3 机械分离和固体流态化
- 格式:ppt
- 大小:4.50 MB
- 文档页数:116
第三章 机械分离和固体流态化1. 取颗粒试样500 g ,作筛分分析,所用筛号及筛孔尺寸见本题附表中第1、2列,筛析后称取各号筛面上的颗粒截留量列于本题附表中第3列,试求颗粒群的平均直径。
习题1附表解:颗粒平均直径的计算 由11ia i G d d G=∑ 2204080130110(500 1.651 1.168 1.1680.8330.8330.5890.5890.4170.4170.2956030151050.2950.2080.2080.1470.1470.1040.1040.0740.0740.053=⨯+++++++++++++++++++ )2.905=(1/mm)由此可知,颗粒群的平均直径为d a =0.345mm.2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。
解:20C 时,351.205/, 1.8110kg m Pa s ρμ-==⨯⋅空气对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62 那么,斯脱克斯区:max 57.4d m μ===min 1513d m μ==3. 在底面积为40 m 2的除尘室内回收气体中的球形固体颗粒。
气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5 Pa ·s 。
试求理论上能完全除去的最小颗粒直径。
解:同P 151.例3-3在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 36000.025/4003600s t V u m s bl ===⨯ 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。
min17.5d um ===核算沉降流型:6min 517.5100.025 1.06R 0.0231210t et d u ρμ--⨯⨯⨯===<⨯ 假设合理。
第三章 机械分离和固体流态化2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。
解:20C 时,351.205/, 1.8110kg m Pa s ρμ-==⨯⋅空气对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62那么,斯托克斯区:max 57.4d m μ===min 69.11513d m μ==3. 在底面积为40 m 2的除尘室内回收气体中的球形固体颗粒。
气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5P a·s。
试求理论上能完全除去的最小颗粒直径。
解:在降尘室中能被完全分离除去的最小颗粒的沉降速度u t ,则 36000.025/4003600s t V u m s bl ===⨯ 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。
min 17.5d um === 核算沉降流型:6min 517.5100.025 1.06R 0.0231210t et d u ρμ--⨯⨯⨯===<⨯ 假设合理。
求得的最小粒径有效。
4. 用一多层降尘室除去炉气中的矿尘。
矿尘最小粒径为8m μ,密度为4000kg/m 3。
除尘室长 4.1 m 、宽 1.8 m 、高4.2 m ,气体温度为427℃,黏度为3.4×10-5 P a·s,密度为0.5 kg/m 3。
若每小时的炉气量为2160标准m 3,试确定降尘室内隔板的间距及层数。
解:由气体的状态方程PV nRT = 得''s s T V V T =,则气体的流量为: '34272732160 1.54/2733600s V m s +=⨯= 1.540.2034/1.8 4.2s t V u m s bH ===⨯ 假设沉降发生在滞流区,用斯托克斯公式求最小粒径。