【精品】2020届高考数学(鲁京津琼)专用精练:第八章第8讲 立体几何中的向量方法(二)——求空间角含解
- 格式:doc
- 大小:417.50 KB
- 文档页数:10
§8.3直线、平面平行的判定与性质最新考纲 1.以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的有关性质与判定.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)平行于同一条直线的两个平面平行.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D. 3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.题组三易错自纠4.(2019·荆州模拟)对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是() A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.5.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是______.(填上所有正确的序号)答案②④解析 在条件①或条件③中,α∥β或α与β相交; 由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a ⊥α,a ∥b ⇒b ⊥α,又b ⊥β,从而α∥β,④满足.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.求证:GF ∥平面ADE .证明 方法一 如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得 AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF ,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.方法二如图,取AB的中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE.所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.命题点2直线与平面平行的性质例2(2019·东三省四市教研联合体模拟)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点, ∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴EF ∥平面PDC .(2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离. ∵P A ⊥平面ABCD ,∴P A ⊥DA ,在Rt △P AD 中,P A =AD =1,∴DP =2, ∵P A ⊥平面ABCD ,∴P A ⊥CB ,∵CB ⊥AB ,P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴CB ⊥平面P AB , ∴CB ⊥PB ,则PC =3, ∴PD 2+DC 2=PC 2,∴△PDC 为直角三角形,其中PD ⊥CD , ∴S △PDC =12×1×2=22,连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h ,∵CD ⊥AD ,CD ⊥P A ,AD ∩P A =A ,AD ,P A ⊂平面P AD , ∴CD ⊥平面P AD ,则13×h ×22=13×1×12×12×1, ∴h =24,∴F 到平面PDC 的距离为24. 思维升华判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a ⊂α⇒a ∥β). (4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).跟踪训练1(2018·崇左联考)如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PFPC=λ(λ≠0).(1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD , ∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2, ∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC , ∴P A ⊥平面ABCD ,∴P A ⊥BC . 又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB , 又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB ,∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54, 又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.题型二 平面与平面平行的判定与性质例3如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1∥AB且A1B1=AB,∴A1G∥EB,A1G=EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A1,∴平面EF A1∥平面BCHG.引申探究1.在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D 分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C,AC1,交于点M,∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B ∥DM .∵A 1B ⊂平面A 1BD 1,DM ⊄平面A 1BD 1, ∴DM ∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1∥BD 且D 1C 1=BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D , 因此平面A 1BD 1∥平面AC 1D .2.在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC 的值.解 连接A 1B ,AB 1,交于点O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.同理,AD1∥C1D,又AD∥C1D1,所以四边形ADC1D1是平行四边形,所以AD=D1C1,又AC=A1C1,所以A1D1D1C1=DCAD,所以DCAD=1,即ADDC=1.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.跟踪训练2(2018·合肥质检)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若AB=1,BF=2,求三棱锥A-CEF的体积.(1)证明如图,设AC与BD交于点N,则N为AC的中点,连接MN,又M为棱AE的中点,∴MN∥EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN∥平面EFC.∵BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,∴BF∥DE且BF=DE,∴四边形BDEF为平行四边形,∴BD∥EF.∵BD⊄平面EFC,EF⊂平面EFC,∴BD∥平面EFC.又MN∩BD=N,MN,BD⊂平面BDM,∴平面BDM∥平面EFC.(2)解连接EN,FN.在正方形ABCD中,AC⊥BD,又BF⊥平面ABCD,∴BF⊥AC.又BF∩BD=B,BF,BD⊂平面BDEF,∴AC⊥平面BDEF,又N是AC的中点,∴V三棱锥A-NEF=V三棱锥C-NEF,∴V三棱锥A-CEF=2V三棱锥A-NEF=2×13×AN×S△NEF=2×13×22×12×2×2=23,∴三棱锥A-CEF的体积为2 3.题型三平行关系的综合应用例4如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.。
第8讲 曲线与方程一、选择题1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线C.两条线段D.一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线. 答案 D2.(2017·衡水模拟)若方程x 2+y2a =1(a 是常数),则下列结论正确的是( )A.任意实数a 方程表示椭圆B.存在实数a 方程表示椭圆C.任意实数a 方程表示双曲线D.存在实数a 方程表示抛物线解析 当a >0且a ≠1时,方程表示椭圆,故选B. 答案 B3.(2017·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ) A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1D.4x 225+4y 221=1解析 ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆.∴a =52,∴c =1,则b 2=a 2-c 2=214, ∴M 的轨迹方程为4x 225+4y 221=1.答案 D4.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则点P 的轨迹方程是( ) A.y 2=2x B.(x -1)2+y 2=4 C.y 2=-2xD.(x -1)2+y 2=2解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥P A ,且|MA |=1, 又∵|P A |=1, ∴|PM |=|MA |2+|P A |2=2,即|PM |2=2,∴(x -1)2+y 2=2. 答案 D5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A.直线 B.椭圆 C.圆D.双曲线解析 设C (x ,y ),因为OC →=λ1OA →+λ2OB →, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1= y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5 , 所以点C 的轨迹为直线,故选A. 答案 A 二、填空题6.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积为__________. 解析 设P (x ,y ),由|P A |=2|PB |, 得(x +2)2+y 2=2(x -1)2+y 2,∴3x 2+3y 2-12x =0,即x 2+y 2-4x =0. ∴P 的轨迹为以(2,0)为圆心,半径为2的圆. 即轨迹所包围的面积等于4π. 答案 4π7.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为________.解析设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎨⎧x +x 12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上, ∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x . 答案 y =2x8.在△ABC 中,|BC→|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.解析 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |, |AE |=|AF |.∴|AB |-|AC |=22<|BC |=4,∴点A 的轨迹为以B ,C 的焦点的双曲线的右支(y ≠0)且a =2,c =2,∴b =2, ∴轨迹方程为x 22-y 22=1(x >2). 答案 x 22-y 22=1(x >2) 三、解答题9.如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0), 由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).① 直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2017·广州模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC→·BC →=0,设P 为弦AB 的中点. (1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在.