310⨯ 3.每个人都有最初的梦想,最初的梦想是一种寄望与希望,以下是摘自《最初的梦想》简 谱的部分旋律,当中出现的音符的众数是( )A .1B .2C .3D .44.下列运算正确的是( )A .2246a a a +=B .()2222a a -= C .()()2122a a a -+=- D .221124a a a ⎛⎫-=-+ ⎪⎝⎭ 5.近年来,市交通运输局配合相关部门积极推广清洁能源车辆,有力地推动了全市发展绿 色交通体系、促进节能减排、打赢蓝天保卫战.以下新能源车的车标既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.如图,在Rt ABC △中,已知9030BAC C ∠=︒∠=︒,,将ABC V 绕点A 顺时针旋转70︒得到AB C ''△,则CAC '∠的度数是( )A .60︒B .70︒C .80︒D .90︒7.如图,摆放两根矩形直尺,其中128∠=︒,那么2∠的度 数 为( )A .132︒B .142︒C .152︒D .162︒8.在函数y x 的取值范围是( )A .4x ≤B .4x <C .4x ≥D .4x >9.如图,已知AB 是O e 的直径,C 是圆上一点,点D 是 弧AC 中 点,若70DAB ∠=︒.则C A B ∠为 ( )A .40︒B .45︒C .50︒D .60︒10.如图,在平面直角坐标系中,AOB ∠的顶点与原点O 重合,角的一边OB 与 x 轴正方向重合,反比例函数4y x =与OA 相交于点M , 以 M 为圆心2OM 为半径作弧,交 反比例函数4y x=于点N , 分别过点M 、N 作x 轴和y 轴平行线,两线相交于点C ,连接OC 、MN 相交于点D , 过 点M 作ME x ⊥轴,垂足为E , 与OC 相交点F , 则下列结论:①2EOM S =V :②OF MF =:③2AOC BOC ∠=∠:④ 当90OMN ∠=︒时,OEF MEO ∽VV : 其中一定正确的是( )A .①②③B .①②④C .①③④D .②③④二、填空题11.计算: ()02023-=.12.如果关于x 的一元二次方程210+-=ax bx 的一个解是1x =,则2024a b --=. 13.石油的提取物中含有稠环芳香烃,它的同系物的分子结构中有 一种物质叫释迦牟尼分子,它的分子式是2CH (部分结构是正六边形和矩形构成),其中1∠的度数为14.谢尔宾斯基三角形是一种具有非凡美学和分形特性的数学图形,它在几何、数学和计算机图形学等领域都有广泛应用.如图1叫做谢尔宾斯基地毯,是这样制作出来的:把一个正三角形分为全等的4小正三角形,挖去中间的一个小三角形:对剩下的3个小正三角形再分别重复以上做法……如2图是谢尔宾斯基三角形的一部分,已知4AB =,则AD 为.15.如图,已知正方形ABCD 的边长为4,点E 是AB 边上的中点,F 是AB 延长线上一点,以BF 为长作正方形BFGH 如图所示,连接CE AG 、交于点M , 若45AME ∠=︒时,则BF 的长为 .三、解答题16.(1)化简:22121339x x x x x x -+⎛⎫-÷ ⎪---⎝⎭(2)已知一次函数31y x =-与7y x =-+的图象在同一个平面直角坐标系中相交于点A , 求交点A 的坐标.17.如图,将ABCD Y 沿对角线BD 对折得BDE V ,BE 与AD 相交于点F ,求证:AF EF =.18.在创建全国文明城市中,我市需要在丁香花园外侧修建一条900米的亲水栈道将江滨公 园与南岸公园的绿道连通,构建清远市“万里绿道”.由于工期缩短,工程队改进了施 工方式,实际每天修建的长度是原计划的1.5倍,结果提前了3天完成这一工程,求实 际每天修建栈道多少米19.某学校七年级为丰富第二课堂内容,计划新增悦动思维、听说达人、心灵奇旅、“篮” 舍难分、Python 编程五门兴趣课程.为了了解学生对这五门课程的喜好情况,随机抽 取了部分学生进行了问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制 成如下两幅不完整的统计图.根据图中信息,完成下列问题:(1)本次调查共抽取了 名学生.(2)补全条形统计图:并求出扇形统计图中,悦动思维课程的圆心角是 ;(3)甲、乙两位同学都参与了这次的调查,请用列表或画树状图的方法求出两位同学选中同一个课程的概率.20.如图,已知等腰ABC V 中 ,AB AC =,D 是BC 上中点.(1)实践与操作:作AB 的垂直平分线分别交AB 、AC 于 点E 、F (要求:尺规作图,保留作图痕迹,不写作法)(2)连接DE ,若50BAC ∠=︒, 求DEF ∠的度数.21.定义运算:max a b ,,当a b ≥时 ,max a b a =,; 当a b <时 ,max a b b =,.例如:max 353-=,;根据以上材料,解决下列问题.(1)max =;(2)若max 533x x x +-+=-+,,求x 的取值范围. (3)如图1y k x b =+和2k y x=在同一平面直角坐标系中,当211max ,k k x b k x b x +=+,结合图象,直接写出x 的取值范围.22.综合探究如图1,已知Rt ABC △,90ACB ∠=︒,30CAB ∠=︒,2BC =,ABC V 沿AB 对折得到ABD △, 点O 是线段AB 上动点,过点O 作OE AC ⊥交于点E ,以 O 为圆心,OE 为半径作圆(1)求 证 :AD 是O e 的切线:(2)如图2,连接CD 交AB 于点F ,当O e 与CD 相切时,求O e 的半径:(3)如图3,当点O 运动到点B 时,延长CO 与O e 交 于 点G ,连 接AG 与O e 交于点H ,求FH 的长 .23.综合运用如图1,已知抛物线2=+43y x x --与y 轴交于点A ,与x 轴交于点B (点B 在对称轴左侧).(1)求点A 与点B 坐标:(2)以AB 为边作矩形ABCD ,使点C 落在抛物线上,分别求点C 和点D 的坐标:(3)如图2,在(2)的条件下,连接AC ,点P 是直线AC 上方抛物线上的一点动点,在抛物线内部作APCQ Y ,求APCQ Y 面积的最大值.。
