Fenton试剂生成_OH的动力学研究
- 格式:pdf
- 大小:253.35 KB
- 文档页数:4
fenton生物学意义
Fenton 反应是一种化学反应,指的是过氧化氢(H2O2)与亚铁离子(Fe2+)在酸性条件下反应生成羟基自由基(·OH)的过程。
这个反应在生物体系中具有重要的意义。
在生物体系中,过氧化氢是一种常见的活性氧物种,它可以参与许多生物过程,如细胞信号传递、免疫反应、氧化应激等。
然而,过氧化氢也可以对细胞造成损伤,因此细胞内存在多种抗氧化机制来清除过氧化氢。
Fenton 反应可以在细胞内产生高活性的羟基自由基,这种自由基具有很强的氧化能力,可以氧化许多生物分子,如蛋白质、核酸、脂质等,从而导致细胞损伤和死亡。
因此,Fenton 反应在生物体系中通常被认为是一种有害的过程。
然而,在某些情况下,Fenton 反应也可以被细胞利用来清除过氧化氢和其他有害的活性氧物种。
例如,一些细胞内的酶,如过氧化物酶和超氧化物歧化酶,可以通过类似于 Fenton 反应的机制来清除过氧化氢和其他活性氧物种,从而保护细胞免受氧化损伤。
因此,Fenton 反应在生物体系中既有有害的一面,也有有益的一面,其生物学意义取决于具体的生物过程和环境条件。
1 基本概念芬顿试剂是Fe2+和H2O2共同组成的氧化体系,H2O2在Fe2+和紫外光的催化作用下通过链式反应产生氧化性极强的羟基自由基,是一种很强的氧化体系。
目前该技术的应用和研究主要集中在环保领域中难降解有机废物的处理与处置。
当 Fenton发现芬顿试剂时,尚不清楚过氧化氢与二价铁离子反应到底生成了什么氧化剂具有如此强的氧化能力。
20多年后,有人假设可能反应中产生了经基自由基,由于H2O:在催化剂Fe3+(Fe2+)的存在下,能高效率地分解生成具有强氧化能力和高电负性或亲电子性(电子亲和能力569.3KJ的经基自由基(·OH ),·OH 可以氧化降解水体中的有机污染物,使其最终矿化为C02,H20及无机盐类等小分子物质。
据计算在pH=4的溶液中,-OH的氧化电位高达2.73 V,其氧化能力在溶液中仅次于氢氟酸。
因此,通常的试剂难以氧化持久性有机物,特别是芳香类化合物及一些杂环类化合物,芬顿试剂对其中的绝大部分都可以无选择地氧化降解。
2、反应机理(1)Fenton试剂产生强氧化能力有关芬顿试剂的反应机理,一种研究认为是无机物之间的反应,像Fe2+, Fe3+, H202, ·OH,HO2·和02-·,这是一般的芬顿反应体系中都存在的。
这部分反应的机理研究主要通过化学捕获剂和先进的分析仪器来完成,研究主要集中在是产生以9基自由基或烷氧自由基为主的氧化物种,还是产生以铁为中心的高价瞬态氧化物种。
近年来,研究人员发现,毗咤可以作为自由基的捕获剂用于捕获102·自由基。
而同时,-OH自由基的竞争反应不影响到对HO2·自由基的捕获。
依据此种发现,研究人员提出了高能的自由基和氧化剂的产生机理,这也是芬顿反应比较成熟的机理论断。
然而直到现在,对铁氧化后在反应中存在的形态等方面还有很多问题需要研究。
针对这一现象,一些学者提出了许多中间过程,归纳起来主要有几种:pH值在2.5一4.5之间时,低浓度的Fe2+主要以Fe(OH)(H20)52+的形式存在,这个反应的发生是H2O2在Fe2+的第一个配位体上发生了配位交换,随后发生了体二电子的转移反应,生成F4+的复合物。
Fenton 试剂2010-11-18 14:03:46 作者:来源:互联网浏览次数:4 文字大小:【大】【中】【小】Fenton 试剂是指在天然或人为添加的亚铁离子(Fe2+),与过氧化氢发生作用,能够产生高反应活性的羟基自由基(•OH)的试剂。
过氧化氢还可以在其它催化剂(如Fe,UV25 4nm 等)以及其它氧化剂(O3)的作用下,产生氧化性极强的羟基自由基(•OH),使水中有机物得以氧化而降解。
Fenton 氧化修复技术具有以下特点:①Fenton 试剂反应中能产生大量的羟基自由基,具有很强的氧化能力,和污染物反应时具有快速、无选择性的特点;②Fenton 氧化是一种物理-化学处理过程,很容易加以控制,以满足处理需要,对操作设备要求不是太高;③它既可作为单独处理单元,又可与其他处理过程相匹配,如作为生化处理的前预处理;④但是由于典型的Fenton 氧化反应需要在酸性条件下才能顺利进行,这样会对环境带来一定的危害;⑤实际处理污染土壤时,由于Fenton 反应是放热反应会产生大量的热,操作时要注意安全;⑥Fenton 氧化对生物难降解的污染物具有极强的氧化能力,而对于一些生物易降解的小分子反而不具备优势。
Fenton 试剂反应需在酸性条件下才能进行,因此对环境条件的要求比较苛刻。
下面是影响Fenton 反应主要条件:①pH值的影响Fenton 试剂是在酸性条件下发生作用的,在中性和碱性的环境中,Fe2+不能催化H2O2产生·OH,因为Fe2+在溶液中的存在形式受制于溶液的pH 值的影响。
按照经典的Fenton 试剂反应理论,pH 值升高不仅抑制了·OH 的产生,而且使溶液中的Fe2+以氢氧化物的形式沉淀而失去催化能力。
当pH 值低于3 时,溶液中的H+浓度过高,Fe3+不能顺利地被还原为Fe2+,催化反应受阻。
②H2O2浓度的影响随着H2O2 用量的增加,COD 的去除首先增大,而后出现下降。
分光光度法测定fenton反应产生的羟基自由基
实验目的:通过分光光度法测定Fenton反应产生的羟基自由基的浓度。
实验原理:Fenton反应是一种产生羟基自由基的化学反应,其化学方程式为Fe2++H2O2→Fe3++OH-+•OH。