根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px (p >0)上,其中p2=1. ∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎨⎧y 2=4x ,x 2-x +y 2=4得x 2+3x -4=0, 解得x 1=1,x 2=-4,由x ≥0, 故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).11.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)解析 如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6<10=|AB |,根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支(y ≠0),方程为x 29-y 216=1(x >3). 答案 C12.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN→|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( ) A.y 2=8x B.y 2=-8x C.y 2=4xD.y 2=-4x解析 MN→=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2,MN→·NP →=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x . 答案 B13.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________. 解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP→=-12OQ →=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1. 答案 x 24a 2+y 24b 2=114.(2016·全国Ⅲ卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解 由题设F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)证明由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以AR∥FQ.(2)设过AB的直线为l,设l与x轴的交点为D(x1,0),则S△ABF =12|b-a||FD|=12|b-a|⎪⎪⎪⎪⎪⎪x1-12,S△PQF=|a-b|2.由题设可得|b-a|⎪⎪⎪⎪⎪⎪x1-12=|a-b|2,所以x1=1,x1=0(舍去).设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由k AB=k DE可得2a+b=yx-1(x≠1).而a+b2=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合. 所以,所求轨迹方程为y2=x-1.。
高考专题冲破四 高考中的立体几何问题题型一 平行、垂直关系的证明例1 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 别离是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC , 因此BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 因此AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,因此平面ABE ⊥平面B 1BCC 1.(2)证明 方式一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 别离是A 1C 1,BC 的中点, 因此FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 因此FG ∥EC 1,且FG =EC 1, 因此四边形FGEC 1为平行四边形, 因此C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 因此C 1F ∥平面ABE .方式二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 别离是AC ,BC 的中点,因此HF ∥AB , 又因为E ,H 别离是A 1C 1,AC 的中点, 因此EC 1∥AH ,且EC 1=AH , 因此四边形EAHC 1为平行四边形, 因此C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 因此平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 因此C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 因此AB =AC 2-BC 2= 3.因此三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的彼此转化解决平行关系的判定问题时,一样遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题进程中,判定定理和性质定理一样要彼此结合,灵活运用. (2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一样需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练1 如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 别离是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,成立如下图的空间直角坐标系Axyz ,那么A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 别离是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB . (2)由(1)可知,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC . 题型二 立体几何中的计算问题 命题点1 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方式一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,因此A 1B 21+AB 21=AA 21,故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13,因此AB 21+B 1C 21=AC 21,故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 因此AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 因此∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos ∠C 1A 1B 1=427,sin ∠C 1A 1B 1=77, 因此C 1D =3,故sin ∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方式二 (1)证明 如图,以AC 的中点O 为原点,别离以射线OB ,OC 为x ,y轴的正半轴,成立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1). 因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 因此AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).因此sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 思维升华 (1)利用向量求直线与平面所成的角有两个思路:①别离求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角确实是斜线和平面所成的角.(2)假设直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,那么θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·福州质检)在直三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,点D 在棱BC 上,且CD =3BD ,点E ,F 别离为棱AB ,BB 1的中点.(1)证明:A 1C ∥平面DEF ;(2)若A 1C ⊥EF ,求直线A 1C 1与平面DEF 所成的角的正弦值. 解 (1)如图,连接AB 1,A 1B 交于点H , 设A 1B 交EF 于点K ,连接DK ,因为四边形ABB 1A 1为矩形, 因此H 为线段A 1B 的中点.因为点E ,F 别离为棱AB ,BB 1的中点, 因此点K 为线段BH 的中点, 因此A 1K =3BK .又CD =3BD ,因此A 1C ∥DK . 又A 1C ⊄平面DEF ,DK ⊂平面DEF , 因此A 1C ∥平面DEF .(2)连接CE ,EH ,由(1)知,EH ∥AA 1, 因为AA 1⊥平面ABC , 因此EH ⊥平面ABC .因为△ABC 为正三角形,且点E 为棱AB 的中点, 因此CE ⊥AB .故以点E 为坐标原点,别离以EA →,EH →,EC →的方向为x 轴、y 轴、z 轴的正方向成立如下图的空间直角坐标系Exyz . 设AB =4,AA 1=t (t >0),则E (0,0,0),A 1(2,t,0),A (2,0,0),C (0,0,23), F ⎝⎛⎭⎫-2,t 2,0,D ⎝⎛⎭⎫-32,0,32, 因此A 1C →=(-2,-t ,23),EF →=⎝⎛⎭⎫-2,t 2,0. 因为A 1C ⊥EF ,因此A 1C →·EF →=0, 因此(-2)×(-2)-t ×t2+23×0=0,因此t =22,因此EF →=(-2,2,0),ED →=⎝⎛⎭⎫-32,0,32.设平面DEF 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·n =0,ED →·n =0,因此⎩⎪⎨⎪⎧-2x +2y =0,-32x +32z =0.取x =1,那么n =(1,2,3). 又A 1C 1→=AC →=(-2,0,23), 设直线A 1C 1与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,A 1C 1→〉|=|n ·A 1C 1→||n ||A 1C 1→|=46×4=66,因此直线A 1C 1与平面DEF 所成的角的正弦值为66. 命题点2 求二面角例3如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)假设直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值. (1)证明 在△ACB 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,因此AC 2+BC 2=AB 2,因此AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC , 因此AC ⊥平面BCDE .又BE ⊂平面BCDE ,因此AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C , 因此BE ⊥平面ACE .(2)解 方式一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC , 平面BCDE ∩平面ABC =BC ,因此∠BCE =45°,因此△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG ,则∠EGF 为二面角E -AB -C 的平面角. 易患EF =BF =1,FG =32. 在Rt △EFG 中,由勾股定理,得EG =EF 2+FG 2=72, 因此cos ∠EGF =FG EG =217,因此二面角E -AB -C 的余弦值为217.方式二因为直线CE与平面ABC所成的角为45°,平面BCDE⊥平面ABC,平面BCDE∩平面ABC =BC ,因此∠BCE =45°,因此△EBC 为等腰直角三角形.记BC 的中点为O ,连接OE ,那么OE ⊥平面ABC ,以O 为坐标原点,别离以OB ,OE 所在直线为x 轴、z 轴,成立如下图的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1),因此BA →=(-2,23,0),BE →=(-1,0,1).