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A 3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0222222:(1,0,1)(1,1,0)11:,,60,.2210(1)1(1)0B B -⋅-=∴++-⋅+-+答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x xx i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130,D .x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xe y 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220l n l n l n a a a +++= .51011912101112202019151201011:100:,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100.a a a a a a e S a a a S a a a S a a a a e =∴==+++=+++∴====答案提示设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sincos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 552332:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin cos cos sin )3(sin()cos cos()sin )444423cos sin 46cos 326cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.(](]12120044472:(1)7,2,0.28,0.08;2525(2);(3),30,50:10.120.88,130,503:1(0.88)(0.12)1().25n n f f C ======-=-=-解略根据频率分布直方图可得工人们日加工零件数落在区间的概率为故至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则0022,CD 2,30,130,==1,213324,,,=,,,3,2222333319322EG .,7,,42231933193193622,()()474747EHG D AF E DPC CDF CF CD DE CF DE CP EF DC DE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅⋅======⋅⋅∴====-=为二面角的平面角设从而∥即还易求得EF=从而易得故3,476347257cos .1947319GH EHG EH ∴∠==⋅=12:,,,,,2,1(0,0,2),C(0,2,0),P(23,0,0),,(23,22,0),,,43331(,,0),(,0,0),ADF CP (3,1,0),2222AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,43257(4,0,3),.19||||219n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(5,0),离心率为53,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.222220022002255:(1)5,,3,954,31.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数2221()(2)2(2)3f x x x k x x k =+++++-,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示). .解:(1)可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->, 223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|2x k ∴+<--或|1|2x k +>-,12k ∴----<12x k <-+--或12x k <---或12x k >-+-, 所以函数()f x 的定义域D 为(,12)k -∞---(12,k ----12)k -+--(12,)k -+-+∞; (2)232222(2)(22)2(22)'()2(2)2(2)3x x k x x f x x x k x x k +++++=-+++++-23222(21)(22)(2)2(2)3x x k x x x k x x k ++++=-+++++-, 由'()0f x >得2(21)(22)0x x k x ++++<,即(1)(1)(1)0x k x k x +++-+<,1x k ∴<---或11x k -<<-+-,结合定义域知12x k <---或112x k -<<-+--, 所以函数()f x 的单调递增区间为(,12)k -∞---,(1,12)k --+--,同理递减区间为(12,1)k -----,(12,)k -+-+∞;(3)由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(124)(124)(3)(1)0x k x k x x ∴++--+---⋅+-=, 124x k ∴=----或124x k =-+--或3x =-或1x =, 6k <-,1(1,12)k ∴∈--+--,3(12,1)k -∈-----,12412k k ----<---,12412k k -+-->-+-, 结合函数()f x 的单调性知()(1)f x f >的解集为(124,12)k k -------(12,3)k -----(1,12)k -+--(12,124)k k -+--+--..。