羟基自由基是一种高反应性的自由基,可以与某些有机分子发生反应,因此具有一定的毒性和活性。
分光光度法是一种测定物质浓度的方法,通过吸收光谱来测定物质的浓度。
实验步骤:
1.将一定量的FeSO4和H2O2混合在一起,形成Fenton试剂。
2.取一定量的Fenton试剂加入不同浓度的羟基自由基标准溶液中,形成反应液。
3.使用分光光度计测定反应液的吸光度,并绘制标准曲线。
4.取Fenton试剂加入产生羟基自由基的样品中,形成反应液。
5.使用分光光度计测定反应液的吸光度,并通过标准曲线计算样品中羟基自由基的浓度。
实验结果:通过分光光度法测定,得到不同浓度的羟基自由基标准曲线,计算出样品中羟基自由基的浓度为X mol/L。
实验结论:分光光度法可以用于测定Fenton反应产生的羟基自由基的浓度,为进一步研究羟基自由基在生物体内的作用提供了方法和依据。
敬请批阅。
试卷题目:使用分光光度法测定Fenton反应产生的羟基自由基的浓度,实验步骤有哪些?并简要说明实验原理和结论。
Fenton反应原理的基本原理Fenton反应是一种重要的高级氧化技术,用于处理废水、净化空气和消除有害物质。
它基于Fe(II)和过氧化氢(H2O2)之间的反应,产生高活性的羟基自由基(OH·),从而引发一系列氧化还原反应。
这些自由基具有强氧化能力,可以降解有机污染物、杀灭微生物并去除重金属离子等。
Fenton反应的基本原理可以归结为以下几个方面:1.费托-海勒德机理:Fenton反应中最重要的步骤是Fe(II)与H2O2之间的反应,形成Fe(III)和羟基自由基(OH·)。
该反应遵循费托-海勒德机理,即Fe(II)作为催化剂与H2O2发生复合反应,并生成活性中间体(Fe(III)-OOH)和OH·自由基。
Fe(II) + H2O2 → Fe(III) + OH· + OH-这个过程是一个自催化循环,在适当的条件下可以持续进行。
2.羟基自由基(OH·):羟基自由基是Fenton反应中最重要的活性物质。
它具有高度氧化能力,可以与有机污染物、微生物和重金属离子发生反应。
羟基自由基的生成主要是通过Fe(II)与H2O2反应产生的,但也可以通过其他方式生成,如光解或电解。
3.氧化还原反应:Fenton反应中产生的羟基自由基(OH·)具有强氧化能力,可以引发一系列氧化还原反应。
它可以直接与有机污染物发生反应,将其降解为低分子化合物或无害产物。
同时,羟基自由基还能与微生物细胞膜、DNA和蛋白质等发生反应,破坏其结构并杀灭微生物。
此外,羟基自由基还能够与重金属离子形成络合物,并促使其沉淀或转化为无毒形式。
4.催化循环:Fenton反应中的催化剂Fe(II)在反应过程中并不消耗,只是作为催化剂参与了反应,并在最后被再次氧化为Fe(III)。
这使得Fenton反应具有很高的效率和经济性。
5.影响因素:Fenton反应受到多种因素的影响,包括pH值、反应温度、Fe(II)和H2O2的浓度以及反应时间等。
Fenton法处理印染废水的特性及动力学研究贾艳萍;张羽汐;毕朕豪;王嵬【摘要】针对印染废水水质复杂、处理难度高的问题,研究采用Fenton法对印染废水进行处理.考察pH、Fe2+投加量、H2 O2/Fe2+摩尔比、反应时间等因素对污染物去除率的影响,分析污染物质官能团的变化,建立污染物降解动力学模型.结果表明:在pH值为2.5、Fe2+投加量为5 mmol、H2 O2/Fe2+摩尔比为4、反应时间为50 min时,污染物去除效果最好,色度、TOC、COD和氨氮的去除率可达99.8%、85.11%、90.69%和66.63%;通过分析UV-vis吸收谱图、HPLC谱图、GC-MS谱图的变化,证明发色官能团被氧化降解.建立了底物降解速率与底物浓度、H2 O2浓度和Fe2+浓度相关的催化降解动力学模型,其中底物浓度的反应分级数(m=0.265)高于Fe2+的反应分级数(q=-1.48),表明底物浓度对Fenton的氧化降解过程影响较大.【期刊名称】《东北电力大学学报》【年(卷),期】2019(039)002【总页数】8页(P60-67)【关键词】Fenton法;印染废水;氧化降解;动力学【作者】贾艳萍;张羽汐;毕朕豪;王嵬【作者单位】东北电力大学化学工程学院,吉林吉林132012;东北电力大学化学工程学院,吉林吉林132012;东北电力大学化学工程学院,吉林吉林132012;东北电力大学化学工程学院,吉林吉林132012【正文语种】中文【中图分类】X703.1印染行业是工业废水排放大户,印染废水中含有大量的苯系、苯胺及联苯胺类化合物,会与金属、盐类等物质螯合,具有一定的毒性,是废水治理的重点和难点[1~2].又因印染废水具有排放量大、水质复杂、处理难度高等特点,对印染废水的综合治理已成为当前亟需解决的问题[3~4].Fenton法是一种通过产生强氧化性的·OH高效降解废水中污染物的化学处理技术[5~7].Fenton法不仅可以高效去除难降解的大分子有机物,同时还具有价格低廉、工艺简单、反应时间快、反应彻底且无二次污染等优点[8~10].Fenton的氧化降解过程是指在pH值较低时,Fe2+作为催化剂,促进H2O2分解产生·OH,·OH可以破坏有机物的结构,使其矿化成H2O、CO2或者其它小分子化合物,从而达到去除污染物的目的[11~13].陈文才等[14]通过Fenton法氧化降解偶氮染料丽春红2R模拟废水,在初始pH值为3、H2O2/Fe2+浓度比为5时降解效果最佳,丽春红2R、COD去除率分别可达96%和71.6%;马英群等[15]通过铁碳微电解-Fenton氧化降解直接蓝2B染料,在初始pH值为3、H2O2投加量为37mmol/L条件下,其色度、COD去除率分别可达93.6%和83.9%,说明Fenton法可以有效降解大分子染料,大幅度提高色度去除率和COD去除率.