设平面ABE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧ BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0, 令x =3,那么m =(3,1,3)为平面ABE 的一个法向量.易知平面ABC 的一个法向量为OE →=(0,0,1),因此cos 〈m ,OE →〉=m ·OE →|m |·|OE →|=37=217, 易知二面角E -AB -C 为锐角,因此二面角E -AB -C 的余弦值为217. 思维升华 (1)求二面角最经常使用的方式确实是别离求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角取得二面角的大小,但要注意结合实际图形判定所求角是锐角仍是钝角.(2)利用向量法求二面角的大小的关键是确信平面的法向量,求法向量的方式要紧有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B -OB 1-C 的余弦值.(1)证明 ∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD .∵A 1O ∩CO =O ,A 1O ,CO ⊂平面A 1CO ,∴BD ⊥平面A 1CO .∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)解 ∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB →,OC →,OA 1→的方向为x ,y ,z 轴的正方向成立如下图的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°,∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB →=(1,0,0),BB 1→=AA 1→=(0,3,6),OB 1→=OB →+BB 1→=(1,3,6).设平面OBB 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ OB →·n =0,OB 1→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0. 令y =2,得n =(0,2,-1),是平面OBB 1的一个法向量.同理可求得平面OCB1的一个法向量m=(6,0,-1),∴cos 〈n ,m 〉=n ·m |n |·|m |=13×7=2121. 由图可知二面角B -OB 1-C 是锐二面角,∴二面角B -OB 1-C 的余弦值为2121. 题型三 立体几何中的探讨性问题例4 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,P A =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是不是存在一点M ,使得二面角M -AC -D 的大小为45°,若是存在,求BM 与平面MAC 所成角的正弦值,若是不存在,请说明理由.(1)证明 如图,由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得△ABC 是等腰直角三角形,即AB ⊥AC ,因为P A ⊥平面ABCD ,因此P A ⊥AB ,又P A ∩AC =A ,P A ,AC ⊂平面P AC ,因此AB ⊥平面P AC ,因此AB ⊥PC .(2)解 方式一 (几何法)过点M 作MN ⊥AD 交AD 于点N ,那么MN ∥P A ,因为P A ⊥平面ABCD ,因此MN ⊥平面ABCD .过点M 作MG ⊥AC 交AC 于点G ,连接NG ,则∠MGN 是二面角M -AC -D 的平面角.若∠MGN =45°,那么NG =MN ,又AN =2NG =2MN ,因此MN =1,因此MN =12P A ,MN ∥P A , 因此M 是PD 的中点.在三棱锥M -ABC 中,可得V M -ABC =13S △ABC ·MN , 设点B 到平面MAC 的距离是h ,则V B -MAC =13S △MAC ·h , 因此S △ABC ·MN =S △MAC ·h ,解得h =2 2.在Rt △BMN 中,可得BM =3 3.设BM 与平面MAC 所成的角为θ,则sin θ=h BM =269. 方式二 (向量法)以A 为坐标原点,以过点A 平行于CD 的直线为x 轴,AD ,AP 所在直线别离为y 轴、z 轴,成立如下图的空间直角坐标系,则 A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0).易知当点M 与P 点或D 点重合时不知足题意,设PM →=t PD →(0<t <1),那么点M 的坐标为(0,22t ,2-2t ),因此AM →=(0,22t ,2-2t ). 设平面MAC 的法向量为n =(x ,y ,z ),那么⎩⎪⎨⎪⎧ n ·AC →=0,n ·AM →=0,得⎩⎪⎨⎪⎧22x +22y =0,22ty +(2-2t )z =0, 那么可取n =⎝⎛⎭⎪⎫1,-1,2t 1-t . 又m =(0,0,1)是平面ACD 的一个法向量,因此|cos 〈m ,n 〉|=|m ·n ||m ||n |=cos 45°=22, 解得t =12,即点M 是线段PD 的中点. 现在平面MAC 的一个法向量可取n 0=(1,-1,2),BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ,则sin θ=|cos 〈n 0,BM →〉|=269. 思维升华 (1)关于线面关系中的存在性问题,第一假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻觅假设知足的条件,假设知足那么确信假设,假设得出矛盾的结论那么否定假设.(2)平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情况.一样地,翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变. 跟踪训练4 (2018·中原名校联考)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判定棱P A 上是不是存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?假设存在,求出AE AP的值;假设不存在,请说明理由.(1)证明因为四边形ABCD是平行四边形,AD=22,因此BC =AD =22,又AB =AC =2,因此AB 2+AC 2=BC 2,因此AC ⊥AB ,又PB ⊥AC ,AB ∩PB =B ,AB ,PB ⊂平面P AB ,因此AC ⊥平面P AB .又因为AC ⊂平面P AC ,因此平面P AB ⊥平面P AC .(2)解 由(1)知AC ⊥AB ,AC ⊥平面P AB ,别离以AB ,AC 所在直线为x 轴,y 轴, 平面P AB 内过点A 且与直线AB 垂直的直线为z 轴,成立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),AC →=(0,2,0),BC → =(-2,2,0),由∠PBA =45°,PB =2,可得P (1,0,1),因此AP →=(1,0,1),BP →=(-1,0,1),假设棱P A 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为69, 设AE AP =λ(0<λ<1), 则AE →=λAP →=(λ,0,λ),CE →=AE →-AC →=(λ,-2,λ),设平面PBC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0,n ·BP →=0,即⎩⎪⎨⎪⎧-2x +2y =0,-x +z =0, 令z =1,可得x =y =1,因此平面PBC的一个法向量n=(1,1,1),设直线CE 与平面PBC 所成的角为θ,那么sin θ= |cos 〈n ,CE →〉| =|λ-2+λ|3·λ2+(-2)2+λ2=|2λ-2|3·2λ2+4=69, 解得λ=12或λ=74(舍). 因此在棱P A 上存在点E ,且AE AP =12, 使得直线CE 与平面PBC 所成角的正弦值为69.1.在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,P A =PD .(1)证明:BC ⊥PB ;(2)若P A ⊥PD ,PB =AB ,求二面角A -PB -C 的余弦值.(1)证明 取AD 中点为E ,连接PE ,BE ,BD ,∵P A =PD ,∴PE ⊥AD ,∵底面ABCD 为菱形,且∠BAD =60°,∴△ABD 为等边三角形,∴BE ⊥AD ,∵PE ∩BE =E ,PE ,BE ⊂平面PBE ,∴AD ⊥平面PBE ,又PB ⊂平面PBE ,∴AD⊥PB,∵AD ∥BC ,∴BC ⊥PB .(2)解 设AB =2,∴AD =PB =2,BE =3,∵P A ⊥PD ,E 为AD 中点, ∴PE =1,∵PE 2+BE 2=PB 2,∴PE ⊥BE .以E 为坐标原点,别离以EA ,EB ,EP 所在直线为x ,y ,z 轴成立如下图的空间直角坐标系,则A (1,0,0),B (0,3,0),P (0,0,1),C (-2,3,0),∴AB →=(-1,3,0),AP →=(-1,0,1),BP →=(0,-3,1),BC →=(-2,0,0).设平面P AB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-x +3y =0,-x +z =0, 令y =3,那么n =(3,3,3).同理可得平面PBC 的一个法向量m =(0,3,3).cos 〈m ,n 〉=m ·n |m ||n |=277. 设二面角A -PB -C 的平面角为θ,由图易知θ为钝角,则cos θ=-cos 〈m ,n 〉=-277. ∴二面角A -PB -C 的余弦值为-277. 2.(2018·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A1O⊥平面ABC;(2)求直线AB 与平面A 1BC 1所成角的正弦值.(1)证明 ∵AA 1=A 1C ,且O 为AC 的中点,∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线别离为x 轴、y 轴、z 轴成立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3), ∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1→=(0,2,0),设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0, ∴平面A 1BC 1的一个法向量为n =(1,0,1),设直线AB 与平面A 1BC 1所成的角为α,则sin α=|cos 〈AB →,n 〉|,又∵cos 〈AB →,n 〉=AB →·n |AB →||n |=322=64, ∴AB 与平面A 1BC 1所成角的正弦值为64. 3.(2018·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置取得四面体P -ABC ,如图2所示.已知PB =4 2.(1)求证:平面P AC⊥平面ABC;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值. (1)证明 取AC 的中点O ,连接PO ,BO 取得△PBO .∵四边形ABCD 是菱形,∴P A =PC ,PO ⊥AC .∵DC =5,AC =6,∴OC =3,PO =OB =4,∵PB =42,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC .∵PO ⊂平面P AC ,∴平面P AC ⊥平面ABC .(2)解 ∵AB =BC ,∴BO ⊥AC .易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线别离为x 轴、y 轴、z 轴成立如下图的空间直角坐标系Oxyz .则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0).设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎫0,-2,43. ∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎫-4,-2,43. 设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0, 解得⎩⎨⎧ x 1=34y 1,y 1=415z 1,取z 1=15,那么n 1=(3,4,15).