广东省惠州市2014届下学期高三年级4月模拟考试数学试卷(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁.考试结束后,将答题卡一并交回. 参考公式:①如果事件B A 、互斥,则P(B)P(A)B)P(A +=+ ②如果事件B A 、相互独立,则P(B)P(A)B)P(A ⋅=⋅一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设集合A ={0,1},则集合A 的子集的个数为( )A .1B .2C .3D .42.不等式0x2x1≥+-的解集为( ). A .]1,2[- B .]1,2(-C .),1()2,(+∞--∞D .),1(]2,(+∞--∞3.若抛物线)0p (px 2y 2>=的焦点坐标为)0,1(,则p 的值为( )A .1B .2C .4D .84.“1a =”是“函数ax sin ax cos y 22-=的最小正周期为π”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果学科网直角三角形的直角边长为1,那么这个几何体的体积为 ( )俯视图A .1B .21 C .31 D .61 6.程序框图的运算结果为 ( )A .12B .24C .16D .487.椭圆1by ax 22=+与直线x 1y -=交于A 、B 两点,过原点与线段AB 中点的直线的斜率为23,则a b 值为( )A .23 B .332 C .239 D .2732 8.已知y ,x 满足,2)2y (x ,0x 22=-+≥则 2222yx y 3xy 2x 3w +++=的最大值为( ) A .4 B .5 C .6 D .7二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.复数)i 1(i +(i 为虚数单位)的虚部等于__________. 10.二项式6)x1x (-的展开式的常数项是__________.(用数字作答) 11. 已知变量y ,x 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07y x 1x 02y x , 则x y 的最大值是__________.12.已知,为互相垂直的单位向量,2-=, λ+=,且与的夹角为锐角,则实数λ的取值范围是 . 13. 已知数列}a {n 是正项等差数列,若n321na a 3a 2a b n321n ++++++++=,则数列}b {n 也为等差数列. 类比上述结论,已知数列}c {n 是正项等比数列,若n d = ,则数列{n d }也为等比数列.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分.14.(极坐标与参数方程)若圆C 的方程为:⎩⎨⎧+=+=,,θθsin 1y cos 1x (θ为参数),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为_________ .(极角范围为)2,0[π)15.(几何证明选讲)如图,P 是圆O 外一点,过P 引圆O 的两条割线PAB 、PCD ,PA =AB =5,CD =3,则PC =____________.P三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知函数R x x x x x f ∈+=,cos sin cos )(2 (1)求)6(πf 的值;(2)若53sin =α,且),2(ππα∈,求)242(πα+f . 17.(本题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回...地先后抽得两张卡片的标号分别为x 、y ,记x y 2x -+-=ξ. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列和数学期望. 18.(本题满分14分)如图,已知正三棱柱ABC —111C B A 的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面C C BB 11所成的角为︒45.(1)求此正三棱柱的侧棱长;(2)求二面角C BD A --的余弦值大小. 19.(本题满分14分)设等比数列}a {n 的前n 项和为n S ,已知2S 2a n 1n +=+(+∈N n ) ABD1A 1B 1C(1)求数列}a {n 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列. 求证:1615d 1d 1d 1n 21<+⋅⋅⋅++(+∈N n ). 20.(本题满分14分)平面直角坐标系xoy 中,直线01y x =+-截以原点O 为圆心的圆所得的弦长为6 (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D 、E ,当DE 长最小时,求直线l 的方程;(3)设M 、P 是圆O 上任意两点,点M 关于X 轴的对称点为N ,若直线MP 、NP 分别交于X 轴于点(0,m )和(0,n ),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由. 21.