但目前关于混合染料的有效降解及其机制研究报道较少,Fenton法氧化降解印染废水的动力学规律尚不明确.甲基橙是一种代表性的酸性偶氮染料,亚甲基蓝是一种典型的直接染料,其分子式如图1、图2所示.本研究采用Fenton法处理甲基橙与亚甲基蓝混合模拟废水,考察初始pH值、Fe2+投加量、H2O2/Fe2+摩尔比、反应时间等对污染物去除率的影响.建立催化降解动力学模型,揭示Fenton法降解污染物的基本反应规律,为Fenton法处理混合染料废水提供理论指导和参考依据.图1 亚甲基蓝分子结构式图2 甲基橙分子结构式1 实验材料与方法1.1 实验用水实验采用甲基橙(0.2 g·L-1)与亚甲基蓝(0.2 g·L-1)混合配制的模拟废水,其水质指标如表1所示.表1 实验用水水质指标项目COD/(mg·L-1)NH3-N/(mg·L-1)TOC/(mg·L-1)色度/(倍)pH数值300±107±1120±1010243.2±0.21.2 Fenton氧化降解过程取250 mL模拟印染废水,置于500 mL烧杯中,在室温(25 ℃~28 ℃)条件下,采用磁力搅拌器搅拌(150 r/min)后,用NaOH调节pH值至7~8,通过Fe2+的絮凝作用对污染物进一步净化,取上层清液并测定其各项指标,计算去除率,氧化过程如图3所示.图3 Fenton氧化降解过程1.3 分析项目及检测方法利用紫外光谱分析仪(UV-2450,日本岛津)在紫外和可见光区域对模拟印染废水进行全程扫描(λ=200 nm~800 nm),测定废水氧化降解过程中吸光度的变化;利用高效液相色谱仪(LC-2010AHT,日本岛津)测定模拟废水及其中间产物出现的面积,其中流动相采用H2O-CH3OH体系(流动相为70%的H2O和30%的CH3OH),流速0.8 mL·min-1,柱温40 ℃;通过气相色谱-质谱联用仪(GCMS-QP2010Ultra,日本岛津)分析废水中的有机物[16];TOC采用TOC分析仪(liqui TOCII,德国elementar)测定;COD采用标准重铬酸钾法,氨氮采用纳氏试剂分光光度法,pH值采用玻璃电极法;色度采用稀释倍数法.2 结果与分析2.1 Fenton氧化降解的主要影响因素2.1.1 初始pH值对Fenton氧化降解作用的影响pH值是影响Fenton氧化降解污染物的重要因素,初始pH值对Fenton氧化降解作用的影响,如图4所示.污染物的去除效果主要取决于·OH的量[17],在酸性条件下,Fe2+可以快速催化H2O2产生·OH,从而促进Fenton主反应的进行. 图4 不同初始pH值下污染物的去除率图5 不同Fe2+浓度下污染物的去除率图6 不同H2O2/Fe2+下污染物的去除率图7 不同反应时间下污染物的去除率图8 Fenton氧化过程中UV-vis谱图变化当pH值为2.5时,污染物的去除率最大,色度、TOC、COD和氨氮去除率分别达到99.8%、35.3%、52.4%和78.02%.当初始pH值低至1.5时,氧化效果呈下降趋势,这是由于H+浓度过大,由公式(1)~公式(2)可知,Fe3+还原为Fe2+反应过程受阻,Fe(OH)2降低,抑制·OH的生成[18];同时,H+浓度过高,促使·OH转化为OH-,造成·OH的无效消耗.当pH>4时,根据公式(3),抑制·OH 的产生,Fe2+容易形成铁羟基配合物或沉淀,失去催化能力;pH值较大时,H2O2不稳定,更易分解[19].因此,本研究确定最佳pH值为2.5.Fe3++H2O2→Fe2++H++·O2H,(1)Fe2++·OH→Fe3++OH-,(2)Fe2++H2O2→Fe3++·OH+OH-.(3)2.1.2 Fe2+投加量对Fenton氧化降解作用的影响Fe2+在Fenton体系中一方面以催化剂的形式存在,是产生·OH的必要条件;另一方面在碱性条件下生成Fe(OH)3胶体,通过混凝吸附作用去除水中悬浮物质. 不同Fe2+浓度下污染物的去除率,如图5所示.当Fe2+投加量为5 mmol时,色度、TOC、COD和氨氮去除率达到最大,分别为99.6%、69.86%、87.75%和62.24%;当Fe2+浓度过低时,生成·OH速率缓慢,氧化过程会受到抑制,然而Fe2+作为催化剂,并不是越多越好;当Fe2+>5 mmol时,污染物去除率随Fe2+浓度的升高而降低.这是由于过量的Fe2+催化H2O2产生过量的·OH,根据公式(4),这会消耗部分自由基而降低氧化作用;同时根据公式(2),Fe2+易被·OH 氧化为Fe3+,两种副反应均会造成·OH利用率下降,过高的Fe2+浓度不但会提高水体色度,而且还会增加废水处理成本.因此,需从经济与技术的双重角度控制Fe2+投加量,本研究中确定Fe2+最佳投加量为5 mmol.·OH+·OH→H2O2,(4)2.1.3 H2O2/Fe2+摩尔比对Fenton氧化降解作用的影响不同H2O2/Fe2+下污染物的去除率,如图6所示.在Fe2+投加量为5 mmol的条件下,提高H2O2/Fe2+的摩尔比可以生成更多的·OH,从而提高污染物的氧化降解速率.