取平面ABC的一个法向量n2=(0,0,1).∵cos〈n1,n2〉=n1·n2|n1||n2|=1532+42+152=31010,由图可知二面角Q-BC-A为锐角,∴二面角Q -BC -A 的余弦值为31010. 4.(2019·南昌模拟)如图,多面体ABCDEF 中,ABCD 为正方形,AB =2,AE =3,DE =5,二面角E -AD -C 的余弦值为55,且EF ∥BD .(1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值.(1)证明 ∵AB =AD =2,AE =3,DE =5,∴AD 2+DE 2=AE 2,∴AD ⊥DE ,又正方形ABCD 中,AD ⊥DC ,且DE ∩DC =D ,DE ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又∵AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC .(2)解 由(1)知,∠EDC 是二面角E -AD -C 的平面角,作OE ⊥CD 于O ,那么OD =DE ·cos ∠EDC =1,OE =2,又∵平面ABCD ⊥平面EDC ,平面ABCD ∩平面EDC =CD ,OE ⊂平面EDC ,∴OE ⊥平面ABCD .取AB 中点M ,连接OM ,那么OM ⊥CD ,如图,以O 为原点,别离以OM ,OC ,OE 所在直线为x 轴、y 轴、z 轴,成立空间直角坐标系,则A (2,-1,0),B (2,1,0),D(0,-1,0),E(0,0,2),∴AE →=(-2,1,2),BD →=(-2,-2,0),又EF ∥BD ,知EF 的一个方向向量为(2,2,0),设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=-2x +y +2z =0,n ·DB →=2x +2y =0,取x =-2,得n =(-2,2,-3),又平面EDC 的一个法向量为m =(1,0,0),∴cos 〈n ,m 〉=n ·m |n |·|m |=-21717, 设平面AEF 与平面EDC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=21717.5.等边三角形ABC 的边长为3,点D ,E 别离是边AB ,AC 上的点,且知足AD DB =CE EA =12,如图1.将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1—DE —B 为直二面角,连接A 1B ,A 1C ,如图2.(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是不是存在点P ,使直线P A 1与平面A 1BD 所成的角为60°?假设存在,求出PB 的长;假设不存在,请说明理由.(1)证明 因为等边三角形ABC 的边长为3,且AD DB =CE EA =12,因此AD =1,AE =2. 在△ADE 中,∠DAE =60°,由余弦定理得DE =12+22-2×1×2×cos 60°= 3.从而AD2+DE2=AE2,因此AD⊥DE.折起后有A 1D ⊥DE ,因为二面角A 1—DE —B 是直二面角,因此平面A 1DE ⊥平面BCED ,又平面A 1DE ∩平面BCED =DE ,A 1D ⊥DE ,A 1D ⊂平面A 1DE ,因此A 1D ⊥平面BCED .(2)解 存在.理由:由(1)可知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,别离以DB ,DE ,DA 1所在直线为x 轴、y 轴、z 轴,成立如下图的空间直角坐标系Dxyz .设PB =2a (0≤2a ≤3),作PH ⊥BD 于点H ,连接A 1H ,A 1P ,则BH =a ,PH =3a ,DH =2-a . 因此A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0).因此P A 1→=(a -2,-3a ,1).因为ED ⊥平面A 1BD ,因此平面A 1BD 的一个法向量为DE →=(0,3,0).要使直线P A 1与平面A 1BD 所成的角为60°,则sin 60°=|P A 1→·DE →||P A 1→||DE →|=3a 4a 2-4a +5×3=32, 解得a =54.现在2a =52,知足0≤2a ≤3,符合题意. 因此在线段BC 上存在点P ,使直线P A 1与平面A 1BD 所成的角为60°,现在PB =52.6.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE=3,EC⊥BD.(1)求证:平面BED⊥平面ABCD;(2)假设点P在侧面ABE内运动,且DP∥平面BEC,求直线DP与平面ABE所成角的正弦值的最大值.(1)证明如图,连接AC,交BD于点O,连接EO,∵AD=AB,CD=CB,AC=AC,∴△ADC≌△ABC,易患△ADO≌△ABO,∴∠AOD=∠AOB=90°,∴AC⊥BD.又EC⊥BD,EC∩AC=C,EC,AC⊂平面AEC,∴BD⊥平面AEC,又OE⊂平面AEC,∴OE⊥BD.又底面ABCD是圆内接四边形,∴∠ADC=∠ABC=90°,在Rt△ADC中,由AD=3,CD=1,可得AC=2,AO=32,∴∠AEC=90°,AEAC=AOAE=32,易患△AEO∽△ACE,∴∠AOE=∠AEC=90°,即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O ,∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM ,则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°,∴△ABD 为正三角形,∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC ,∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线别离为x 轴、y 轴、z 轴,成立空间直角坐标系,则A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫0,32,0,E ⎝⎛⎭⎫0,0,32, M ⎝⎛⎭⎫34,0,34,D ⎝⎛⎭⎫0,-32,0,N ⎝⎛⎭⎫34,34,0, ∴AB →=⎝⎛⎭⎫-32,32,0,AE →=⎝⎛⎭⎫-32,0,32, DM →=⎝⎛⎭⎫34,32,34,MN →=⎝⎛⎭⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧ -3x +y =0,-3x +z =0,令x =1,那么n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝⎛⎭⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427. 故直线DP 与平面ABE 所成角的正弦值的最大值为427.。
§8.7 立体几何中的向量方法(二)——求空间角和距离最新考纲 1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围(0,π2][0,π]求法cos θ=|a ·b ||a ||b |cos β=a ·b |a ||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=.|a ·n ||a ||n |3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈,〉.AB → CD →(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示 利用||2=· 可以求空间中有向线段的长度.AB → AB → AB →2.如何求空间点面之间的距离?提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为||=|||cos 〈,n 〉|.BO → AB → AB →题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].(0,π2][0,π2]( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45° B .135°C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉===,即〈m ,n 〉=45°.m·n |m||n |11·222∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为2,2则AC 1与侧面ABB 1A 1所成的角为______.答案 π6解析 如图,以A 为原点,以,(AE ⊥AB ),所在直线分别为x 轴、y 轴、z 轴(如图)AB → AE → AA 1→建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,,2),D (1,0,2),∴=(1,,2),322AC 1→32=(1,0,2).AD →2∠C 1AD 为AC 1与平面ABB 1A 1所成的角,cos ∠C 1AD =AC 1,→ ·AD →|AC 1→ ||AD →|==,(1,3,22)·(1,0,22)12×932又∵∠C 1AD ∈,∴∠C 1AD =.[0,π2]π6题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.B. C.D.11025301022答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴=(1,-1,2),BM → =(-1,0,2).AN →∴cos 〈,〉=BM → AN →BM ,→ ·AN→ |BM → ||AN →|==1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+2236×5=.30105.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-,则l12与α所成的角为________.答案 30°解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-,12∴sin θ=|cos 〈m ,n 〉|=,∵0°≤θ≤90°,∴θ=30°.12题型一 求异面直线所成的角例1 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC =.3由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC .又AE ⊥EC ,所以EG =,且EG ⊥AC .3在Rt △EBG 中,可得BE =,故DF =.222在Rt △FDG 中,可得FG =.62在直角梯形BDFE 中,由BD =2,BE =,DF =,可得EF =,从而EG 2+FG 2=EF 2,222322所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,||为单位长度,GB →建立空间直角坐标系Gxyz ,由(1)可得A (0,-,0),E (1,0,),F ,32(-1,0,22)C (0,,0),3所以=(1,,),=.AE → 32CF →(-1,-3,22)故cos 〈,〉==-.AE → CF →AE ,→ ·CF→|AE → ||CF →|33所以直线AE 与直线CF 所成角的余弦值为.33思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( )A.B. C. D.1103571045答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-,0,0),N ,3(-32,-12,2)所以=(0,1,2),AM →=,BN →(32,-12,2)所以cos 〈,〉===,故选C.AM → BN →AM ,→ ·BN →|AM → |·|BN → |725×5710题型二 求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,的方向为y 轴正方向,||为单位长,建立如图所示的空间直角坐标HF → BF →系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =.3又PF =1,EF =2,所以PE ⊥PF .所以PH =,EH =.3232则H (0,0,0),P ,D ,(0,0,32)(-1,-32,0)=,=.DP → (1,32,32)HP →(0,0,32)又为平面ABFD 的法向量,HP →设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈,〉|===.HP → DP →|HP ,→ ·DP →||HP → ||DP →|34334所以DP 与平面ABFD 所成角的正弦值为.34思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=-β或θ=β-,故有sin θ=|cos β|=.