(本题满分14分) 已知函数.ln )(,2)23ln()(x x g x x x f =++=(1)求函数()f x 的单调区间;(2)如果关于x 的方程m x x g +=21)(有实数根,求实数m 的取值集合; (3)是否存在正数k ,使得关于x 的方程)()(x kg x f =有两个不相等的实数根?如果存在,求k 满足的条件;如果不存在,说明理由.数学 (理科)参考答案与评分标准一.选择题:共8小题,每小题5分,满分40分1.【解析】集合{0,1}A =的子集有φ、}0{、}1{、}2,1{.选D .2.【解析】⇔≥+-0x2x1⎩⎨⎧≠+≥+-0x 20)x 2)(1x (得:1x 2≤<-.选B . 3.【解析】2p ,12p),0,2p(px 2y 2==∴=即的焦点坐为.选B . 4.【解析】当1a =时,函数可化为x 2cos y =,故周期π;反之,函数可化为ax 2cos y =,若周期为π,则1a ±=.选A .5.【解析】可知该几何体是三棱锥,底面面积为21,高为1,故6121131V =⨯⨯=.选D .6.【解析】当5=n 时,244321s =⨯⨯⨯=,选B .7.【解析】设交点分别为A ),(11y x 、B ),(22y x ,代入椭圆方程:12121=+by ax ,12222=+by ax 由两式得:0121212121=++⋅--⋅+x x y y x x y y a b ,即,∴00-0-12121=⋅--⋅+中中x y x x y y a b ,可化简为:0231-1=⋅⋅+)(a b ,即332=a b .选B . 8.【解析】已知y ,x 满足,2)2y (x 22=-+则2222yx y 3xy 2x 3w +++=可化为 22y x xy 23w ++=;要求22y x xy 23w ++=最大值,即求22y x xy2+的最值,由基本不等式可知22y x xy 2+≤,∴1y x xy222≤+,当且仅当⎩⎨⎧=-+=2)2y (x y x 22取等号,即1y x ==或 1y x -==时,2222yx y 3xy 2x 3w +++=的最大值为4W max =.选A. 二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1 10.20- 11.6 12.)21,2()2,(---∞13.n n nc c c c ++++⋅⋅⋅⋅⋅ 321133221)( 14.)4,2(π15. 29.【解析】 )i 1(i +=i 1+-,所以虚部等于1. 10.【解析】 6)x1x (-=61)]x (x [--+,r 1r 6r 61r )x (x C T --+-==r )1(-r26r 6x C -,当0r 26=-则3r =,常数项为=4T 3)1(-36C =20-..11【解析】先画出可行域(如图),xy是可行域内的点M )y ,x (与原点O )0,0(连线的斜率,当直线OM 过点)6,1(时,xy取得最大值6. .12【解析】 215)2(1cos λλθ+⋅⋅-+==)1(5212λλ+-,又θ为锐角,1)1(52102<+-<λλ解得:221-≠<λλ且,)21,2()2,(---∞∈∴ λ.13. 【解析】由等差数列}a {n 的n 21na a 2a +⋅⋅⋅++的和,则等比数列}c {n 可类比为1c ﹒⋅⋅⋅22)c (n n )c (的积;对n 21na a 2a +⋅⋅⋅++求算术平均值,所以对 1c ﹒⋅⋅⋅22)c (nn )c (求几何平均值,所以类比结果为n 3211n n33221)c c c c (++++⋅⋅⋅⋅⋅ .14.【解析】圆的圆心为)1,1(,,21122=+=ρ))2,0[(11tan πθθ∈=,又圆心在第一象限,故4πθ=.圆心的极坐标为)4,2(π.15.【解析】如右图,P 是圆O 外一点,过P 引圆O 的两条割线PAB 、PCD ,PA = AB =5由圆的割线定理)PD PC (PC )PB PA (PA +⋅=+⋅,即)3x (x )55(5+=+,化简为010x 3x 2=-+,解得:2x =或5-x =(舍去).三.解答题16.(本题满分12分)本小题考查三角函数的化简与求值。
解(1)依题意得 16. (本题满分12分)解:(1)2()cos sincos6666f ππππ=+ 212=+=………………2分 (2) 2()cos sin cos f x x x x =+1+cos 21sin 222x x =+ …………4分11sin 2+cos 222x x =+()1+)24x π= …………6分1(+)++)2242124f απππα= ………8分1+)23πα=11cos 22αα=+⋅+ …………10分 因为3sin 5α=,且(,)2παπ∈,所以4cos 5α=- ……11分所以1314(+)2242525f απ=⨯-=………12分 17.(本题满分12分)本小题考查利用离散型随机变量分布列的建立以及期望的求法.解:(1)x 、y 可能的取值为1、2、3, 12≤-∴x ,2≤-x y ,3≤∴ξ,且当3,1==y x 或1,3==y x 时,3=ξ. ……………3分因此,随机变量ξ的最大值为3.有放回抽两张卡片的所有情况有933=⨯种,92)3(==∴ξP .答:随机变量ξ的最大值为3,事件“ξ取得最大值”的概率为92. ………4分 (2)ξ的所有取值为3,2,1,0.0=ξ 时,只有2,2==y x 这一种情况, ………5分1=ξ时,有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x 四种情况, ………6分2=ξ时,有2,1==y x 或2,3==y x 两种情况. ………7分91)0(==∴ξP ,94)1(==ξP ,92)2(==ξP . …………10分 则随机变量ξ的分布列为:………11分因此,数学期望914923922941910=⨯+⨯+⨯+⨯=ξE .……………………12分 18.(本题满分14分)本小题考查利用定义法(向量法)求空间几何中的角度问题。