当H2O2/Fe2+为4∶1时,污染物去除率趋于稳定,色度、TOC、COD 和氨氮去除率分别为99.6%、48.53%、93.5%和94.48%.H2O2/Fe2+的摩尔比过大时,·OH达到饱和状态,H2O2投加量对氧化降解并没有显著影响,根据公式(5),过多的H2O2并不会提高反应速率,副反应反而会降低·OH的利用率,H2O2既可生成·OH,也可清除过量的·OH;催化剂Fe2+在Fenton氧化体系中所占比例较低时,自由基产生的速度和数量也会降低,抑制有机物的降解过程,这表明H2O2/Fe2+在合理范围内能有效去除污染物,本研究确定H2O2/Fe2+最佳摩尔比为4∶1.·OH+H2O2→H2O+·O2H.(5)2.1.4 反应时间对Fenton氧化降解作用的影响不同反应时间下污染物的去除率,如图7所示.随着反应时间的增加,污染物的去除率逐渐上升后趋于稳定,这是由于在反应初期,Fe2+与H2O2生成大量的·OH,染料被迅速降解为小分子中间物质.延长反应时间导致底物缺乏,系统不再产生活性物质·OH,污染物去除率逐渐减缓,从动力学角度分析,此时达到平衡状态,污染物降解过程基本结束.在实际工程中,反应时间的长短直接影响运行费用,反应时间过长意味着成本增加,因此,选择合理的反应时间尤为重要.本研究确定最佳反应时间为50 min,色度、TOC、COD和氨氮的去除率分别为99.8%、85.11%、90.69%和66.63%.2.2 谱图分析通过紫外光谱分析仪对模拟印染废水进行全程扫描,得到不同反应时间下的UV-vis光谱吸收图,如图8所示.模拟废水分别在λ=300 nm、λ=463 nm和λ=665 nm附近,出现苯环特征吸收峰、偶氮特征吸收峰和杂环芳烃的发色取代基团吸收峰,随着氧化反应的进行,吸收光谱的吸收峰消失,在·OH的强氧化作用下模拟印染废水中的共轭基团中不饱和共轭键断裂,发色基团逐渐被破坏,导致其特征吸收峰消失,从而达到较好的脱色效果,同时·OH可以很快地捕捉到发色基团,在水中与共轭基团发生瞬时反应.在实验过程中还可以观察到,经Fenton氧化降解后的印染废水由高色度变为无色,这也说明Fenton法可以破坏印染废水中的特征基团.为了分析Fenton氧化过程中污染物的降解历程,可以根据HPLC图中峰面积推测Fenton降解过程中的物质含量.不同反应时间下的HPLC谱图,如图9所示.由图9(a)可知,当保留时间为2.319 min、2.578 min、4.353 min时,原水有明显的吸收峰,保留时间为4.353 min时,峰面积含量达到最高值,说明反应初期Fenton可以氧化降解大分子有机物;当反应时间分别为5 min和10 min时,出现未完全分离的吸收峰,其峰面积逐渐增加,说明中间物质含量增加,且中间产物有可能结构相似,互为同分异构体[19];随着污染物的进一步氧化降解,反应时间为20 min时,中间产物含量又开始降低,最后残余的物质可能是难降解的含C-O-C基团有机物和其他小分子物质.图9 不同反应时间下的HPLC谱图为了进一步推断降解后的有机物成分,通过气相色谱-质谱联用仪(GC-MS)分析溶液中主要有机物成分,如表2所示.由GC-MS分析可初步推测:印染废水中的共轭键被破坏,生成一些开环中间产物,部分中间产物进行分子重组,形成长链结构;同时中间产物在·OH的氧化下,主要生成酸类,醛类物质和其他无机小分子物质. 表2 GC-MS有机污染物分析编号保留时间/(min)产物分子式产物名称16.615C4H13N328.363C24H40O238.544C14H22O48.748C25H42O358.955C21H34O3图10 Fenton氧化降解机制根据以上谱图分析,并结合Fenton氧化降解机制,如图10可知:第一阶段通过Fe2+与H2O2反应生成·OH和其他自由基;第二阶段·OH的活性高于其他自由基,可以迅速攻击目标产物,使有机物断键而进行一系列脱氢、脱氧、电子转移、加成等反应,破坏有机物结构使其降解为小分子,最终矿化为CO2和H2O.RH+·OH→R·+H2O,(6)RX+·OH→OH-+·RX+,(7)R2C=CR2+·OH→R2(HO)C-CR2·,(8)RH+·OH→…→CO2+H2O.(9)2.3 动力学模型参数的确定假定在t时刻体系中,根据催化降解的表观动力学,建立动力学方程[20]=-K[S]m[Fe]n[H2O2]j,(10)公式中:S为有机物浓度(mg/L);K为反应速率常数[L·(mg·min)-1];m、n、 j 为各底物反应分级数.由于H2O2/Fe2+摩尔比值为定值,动力学方程可简化为=-K1[S]m[Fe]q,(11)公式中:K1为反应速率常数[L·(mg·min)-1];q为底物反应分级数,将公式取对数得到(12)不同初始Fe2+浓度下的动力学参数,如图11所示.根据不同初始Fe2+浓度反应体系COD的变化情况,采用高阶多项式任意逼近的方法建立多项式回归模型(Y=A+B1X+B2X2+B3X3+B4X4),通过初始浓度法,在t=0时,方程对t求导得到初始反应速率lg-(ds/dt),求出不同浓度下的lg(Fe),如表3所示.表3 不同初始Fe2+浓度下的动力学参数Fe2+浓度(mg/L)方程lg(Fe)lg-(ds/dt)5.56S1=2.098T4-24.664T3+94.909T2-195.640T+428.1200.7452.294.44S2=0.994T4-15.096T3+87.251T2-256.760T+489.6000.6472.413.32S3=2.196T4-34.880T3+200.900T2-514.360T+652.0600.5212.712.22S4=2.908T4-47.683T3+280.930T2-702.370T+772.9000.3472.85根据表3的数值,建立lg-(ds/dt)与lg(Fe)的拟合曲线,如图12所示.