π2π2|l ·n ||l ||n |跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2,PA =PB =PC =AC =4,2O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA-C 为30°,求PC 与平面PAM 所成角的正弦值.(1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2.3如图,连接OB .因为AB =BC =AC ,22所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =AC =2.12由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2),=(0,2,2).3AP →3由(1)知平面PAC 的一个法向量为=(2,0,0).OB →设M (a ,2-a ,0)(0≤a ≤2),则=(a ,4-a ,0).AM →设平面PAM 的法向量为n =(x ,y ,z ).由·n =0,·n =0,得AP → AM →Error!可取y =a ,得平面PAM 的一个法向量为n =((a -4),a ,-a ),333所以cos 〈,n 〉==.OB →OB ,→·n |OB ,→||n |23(a -4)23(a -4)2+3a 2+a 2由已知可得|cos 〈,n 〉|=cos 30°=,OB →32所以=,23|a -4|23(a -4)2+3a 2+a 232解得a =-4(舍去)或a =.43所以n =.(-833,433,-43)又=(0,2,-2),所以cos 〈,n 〉=.PC → 3PC →34所以PC 与平面PAM 所成角的正弦值为.34题型三 求二面角例3 (2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明 由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴P ,(0,92,3)∴=(3,0,6),=(0,m ,0),=,OD → AQ → PQ →(6,m -92,-3)∵·=0,·=0,OD → AQ → OD → PQ →∴⊥,⊥,且与不共线,OD → AQ → OD → PQ → AQ → PQ →∴OD ⊥平面PAQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =OB =3,12则Q (6,3,0),∴=(-6,3,0),=(0,-3,6).QB → BC →设平面CBQ 的法向量为n 1=(x ,y ,z ),∵Error!∴Error!令z =1,则y =2,x =1,则n 1=(1,2,1),易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ==.|n 1·n 2|n 1|·|n 2||66思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧所在平面 CD垂直,M 是上异于C ,D 的点. CD(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径, CD所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .DA →当三棱锥M -ABC 体积最大时,M 为的中点.由题设得 CDD (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0),AM → AB → DA →设n =(x ,y ,z )是平面MAB 的法向量,则Error!即Error!可取n =(1,0,2),是平面MCD 的一个法向量,因此DA →cos 〈n ,〉==,DA →n ·DA ,→|n ||DA ,→|55sin 〈n ,〉=.DA →255所以平面MAB 与平面MCD 所成二面角的正弦值是.255利用空间向量求空间角例 (12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值.(1)证明 设AC ∩BD =O ,连接SO ,如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线,即O 为BD 的中点,高清试卷 下载可打印且AC ⊥BD . [1分]在△BCD 中,因为CB =CD =2,∠BCD =120°,所以BD =2,CO =1.3在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =BD =.123在△SOC 中,因为CO =1,SO =,CS =2,3所以SO 2+CO 2=CS 2,所以SO ⊥AC . [4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK . [6分]因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB . [7分]所以∠AKC 是二面角A -SB -C 的平面角.因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .在Rt △SOB 中,OK ==.SO ·OBSB 62在Rt △AOK 中,AK ==,AO 2+OK 2422同理可求CK =. [10分]102在△AKC 中,cos ∠AKC ==-.AK 2+CK 2-AC 22AK ·CK 10535所以二面角A -SB -C 的余弦值为-.[12分]10535方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . [6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD ,所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,,,的方向分别为x 轴、y 轴、z 轴的正方OA → OB → OS → 向建立空间直角坐标系,如图③,则A (3,0,0),B (0,,0),C (-1,0,0),S (0,0,).33所以=(-3,,0),=(1,,0),AB → 3CB →3=(0,,-). [8分]SB →33设平面SAB 的法向量n =(x 1,y 1,z 1),则Error!令y 1=,得平面SAB 的一个法向量为n =(1,,).333同理可得平面SCB 的一个法向量为m =(-,1,1).[10分]3所以cos 〈n ,m 〉===.n ·m |n ||m |-3+3+37×510535因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-.[12分]10535利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A .60° B .120°C .60°或120° D .90°答案 C解析 cos 〈m ,n 〉===-,m·n |m||n |-12·212即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.B.5553C.D.5654答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos 〈,〉=AB 1→ BC 1→ AB 1→ BC 1→ AB 1→ ·BC 1→ |AB 1→ ||BC 1→|===,故选A.0+4-14+4+1×0+4+115553.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A. B. C. D.12233322答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ,D (0,1,0),(1,0,12)∴=(0,1,-1),=.A 1D → A 1E →(1,0,-12)设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则有Error!即Error!∴Error!∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉==,23×123即所成的锐二面角的余弦值为.234.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( )A. B. C. D.π6π4π3π2答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴=(1,1,0),=(-1,1,-1),AC → B 1D →∵·=1×(-1)+1×1+0×(-1)=0,AC → B 1D →∴⊥,∴AC 与B 1D 所成的角为.AC → B 1D →π25.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( )A .0 B .- C. D.141412答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z轴,建立空间直角坐标系,则A (0,0,0),B 1(,1,2),A 1(0,0,2),C (0,2,0),3=(,1,2),=(0,2,-2),AB 1→ 3A 1C →设异面直线AB 1和A 1C 所成的角为θ,则cos θ===.|AB 1→ ·A 1C →||AB 1→ |·|A 1C →||-2|8·814∴异面直线AB 1和A 1C 所成的角的余弦值为.146.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大OC →小为θ,则cos θ等于( )A. B. C. D .-43532323。
§8.6立体几何中的向量方法(一)——证明平行与垂直最新考纲1.理解直线的方向向量与平面的法向量.2.能用向量语言表述线线、线面、面面的垂直、平行关系.3.能用向量方法证明有关线面位置关系的一些定理(包括三垂线定理).1.两个重要向量直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l 的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量2.空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2l 1∥l 2n 1∥n 2⇔n 1=λn 2l 1⊥l 2n 1⊥n 2⇔n 1·n 2=0直线l 的方向向量为n,平面α的法向量为ml∥αn⊥m ⇔m·n=0l⊥αn∥m ⇔n=λm 平面α,β的法向量分别为n,mα∥βn∥m ⇔n=λm α⊥βn⊥m ⇔n·m=0概念方法微思考1.直线的方向向量如何确定?提示l 是空间一直线,A,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.2.如何确定平面的法向量?提示设a,b 是平面α内两不共线向量,n 题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)若两直线的方向向量不平行,则两直线不平行.(√)(5)若a∥b,则a 所在直线与b 所在直线平行.(×)(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.(×)题组二教材改编2.设u,v 分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为__________;当v=(4,-4,-10)时,α与β的位置关系为________.答案α⊥βα∥β解析当v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v=(4,-4,-10)时,v=-2u ⇒α∥β.3.如图所示,在正方体ABCD-A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON,AM 的位置关系是________.答案垂直解析以A 为原点,分别以AB →,AD →,AA 1→所在直线为x,y,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则,12,0AM →·ON →0,-12,1∴ON 与AM 垂直.题组三易错自纠4.直线l 的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥αB.l⊥αC.l 与α斜交D.l ⊂α或l∥α答案B解析由a=-n 知,n∥a,则有l⊥α,故选B.5.已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对答案C解析∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.6.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC 法向量的是()A.(-1,1,1)B.(1,-1,1)-33,-33,-,33,-答案C解析设n=(x,y,z)为平面ABC 的法向量,AB →=(-1,1,0),AC →=(-1,0,1),→=0,→=0,∴x=y=z.故选C.题型一利用空间向量证明平行问题例1如图所示,平面PAD⊥平面ABCD,ABCD 为正方形,△PAD 是直角三角形,且PA=AD=2,E,F,G 分别是线段PA,PD,CD 的中点.求证:PB∥平面EFG.证明∵平面PAD⊥平面ABCD,ABCD 为正方形,△PAD 是直角三角形,且PA=AD,∴AB,AP,AD 两两垂直,以A 为坐标原点,AB,AD,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG,∴PB∥平面EFG.引申探究若本例中条件不变,证明平面EFG∥平面PBC.证明∵EF →=(0,1,0),BC →=(0,2,0),∴BC →=2EF →,∴BC∥EF.又∵EF ⊄平面PBC,BC ⊂平面PBC,∴EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF,GF ⊂平面EFG,∴平面EFG∥平面PBC.思维升华利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行面面平行①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题跟踪训练1如图,在三棱锥PABC 中,PA⊥底面ABC,∠BAC=90°.点D,E,N 分别为棱PA,PC,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2.求证:MN∥平面BDE.证明如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.由题意,可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).DE →=(0,2,0),DB →=(2,0,-2).设n=(x,y,z)为平面BDE 的一个法向量,→=0,→=0,不妨设z=1,可得n=(1,0,1).又MN →=(1,2,-1),可得MN →·n=0.因为MN ⊄平面BDE,所以MN∥平面BDE.题型二利用空间向量证明垂直问题命题点1证明线面垂直例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD.证明方法一设平面A 1BD 内的任意一条直线m 的方向向量为m.由共面向量定理,则存在实数λ,μ,使m=λBA 1→+μBD →.令BB 1→=a,BC →=b,BA →=c,显然它们不共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,则BA 1→=a+c,BD →=12a+b,AB 1→=a-c,m=λBA 1→+μBD →λ+12μAB 1→λ+12μa+μb+λcλ+12μ1→⊥m,结论得证.方法二取BC 的中点O,连接AO.因为△ABC 为正三角形,所以AO⊥BC.因为在正三棱柱ABC—A 1B 1C 1中,平面ABC⊥平面BCC 1B 1,且平面ABC∩平面BCC 1B 1=BC,AO ⊂平面ABC,所以AO⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB,OO 1,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B(1,0,0),D(-1,1,0),A 1(0,2,3),A(0,0,3),B 1(1,2,0).设平面A 1BD 的一个法向量为n=(x,y,z),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n⊥BA 1→,n⊥BD →,1,→=0,→=0,-x+2y+3z=0,令x=1,则y=2,z=-3,故n=(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n,所以AB 1→∥n,故AB 1⊥平面A 1BD.命题点2证明面面垂直例3如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD 为等边三角形,AD=DE=2AB.求证:平面BCE⊥平面CDE.证明设AD=DE=2AB=2a,以A 为原点,分别以AC,AB 所在直线为x 轴,z 轴,以过点A 垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,3a,0),E(a,3a,2a).所以BE →=(a,3a,a),BC →=(2a,0,-a),CD →=(-a,3a,0),ED →=(0,0,-2a).设平面BCE 的法向量为n 1=(x 1,y 1,z 1),由n 1·BE →=0,n 1·BC →=0可得1+3ay 1+az 1=0,1-az 1=0,1+3y 1+z 1=0,1-z 1=0.令z 1=2,可得n 1=(1,-3,2).设平面CDE 的法向量为n 2=(x 2,y 2,z 2),由n 2·CD →=0,n 2·ED →=0可得2+3ay 2=0,2=0,2+3y 2=0,2=0.令y 2=1,可得n 2=(3,1,0).因为n 1·n 2=1×3+1×(-3)+2×0=0.所以n 1⊥n 2,所以平面BCE⊥平面CDE.思维升华利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示跟踪训练2如图所示,已知四棱锥P—ABCD 的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)PA⊥BD;(2)平面PAD⊥平面PAB.证明(1)取BC 的中点O,连接PO,∵平面PBC⊥底面ABCD,△PBC 为等边三角形,平面PBC∩底面ABCD=BC,PO ⊂平面PBC,∴PO⊥底面ABCD.以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD=1,则AB=BC=2,PO=3,∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,3),∴BD →=(-2,-1,0),PA →=(1,-2,-3).∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴PA →⊥BD →,∴PA⊥BD.(2)取PA 的中点M,连接DM,则∵DM →→=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM⊥PB.∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM⊥PA.又∵PA∩PB=P,PA,PB ⊂平面PAB,∴DM⊥平面PAB.∵DM ⊂平面PAD,∴平面PAD⊥平面PAB.题型三利用空间向量解决探索性问题例4(2018·林州模拟)如图,在四棱锥P—ABCD 中,PD⊥底面ABCD,底面ABCD 为正方形,PD=DC,E,F 分别是AB,PB 的中点.(1)求证:EF⊥CD;(2)在平面PAD 内求一点G,使GF⊥平面PCB,并证明你的结论.(1)证明如图,以D 为原点,分别以DA,DC,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD=a,则a,a 2,0,a 2,EF →-a 2,0,→=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF⊥CD.(2)解设G(x,0,z),则FG →x-a 2,-a 2,z-若使GF⊥平面PCB,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →x-a 2,-a 2,z-x=a2;由FG →·CP →x-a 2,-a 2,z-=a22+az=0.∴G G 为AD 的中点.思维升华对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练3如图所示,四棱锥P—ABCD 的底面是边长为1的正方形,PA⊥CD,PA=1,PD=2,E 为PD 上一点,PE=2ED.(1)求证:PA⊥平面ABCD;(2)在侧棱PC 上是否存在一点F,使得BF∥平面AEC?若存在,指出F 点的位置,并证明;若不存在,请说明理由.(1)证明∵PA=AD=1,PD=2,∴PA 2+AD 2=PD 2,即PA⊥AD.又PA⊥CD,AD∩CD=D,AD,CD ⊂平面ABCD,∴PA⊥平面ABCD.(2)解以A 为原点,AB,AD,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则0,23,→=(1,1,0),AE →0,23,设平面AEC 的法向量为n=(x,y,z),→=0,→=0,令y=1,则n=(-1,1,-2).假设侧棱PC 上存在一点F,且CF →=λCP →(0≤λ≤1),使得BF∥平面AEC,则BF →·n=0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),∴BF →·n=λ+1-λ-2λ=0,∴λ=12,∴存在点F,使得BF∥平面AEC,且F 为PC 的中点.1.若直线l 的方向向量为a=(1,0,2),平面α的法向量为n=(-2,1,1),则()A.l∥αB.l⊥αC.l ⊂α或l∥αD.l 与α斜交答案C解析∵a=(1,0,2),n=(-2,1,1),∴a·n=0,即a⊥n,∴l∥α或l ⊂α.2.若a=(2,3,m),b=(2n,6,8),且a,b 为共线向量,则m+n 的值为()A.7 B.52C.6D.8答案C解析由a,b 为共线向量,知n≠0且22n =36=m 8,解得m=4,n=2,则m+n=6.故选C.3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P 中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)答案A解析逐一验证法,对于选项A,MP →=(1,4,1),∴MP →·n=6-12+6=0,∴MP →⊥n,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4.如图,F 是正方体ABCD—A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F⊥DE,则有()A.B 1E=EB B.B 1E=2EB C.B 1E=12EBD.E 与B 重合答案A解析以D 为坐标原点,分别以DA,DC,DD 1所在直线为x,y,z 轴建立空间直角坐标系(图略),设正方体的棱长为2,则D(0,0,0),F(0,1,0),D 1(0,0,2),设E(2,2,z),则D 1F →=(0,1,-2),DE →=(2,2,z),∵D 1F →·DE →=0×2+1×2-2z=0,∴z=1,∴B 1E=EB.5.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于()A.3B.4C.5D.6答案C解析∵α⊥β,∴u·v=-2×6+2×(-4)+4t=0,∴t=5.6.已知AB →=(1,5,-2),BC →=(3,1,z),若AB →⊥BC →,BP →=(x-1,y,-3),且BP⊥平面ABC,则实数x +y=______.答案257解析(x-1)+y-3z=0,解得x=407,y=-157,z=4,∴x+y=407-157=257.7.(2018·广州质检)已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是______________.答案α∥β解析设平面α的法向量为m=(x,y,z),由m·AB →=0,得x·0+y-z=0,即y=z,由m·AC →=0,得x-z=0,即x=z,取x=1,∴m=(1,1,1),m=-n,∴m∥n,∴α∥β.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)答案①②③解析∵AB →·AP →=0,AD →·AP →=0,∴AB⊥AP,AD⊥AP,则①②正确;又AB∩AD=A,∴AP⊥平面ABCD,∴AP →是平面ABCD 的法向量,则③正确;∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.9.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别是棱BC,DD 1上的点,如果B 1E⊥平面ABF,则CE 与DF 的和为________.