得到线性回归方程:lg-(ds/dt)=3.39875-1.475 66lg(Fe);参考公式(12)得出q=-1.475 66,lgK1+mlg(S)=3.398 75.图11 不同反应时间和初始Fe2+浓度下出水COD的变化图12 lg-(ds/dt)与lg(Fe)的拟合曲线计算不同初始有机物浓度下,底物浓度随时间的变化,如图13所示.采用高阶多项式任意逼近的方法建立多项式回归模型,在t=0时,求出方程对t的导数,得到初始反应速率lg-(ds/dt)和lg(S),如表4所示.图13 不同反应时间、不同进水COD浓度下出水COD浓度的变化图14 lg-(ds/dt)与lg(S)的拟合曲线根据表4的数值,建立lg-(ds/dt)与lg(Fe)的拟合曲线,如图14所示.得到线性回归方程为:lg-(ds/dt)=1.633 8+0.265 4lg(S);参考公式(12),得出m=0.26 535,lgK1+qlg(Fe)=1.633 8.表4 不同初始有机物浓度下的动力学参数有机物浓度 (mg/L)方程lg(S)lg-(ds/dt)307S1=2.098T4-24.664T3+94.909T2-195.640T+428.1202.482.29144.5S2=1.0375T4-14.384T3+69.685T2-162.18T+250.832.162.2187.2S3=0.542T4-8.668T3+51.835T2-144.501T+187.7401.942.1667.7S4=0.394T4-7.054T3+45.998T2-131.440T+159.7501.832.11参考公式(12),确定q=-1.47 566;m=0.26 535;K1=-5.445×102,则表观反应动力学方程为=-5.445×102[S]0.265[Fe]-1.48.(13)根据拟合反应初始阶段的实验数据建立的动力学模型,符合反应初始阶段的降解情况.Fenton降解印染废水的反应速率受反应底物浓度影响最大,其次是Fe2+浓度.主要原因是Fe2+再生速率降低,沉淀、络合和中间体的存在妨碍了降解过程的进行,导致降解速率缓慢.因此,底物浓度是制约整个反应系统速率的主要因素.3 结论本研究选取亚甲蓝和甲基橙混合模拟废水,通过分析Fenton对模拟废水有效降解途径及其动力学机制,得到以下结论:(1)本研究最佳工艺条件为:pH=2.5、Fe2+的投加量为5 mmol、H2O2/Fe2+摩尔比为4、反应时间为50 min时处理效果最好,此时色度、TOC、COD和氨氮的去除率分别达到99.8%、85.11%、90.69%和66.63%;(2)UV-vis、HPLC、GC-MS谱图揭示了氧化历程及降解规律,Fenton试剂产生的羟基自由基可以破坏共轭键,生成一些开环中间产物,部分中间产物进行分子重组,形成长链结构,证明Fenton法可以氧化降解大分子染料;(3)分析Fenton法氧化降解印染废水规律,建立催化降解的表观动力学方程,确定动力学参数q=-1.47566,m=0.26535,K1=-5.445×102.参考文献【相关文献】[1] 贾艳萍,宗庆,姜修平,等.改性粉煤灰与厌氧-曝气生物滤池联合处理印染废水[J].东北电力大学学报,2014,34(6):34-37.[2] 申洋洋,刘锐,徐灿灿,等.印染及染料行业废水生物处理系统中的AOX污染研究[J].环境科学,2015,36(9):3304-3310.[3] 王翼,吴昌永,周岳溪,等.Fenton氧化深度处理石化废水厂二级出水研究[J].环境科学,2015,36(7):2597-2603.[4] 薛懂,李长波,张洪林,等.絮凝-Fenton试剂氧化处理印染废水[J].环境工程学报,2014,8(9):3601-3606.[5] 王炜亮,王玉番,卢少勇,等.US/UV-Fenton体系处理高浓度罗丹明B特性研究[J].中国环境科学,2016,36(8):2329-2336.[6] 李立春,张国亮,许丹宇,等.Fenton/MBR/臭氧组合工艺处理丁苯橡胶废水[J].中国给水排水,2017,33(2):87-89.[7] A.Mackay,J.Pignatello.Application of Fenton-Based reactions for treating dye wastewaters:stability of sulfonated azo dyes in the presence of iron(III)[J].Helvetica Chimica Acta,2001,84(9):2589-2600.[8] A.Babuponnusami,K.Muthukumar.A review on Fenton and improvements to the Fenton process for wastewater treatment[J].Journal of Environmental Chemical Engineering,2014,2(1):557-572.[9] 贾若琨,李佳.FeMnMg氧化物Fenton催化降解有机废水[J].东北电力大学学报,2014,34(6):47-53.[10] 魏建平,戴俊,王政锦,等.Fenton试剂氧化降解甲烷的动力学规律[J].煤炭学报,2013,38(9):1597-1603.[11] E.Brillas,M.A.Baos,J.A.Garrido.Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation,electro-Fenton and photoelectro-Fenton[J].Electrochimica Acta,2003,48(12):1697-1705.[12] H.S.Eldesoky,M.M.Ghoneim,R.Elsheikh,et al.Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton’sreagent[J].Journal of Hazardous Materials,2010,175(1/3):858-865.[13] E.Gilpavas,I.Dobrosz-Gómez,M.A.Gómez-García.Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment[J].Journal of Environmental Management,2017,191(1):189-197.[14] 陈文才,蔡天明,陈立伟,等.Fenton氧化法处理偶氮染料丽春红2R废水的研究[J].环境工程,2015,33(11):31-35.[15] 马英群.铁碳微电解-Fenton氧化法处理直接蓝2B染料的研究[D].鞍山:辽宁科技大学,2012.[16] 刘伟京,张龙,吴伟,等.GC-MS用于分析印染废水处理中有机污染物的降解及迁移的研究[J].环境科学,2010,31(4):1008-1013.[17] 赵学庄.化学反应动力学原理·下册[M].北京:高等教育出版社,1990:58-65.[18] A.D.Bokare,W.Choi.Review of iron-free Fenton-like systems for activating H2O2 inadvanced oxidation processes[J].Journal of Hazardous Materials,2014,275(2):121-135.[19] 李再兴,左剑恶,剧盼盼,等.Fenton氧化法深度处理抗生素废水二级出水[J].环境工程学报,2013,7(1):132-136.[20] 黄应平,刘德富,张水英,等.可见光/Fenton光催化降解有机染料[J].高等学校化学学报,2005,26(12):2273-2278.。
Fenton及类Fenton试剂的研究进展Fenton及类Fenton试剂的研究进展引言Fenton及类Fenton试剂是一类广泛应用于废水处理和环境修复领域的强氧化剂。
自20世纪60年代首次被提出以来,经过几十年的发展研究,Fenton及类Fenton试剂的应用范围不断扩大,并取得了显著的研究进展。
本文章就Fenton及类Fenton试剂的基本原理、应用领域和研究进展进行综述。
一、Fenton及类Fenton试剂的基本原理Fenton试剂是指由过硫酸铵和Fe2+所组成的体系,通过Fe2+进一步与H2O2反应而产生强氧化自由基(OH·)。
而类Fenton 试剂则是指含有过渡金属离子(如Cu2+、Co2+等)的物质,能够与H2O2协同产生氧化性自由基。
这些强氧化自由基可以迅速氧化有机物质,从而有效去除废水中的有机污染物。
二、Fenton及类Fenton试剂的应用领域1. 废水处理Fenton及类Fenton试剂具有高效快速的氧化能力,广泛应用于废水处理领域。
它们能有效降解废水中的有机物,包括难降解有机物、染料、农药等。
研究表明,Fenton及类Fenton试剂处理废水的效果较传统氧化剂(如O3和Cl2)更好,且无二次污染问题,因此被认为是一种环保高效的废水处理方法。
2. 土壤和地下水修复Fenton及类Fenton试剂在土壤和地下水修复领域也得到了广泛应用。
由于它们具有较强的氧化能力,可以有效分解土壤和地下水中的有机污染物,包括石油烃、溶剂、农药等。
这种修复方法操作简便、成本低廉,因此被广泛应用于污染场地的修复工作中。
三、Fenton及类Fenton试剂的研究进展1. 催化剂的改进为了进一步提高Fenton及类Fenton试剂的催化性能,研究人员开始探索新型催化剂的开发。
如近年来,一些金属有机骨架材料(MOFs)被引入Fenton体系中,能够提高反应速率和催化活性,使Fenton体系的应用更广泛。
最终版--芬顿试剂实验方案.芬顿试剂氧化技术应用实验一、实验目的:1、探究对芬顿试剂氧化能力的影响因素2、确定其最佳氧化条件。
二、实验原理:由亚铁离子与过氧化氢组成的体系,称为芬顿试剂,它能生成强氧化性的羟基自由基,在水溶液中与难降解有机物生成有机自由基使之结构破坏,最终氧化分解。
芬顿反应是以亚铁离子为催化剂的一系列自由基反应。
主要反应大致如下:2+3+-+HO·+HO==Fe +OHFe 223+ +HO+OH-==Fe2++H2O+HO·Fe 223+2++ +HO2 O +H==Fe Fe+H22HO2+HO==HO+O↑+HO·2222芬顿试剂通过以上反应,不断产生HO·(羟基自由基,电极电势2.80EV,仅次于F2),使得整个体系具有强氧化性,可以氧化氯苯、氯化苄、油脂等等难以被一般氧化剂(氯气,次氯酸钠,二氧化氯,臭氧,臭氧的电极电势只有2.23EV)氧化的物质。
根据上述Fenton试剂反应的机理可知,OH ·是氧化有机物2+-]决定了OH、]O、的有效因子,而[Fe][H[OH·的产量,因而决22定了与有机物反应的程度。
.影响该系统的因素包括溶液pH值、反应温度、HO投加量及22投加方式、催化剂种类、催化剂与HO投加量之比等。