答案1解析以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x,y,z 轴建立空间直角坐标系(图略),设CE=x,DF=y,则易知E(x,1,1),B 1(1,1,0),F(0,0,1-y),B(1,1,1),∴B 1E →=(x-1,0,1),FB →=(1,1,y),∵B 1E⊥平面ABF,∴FB →·B 1E →=(1,1,y)·(x-1,0,1)=0,即x+y=1.10.如图,四边形ABCD 为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12PD.证明:平面PQC⊥平面DCQ.证明如图,以D 为坐标原点,线段DA 的长为单位长度,DA,DP,DC 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz.由题意得Q(1,1,0),C(0,0,1),P(0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0,即PQ⊥DQ,PQ⊥DC.又DQ∩DC=D,DQ,DC ⊂平面DCQ,∴PQ⊥平面DCQ,又PQ ⊂平面PQC,∴平面PQC⊥平面DCQ.11.如图,在直三棱柱ABC-A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点.(1)证明:AC⊥BC 1;(2)证明:AC 1∥平面CDB 1.证明因为直三棱柱ABC-A 1B 1C 1的底面边长分别为AC=3,BC=4,AB=5,所以△ABC 为直角三角形,AC⊥BC.所以AC,BC,C 1C 两两垂直.如图,以C 为坐标原点,直线CA,CB,CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则C(0,0,0),A(3,0,0),B(0,4,0),C 1(0,0,4),A 1(3,0,4),B 1(1)因为AC →=(-3,0,0),BC 1→=(0,-4,4),所以AC →·BC 1→=0,所以AC⊥BC 1.(2)设CB 1与C 1B 的交点为E,连接DE,则E(0,2,2),DE →-32,0,21→=(-3,0,4),所以DE →=12AC 1→,DE∥AC 1.因为DE ⊂平面CDB 1,AC 1⊄平面CDB 1,所以AC 1∥平面CDB 1.12.如图所示,在直三棱柱ABC-A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN∥平面A 1B 1C 1;(2)平面MBC 1⊥平面BB 1C 1C.证明由题意,知AA 1,AB,AC 两两垂直,以A 为坐标原点,分别以AA 1,AB,AC 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设正方形AA 1C 1C 的边长为2,则A(0,0,0),A 1(2,0,0),B(0,2,0),B 1(2,2,0),C(0,0,2),C 1(2,0,2),M(1,0,0),N(1,1,1).(1)由题意知AA 1⊥A 1B 1,AA 1⊥A 1C 1,又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥平面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.又MN ⊄平面A 1B 1C 1,故MN∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).因为MB →=(-1,2,0),MC 1→=(1,0,2),1·MB,→=0,1·MC 1,→=0,1+2y 1=0,1+2z 1=0,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C.13.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB=2,AF=1,M 在EF 上,且AM∥平面BDE,则M 点的坐标为()A.(1,1,1),23,1,22,1,24,1答案C解析设AC 与BD 相交于O 点,连接OE,∵AM∥平面BDE,且AM ⊂平面ACEF,平面ACEF∩平面BDE=OE,∴AM∥EO,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E(0,0,1),F(2,2,1).由中点坐标公式,知点M ,22,114.如图所示,在正方体ABCD-A 1B 1C 1D 1中,棱长为a,M,N 分别为A 1B 和AC 上的点,A 1M=AN=2a3,则MN 与平面BB 1C 1C 的位置关系是()A.相交B.平行C.垂直D.MN 在平面BB 1C 1C 内答案B解析以点C 1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,由于A 1M=AN=2a 3,则a,2a 3,,2a 3,aMN →-a 3,0,又C 1D 1⊥平面BB 1C 1C,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C,所以MN∥平面BB 1C 1C.15.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM⊥MP,则点P 形成的轨迹长度为________.答案72解析以O 点为坐标原点,OB,OS 所在直线分别为y 轴、z 轴,建立空间直角坐标系,如图所示,则A(0,-1,0),B(0,1,0),S (0,0,3)设P(x,y,0),∴AM →→由AM →·MP →=y-34=0,得y=34,∴点P 的轨迹方程为y=34.根据圆的弦长公式,可得点P 形成的轨迹长度为=72.16.如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=AD=1,E 为CD 中点.(1)求证:B 1E⊥AD 1;(2)在棱AA 1上是否存在一点P,使得DP∥平面B 1AE?若存在,求AP 的长;若不存在,说明理由.(1)证明以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.设AB=a.则A(0,0,0),D(0,1,0),D 1B 1(a,0,1),故AD 1→=(0,1,1),B 1E →-a2,1,-1则B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0,所以B 1E →⊥AD 1→,所以B 1E⊥AD 1.(2)解存在满足要求的点P,假设在棱AA 1上存在一点P(0,0,z 0),使得DP∥平面B 1AE,此时DP →=(0,-1,z 0),再设平面B 1AE 的一个法向量为n=(x,y,z).AB 1→=(a,0,1),AE →因为n⊥平面B 1AE,所以n⊥AB 1→,n⊥AE →取x=1,则y=-a2,z=-a,则平面B 1AE 的一个法向量1,-a2,-a要使DP∥平面B 1AE,只要n⊥DP →,即a 2-az 0=0,解得z 0=12.所以棱AA 1上存在点P,满足DP∥平面B 1AE,此时AP=12.。
(名师选题)(精选试题附答案)高中数学第八章立体几何初步知识总结例题单选题1、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0; 又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.2、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.3、在空间中,下列命题是真命题的是( )A .经过三个点有且只有一个平面B .平行于同一平面的两直线相互平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .如果两个相交平面垂直于同一个平面,那么它们的交线也垂直于这个平面答案:D分析:由三点共线判断A ;由线面、线线位置关系判断B ;根据等角定理判断C ;由线面平行和垂直的判定以及性质判断D.当三点在一条直线上时,可以确定无数个平面,故A 错误;平行于同一平面的两直线可能相交,故B 错误;由等角定理可知,如果两个角的两条边分别对应平行,那么这两个角相等或互补,故C 错误;如果两个相交平面α,β垂直于同一个平面γ,且α∩β=l ,则在平面α、β内分别存在直线m,n 垂直于平面γ,由线面垂直的性质可知n //m ,再由线面平行的判定定理得m //β,由线面平行的性质得出m //l ,则l ⊥γ,故D 正确; 故选:D4、在△ABC 中,AB =1,AC =2,∠BAC =60°,P 是△ABC 的外接圆上的一点,若AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ ,则m +n 的最小值是( )A .−1B .−12C .−13D .−16 答案:B分析:先解三角形得到△ABC 为直角三角形,建立直角坐标系,通过AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ 表示出m +n ,借助三角函数求出最小值.由余弦定理得BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos∠BAC = 1+4−2×1×2×cos 60∘=3,所以BC =√3,所以AB 2+BC 2=AC 2,所以AB ⊥BC .以AC 的中点为原点,建立如图所示的平面直角坐标系,易得A (-1,0),C (1,0),B (-12,√32),设P 的坐标为(cosθ,sinθ),所以AB ⃑⃑⃑⃑⃑ =(12,√32),AC ⃑⃑⃑⃑⃑ =(2,0),AP ⃑⃑⃑⃑⃑ = (cosθ+1,sinθ),又AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ ,所以(cosθ+1,sinθ)=m (12,√32)+ n (2,0)=(m 2+2n ,√32m),所以m =2√33sin θ,n =cos θ2+12−√36sin θ,所以m +n =2√33sin θ+cos θ2+12−√36sin θ =√32sin θ+cos θ2+12=sin (θ+π6)+12≥−1+12=−12,当且仅当sin (θ+π6)=−1时,等号成立.故选:B .5、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与GH 的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //GH ,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.6、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D7、若直线a ⊥平面α,直线b ⊥平面α,则直线a 与直线b 的位置关系为( )A .异面B .相交C .平行D .平行或异面答案:C解析:利用线面垂直的性质定理进行判断.由于垂直于同一平面的两直线平行,故当直线a ⊥平面α,直线b ⊥平面α时,直线a 与直线b 平行.故选:C.8、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.9、下列说法正确的有( )①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A .1个B .2个C .3个D .4个答案:A解析:根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确; ②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确; ③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A10、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为()D.26πA.18πB.20πC.22π3答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.填空题11、如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是平行直线的图是________(填序号).答案:①②分析:根据正方体的结构特征,以及两直线的位置关系的判定方法,即可求解.根据正方体的结构特征,可得①②中RS 与PQ 均是平行直线,④中RS 和PQ 是相交直线,③中RS 和PQ 是是异面直线.所以答案是:①②.12、在正三棱锥S −ABC 中,AB =BC =CA =6,点D 是SA 的中点,若SB ⊥CD ,则该三棱锥外接球的表面积为___________.答案:54π分析:通过线面垂直的判定定理和性质可得出SA ,SB ,SC 两两垂直,则可求出外接球的半径,进而求出球的表面积.设△ABC 的中心为G ,连接SG ,BG ,∴SG ⊥平面ABC ,∵AC ⊂面ABC ,∴SG ⊥AC ,又AC ⊥BG ,BG ∩SG =G ,∴AC ⊥平面SBG ,∵SB ⊂平面SBG ,∴AC ⊥SB ,又SB ⊥CD ,AC ∩CD =C ,∴SB ⊥平面ACS .