22三、实验装置设备与药品试剂:装置与设备:1、锥形瓶;2、pH 计;3、容量瓶;4、烧杯;5、可见分光光度计;6摇床振荡器;7、电加热器;实验药品与试剂:1、FeSO.7HO;2、HO(30%);222423、甲基橙印染废水样品;4、稀硫酸;5、蒸馏水水样的选着:实验室采用浓度为50mg/L的甲基橙水溶液作为模拟有机废水。
选择甲基橙水溶液作模拟有机废水的原因,只采用甲基橙成分单一,而且甲基橙属于分析纯,相对于工业级的染料能更准确更容易地把握反应的规律和本质。
甲基橙操作液的配置:称取0.05g无水甲基橙固体,定容到1000ml的容量瓶即得所需50mg/L 操作液现配现用。
Fenton 试剂生成・O H 的动力学研究程丽华1,3 黄君礼2 倪福祥1(1.青岛建筑工程学院环境工程系,青岛266033;2.哈尔滨工业大学市政环境工程学院,哈尔滨150090;3.中国海洋大学环境科学与工程学院,青岛266003)摘 要 通过试验研究确定了Fenton 试剂中羟基自由基・OH 生成的动力学规律,系统考察了Fenton 体系中三个主要因素:H 2O 2浓度、FeS O 4浓度、pH 值对羟基自由基・OH 生成规律的影响情况,结果表明,这三个因素对羟基自由基的生成均有较大的影响,在实际生产过程中需加以严格控制,以保证最佳的处理效果。
关键词 Fenton 试剂 羟基自由基・OH 动力学G eneration kinetics of hydroxyl radicals by Fenton ’s reagentCheng Lihua1,3 Huang Junli 2 Ni Fuxiang1(1.Department of Environmental Engineering ,Qingdao Institute of Architecture and Engineering ,Qingdao 266033;2.School of Municipal &Environmental Engineering ,Harbin Institute of T echnology ,Harbin 150090;3.C ollege of Environmental Science and Engineering ,Ocean University of China ,Qingdao 266003)Abstract G eneration kinetics of hydroxyl radical (・OH )by Fenton ’s reagent was studied.The effect of three kinds of major factors ,such as pH and the concentrations of H 2O 2and FeS O 4on generation law of ・OH was studied too.The results showed that these three kinds of factors played a significant role on the generation of hydroxyl radical.Therefore ,these factors should be controlled strictly s o that optimum results w ould be obtained.K ey w ords Fenton ’s reagent ;hydroxyl radical (・OH );kinetics基金项目:黑龙江省自然科学基金资助项目(E01206)收稿日期:2002-09-26;修订日期:2002-12-10作者简介:程丽华(1973~),女,博士学位,现为中国海洋大学在站博士后研究人员。
已经发表论文十余篇,主要研究方向为高级氧化水处理技术。
目前对于大多数废水的处理一般均采用各种生物处理技术。
生物法处理废水具有设备投资省、处理费用低的优点。
但是随着工业的迅猛发展和人类生活水平的提高,大量生物难降解的有机物得以产生并进入环境中。
对于这类生物难降解的化合物,需要用非生物技术来处理,化学氧化法就是其中之一。
同时许多难以生物降解的污染物常常具有较高的化学稳定性,很难被常规的氧化剂所氧化,因此需要采用比常规氧化剂氧化效率更高的技术。
100多年以前,H.J.Fenton 发现Fe 2+可以催化H 2O 2对苹果酸的氧化[1],随后的研究工作也表明,H 2O 2同Fe2+的结合(Fenton 试剂)对多种有机化合物的氧化都非常有效[2—6]。
20世纪40年代以后,Haber 和Weiss 又证明,在这一系统之中起实际氧化作用的是Fe2+同H 2O 2反应生成的羟基自由基・OH [7]。
经证明羟基自由基・OH 的氧化电极电位比水处理中常用的其他氧化剂(除氟F 2之外)的氧化电极电位都高[8],因此,羟基自由基・OH 具有更高的氧化活性、更强的氧化能力,可望在水处理中得到广泛的应用。
本文通过试验研究确定了Fenton 体系中羟基自由基・OH 生成的动力学规律,为Fenton 试剂在水处理领域中的应用提供理论依据。
1 材料与方法1.1 试 剂0.2%(m Πv )Fe (phen )2+3溶液:称取0.2g 邻二氮菲溶于100m L 容量瓶中,加入0.3m L 1m ol ΠL Fe2+溶液,调pH 后,用去离子蒸馏水稀释至刻度100m L 。
FeS O 4溶液:配成1m ol ΠL 水溶液。
H 2O 2:配成3%水溶液。
1.2 仪 器721分光光度计:上海第三分析仪器厂。
第4卷第5期环境污染治理技术与设备V ol .4,N o .52003年5月T echniques and Equipment for Environmental P ollution C ontrolMay20031.3 分析方法羟基自由基表观生成率:Fe (phen )2+3光度法[9]。
此方法原理:・OH 可以将邻二氮菲2Fe (II )氧化成邻二氮菲2Fe (III ),邻二氮菲2Fe (II )(橙红色)在可见光区λmax =508nm 处有最大吸收峰,当它被・OH 氧化成邻二氮菲2Fe (III )(无色)后最大吸收峰消失。
同时被・OH 氧化掉的邻二氮菲2Fe (II )的量正比于体系中产生的・OH 的量。
因此,可用Fe (phen )2+3光度法间接求得该反应体系中・OH 的表观生成率。
1.4 研究方法取100m L 去离子蒸馏水,向其中加入2m L012%的Fe (phen )2+3溶液,调pH =2.5后在λmax =508nm 处以去离子蒸馏水为参比测定吸光度值为A 0,然后加入一定量的FeS O 4和H 2O 2,在加入H 2O 2的同时开始计时。
在不同时刻取样测定吸光度值,记为A i 。
并求ΔA =A 0-A i ,然后按下式求体系中・OH 的表观生成率[10]:・OH 表观生成率(%)=(ΔA ΠA 0)×100%2 结果及讨论2.1 H 2O 2浓度对・OH 表观生成率的影响 固定溶液中FeS O 4的浓度为0.6mm ol ΠL 考察了H 2O 2浓度对・OH 表观生成率的影响情况,试验结果见图1。
图1 不同H 2O 2浓度时羟基自由基・OH 表观生成率随时间变化曲线图注:图中浓度为H 2O 2浓度由图1可以看出,当[FeS O 4]=0.6mm ol ΠL 时,H 2O 2对・OH 表观生成速率的影响情况可以分为三个区:(1)[H 2O 2]<5mm ol ΠL 为第一区;在这一区内随着H 2O 2浓度的增加,・OH 的表观生成速率增加。
例如,当H 2O 2的浓度从 2.5mm ol ΠL 增加到5mm ol ΠL ,反应时间为015min 时,・OH 的表观生成率从31.76%升高至34.95%,升高了3.19%。
这可能是因为根据下式:Fe 2++H 2O 2→Fe 3++・OH +OH-Fe 3++H 2O 2→[Fe (H O 2)]2++H +[Fe (H O 2)]2+→Fe2++H O 2・随着H 2O 2浓度的增加三价Fe 络合物[Fe (H O 2)]2+的形成速率加快,从而Fe 2+的生成速率随之增加,因此H 2O 2分解生成・OH 自由基的速率加快。
(2)当5mm ol ΠL <[H 2O 2]<10mm ol ΠL 时为第二区,当H 2O 2的浓度在这一范围内变化时,H 2O 2浓度对・OH 表观生成速率几乎无影响。
这可能是因为溶液中存在着下列反应:・OH +H 2O 2→H O 2・+H 2O当溶液中H 2O 2的浓度介于5—10mm ol ΠL 时,・OH 的形成速率同・OH 被H 2O 2消耗的速率几乎相等。
因而在此范围内H 2O 2浓度的变化对・OH 表观生成速率的影响很小。
(3)[H 2O 2]>10mm ol ΠL 为第三区,由这一区我们可以看到,当溶液中H 2O 2的浓度高于10mm ol ΠL 时,随着H 2O 2浓度的增加,・OH 的表观生成速率不再升高反而降低。
例如,反应时间为0.5min 时,H 2O 2的浓度从10mm ol ΠL 增加到20mm ol ΠL ,相对应的・OH 表观生成率则从35.56%降低为25.08%,下降率达10.48%,同样当H 2O 2浓度从20mm ol ΠL 再升高至50mm ol ΠL 时可以得到类似的结果。
这是因为H 2O 2是・OH 的捕捉剂,当溶液中H 2O 2的浓度超过一定量后,随着H 2O 2浓度的增加,它对羟自由基的捕捉作用随之增加,使反应生成的一部分・OH 被消耗掉,所以此时溶液中・OH 的表观生成速率降低。
通过上述讨论可知,在芬顿系统中H 2O 2的浓度是影响・OH 表观生成率的主要因素之一,H 2O 2浓度过高或过低都不利于・OH 的生成。
因此,在实际应用中要将H 2O 2的投加量控制在最佳范围之内,以达到既经济又有效地去除有机物的目的。
2.2 FeSO 4浓度对・OH 表观生成率的影响 试验时固定溶液中H 2O 2的浓度为5mm ol ΠL ,考315期程丽华等:Fenton 试剂生成・OH 的动力学研究察了FeS O 4浓度对羟自由基表观生成率的影响情况,试验结果见图2。
图2 不同FeS O 4浓度时・OH 表观生成率随时间变化曲线图注:图中浓度为FeS O 4浓度由试验结果可以看到,当FeS O 4的浓度为0.2mm ol ΠL 、0.6mm ol ΠL 、1.0mm ol ΠL 、2.0mm ol ΠL 和5mm ol ΠL 时,反应10min ,・OH 的表观生成率分别可达13.68%、40.73%、62.31%、97.57%和99.36%。
这说明当溶液中FeS O 4的浓度低于5mm ol ΠL 时,羟自由基的表观生成速率随着溶液中FeS O 4浓度的增加而增大。
这可能是因为随着溶液中FeS O 4浓度的增加,H 2O 2分解反应第一步的速率增加:Fe 2++H 2O 2→Fe 3++・OH +H O -所以・OH 的表观生成速率加快。
因此,在一定的范围内适量增加FeS O 4的浓度,有助于反应速率的提高。
而当溶液中FeS O 4的浓度高于5mm ol ΠL 之后,随着溶液中FeS O 4浓度的进一步增高,・OH 的表观生成速率反而降低。