∵SA,SC ⊂平面ACS ,∴SB ⊥SA,SB ⊥SC ,∵S −ABC 为正三棱锥,∴SA ,SB ,SC 两两垂直,∴SA =SB =SC =3√2,故外接球直径为√(3√2)2+(3√2)2+(3√2)2=3√6,故三棱锥S −ABC 外接球的表面积为4π×(3√62)2=54π.所以答案是:54π.小提示:本题考查三棱锥的外接球问题,解题的关键是通过线面垂直的判定定理和性质可得出SA,SB,SC两两垂直,即可求出半径.13、一个圆锥的母线长为20,母线与轴的夹角为60∘,则圆锥的高为________.答案:10分析:利用圆锥的几何性质可求得该圆锥的高.由题意可知,该圆锥的高为ℎ=20cos60∘=10.所以答案是:10.14、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④15、如图,已知正三棱柱ABC—A′B′C′的底面边长为1cm,侧面积为9cm2,则一质点自点A出发,沿着三棱柱的侧面绕行一周到达点A′的最短路线的长为___________cm.答案:3√2分析:将三棱柱侧面展开如图,得到展开图的对角线即为最短距离,根据棱柱的侧面积求出高,再利用勾股定理计算可得.解:将正三棱柱ABC—A′B′C′沿侧棱展开,其侧面展开图如图所示,依题意AB=BC=AA1=1cm,由侧面积为9cm2,所以C△ABC⋅AA′=9,则AA′=3cm,依题意沿着三棱柱的侧面绕行一周到达点A′的最短路线为|AA′1|=√AA12+A1A1′2=√32+32=3√2cm;所以答案是:3√2解答题16、两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,过点M作MH⊥AB于点H.求证:平面MNH∥平面BCE.答案:证明见解析分析:结合正方形性质可知MH//BC,即MH//平面BCE,同时AMAC =AHAB,又由条件可知FNBF=AMAC,即可判断NH//AF//BE,进而证明即可.证明:因为正方形ABCD中MH⊥AB,BC⊥AB,所以MH//BC,则AMAC =AHAB,因为BC⊂平面BCE,所以MH//平面BCE因为BF=AC,AM=FN,所以FNBF =AMAC,所以FNBF =AHAB,所以NH//AF//BE,因为BE⊂平面BCE,则NH//平面BCE因为MH⊂平面MNH,NH⊂平面MNH,MH∩NH=H,所以平面MNH//平面BCE17、如图,一个三棱柱的底面是边长为2的正三角形,侧棱CC1⊥底面ABC,CC1=3.有一只小虫从点A沿三个侧面爬到点A1,求小虫爬行的最短路程.答案:3√5分析:沿AA1将三棱柱的侧面展开,可得到矩形AA1D1D,计算出该矩形的对角线AD1的长,即为所求. 解:沿AA1将三棱柱的侧面展开,则展开后的图形是矩形AA1D1D,如下图所示:且AD=3×2=6,DD1=3,所以,小虫爬行的最短路程为AD1的长,且AD1=√AD2+DD12=3√5.18、某圆锥的侧面展开图的面积为12π,扇形的圆心角α[α∈(0,π)]的正切值为−√3,求圆锥的体积.答案:16√2π3分析:由扇形的面积公式与圆锥的体积公式求解设圆锥的底面圆半径为r,母线长为l,高为ℎ.由扇形的圆心角的正切值为−√3,得扇形的圆心角为2π3.因为扇形的面积为12π,所以12×2π3l2=12π,解得l=6.又圆锥底面周长为2πr=2π3l=4π,解得r=2,所以圆锥的高ℎ=√l2−r2=√62−22=4√2,所以圆锥的体积V=π3×22×4√2=16√2π3.19、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM ⊥DB ,所以k AM ⋅k BD =−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1.所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0). 所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD ⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0.即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。
第1讲空间几何体的结构、三视图和直观图一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案 B2.如图所示的几何体是棱柱的有()A.②③⑤B.③④⑤C.③⑤D.①③解析由棱柱的定义知③⑤两个几何体是棱柱.答案 C3.(2017·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.答案 D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC投影在面P AD上且为实线,点E的投影点为P A的中点,故B正确.答案 B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.4 2C.6D.4解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=(42)2+22=6.答案 C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确. 答案 A7.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18B.17C.16D.15解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16.剩余部分的体积V 2=13-16=56.因此,V 1V 2=15.答案 D8.(2017·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )解析 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD ⊥平面BCD .所以该三棱锥的侧视图可能为选项D. 答案 D 二、填空题9.(2017·福建龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2. 答案 2 210.(2017·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________. 解析 由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2. 答案211.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析由题中三视图可知,三棱锥的直观图如图所示,其中P A⊥平面ABC,M为AC的中点,且BM⊥AC.故该三棱锥的最长棱为PC.在Rt△P AC中,PC=P A2+AC2=22+22=2 2.答案2 212.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析三棱锥P-ABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案 113.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析 如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.答案 D14.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A.4B.5C.3 2D.3 3解析 由三视图知几何体的直观图如图所示,计算可知线段AF 最长,且AF =BF 2+AB 2=3 3.答案 D15.(2017·长郡中学月考)已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析 如图,过C ′作y ′轴的平行线C ′D ′,与x ′轴交于点D ′.则C ′D ′=32asin 45°=62a . 又C ′D ′是原△ABC 的高CD 的直观图,所以CD =6a .故S △ABC =12AB ·CD =62a 2. 答案 62a 216.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD -A ′B ′C ′D ′.故该四棱柱的体积V =Sh =12×(1+2)×1×1=32. 答案 32。
阶段自测卷(五)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.(2019·某某某某航天中学月考)下列说法正确的是( ) A .空间中,两不重合的平面若有公共点,则这些点一定在一条直线上 B .空间中,三角形、四边形都一定是平面图形 C .空间中,正方体、长方体、四面体都是四棱柱D .用一平面去截棱锥,底面与截面之间的部分所形成的多面体叫棱台 答案 A解析 空间四边形不是平面图形,故B 错;四面体不是四棱柱,故C 错;平行于底面的平面去截棱锥,底面和截面之间的部分所形成的多面体才叫棱台,故D 错;根据公理2可知A 正确,故选A.2.(2019·某某调研)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .α∩β=n ,m ⊂α,m ∥β⇒m ∥nB .α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC .m ⊥n ,m ⊂α,n ⊂β⇒α⊥βD .m ∥α,n ⊂α⇒m ∥n 答案 A解析 对于A ,根据线面平行的性质定理可得A 选项正确;对于B ,当α⊥β,α∩β=m 时,若n ⊥m ,n ⊂α,则n ⊥β,但题目中无条件n ⊂α,故B 不一定成立;对于C ,若m ⊥n ,m ⊂α,n ⊂β,则α与β相交或平行,故C 错误;对于D ,若m ∥α,n ⊂α,则m 与n平行或异面,则D 错误,故选A.3.(2019·某某万州三中月考)如图,在三棱柱ABC -A 1B 1C 1中,D 是CC 1的中点,F 是A 1B 的中点,且DF →=αAB →+βAC →,则( )A .α=12,β=-1B .α=-12,β=1C .α=1,β=-12D .α=-1,β=12答案 A解析 根据向量加法的多边形法则以及已知可得, DF →=DC →+CB →+BF →=12C 1C →+CB →+12BA →1=12A 1A →+AB →-AC →+12BA →+12AA →1=12AB →-AC →, ∴α=12,β=-1,故选A.4.平行六面体ABCD -A 1B 1C 1D 1中,AB →=(1, 2, 0),AD →=(2, 1, 0),CC →1=(0, 1, 5),则对角线AC 1的边长为( ) A .42B .43C .52D .12 答案 C解析 因为AC →1=AA →1+A 1B 1→+B 1C 1→=CC →1+AB →+AD →=(0,1,5)+(1,2,0)+(2,1,0)=(3,4,5),所以|AC →1|=32+42+52=52,故选C.5.(2019·凉山诊断)如图,在四棱柱ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 1,BC 1的中点,下列结论中,正确的是( )A .EF ⊥BB 1 B .EF ⊥平面BCC 1B 1 C .EF ∥平面D 1BC D .EF ∥平面ACC 1A 1 答案 D解析 连接B 1C 交BC 1于F ,由于四边形BCC 1B 1是平行四边形,对角线互相平分,故F 是B 1C 的中点.因为E 是AB 1的中点,所以EF 是△B 1AC 的中位线,故EF ∥AC ,所以EF ∥平面ACC 1A 1.故选D.6.(2019·某某黄冈中学、华师附中等八校联考)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求球的直径d 的公式d =13169V ⎛⎫⎪⎝⎭.若球的半径为r =1,根据“开立圆术”的方法计算该球的体积为( ) A.43πB.916C.94D.92 答案 D解析 根据公式d =13169V ⎛⎫⎪⎝⎭得,2=13169V ⎛⎫⎪⎝⎭,解得V =92.故选D.7.已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为( ) A.8π3B.5π3 C.4π3 D.2π3 答案 D解析 因为球与各面相切,所以直径为2,且AC ,AB 1,CB 1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为2的正三角形的外接圆,由正弦定理知,R =63,所以截面的面积S =2π3,故选D. 8.已知向量n =(2,0,1)为平面α的法向量,点A (-1,2,1)在α内,则P (1,2,-2)到α的距离为( ) A.55B.5C .25D.510答案 A解析 ∵PA →=(-2,0,3),∴点P 到平面α的距离为d =|PA , →·n ||n |=|-4+3|5=55.∴P (1,2,-2)到α的距离为55. 故选A.9.正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值X 围是( ) A.⎣⎢⎡⎦⎥⎤π4,π3 B.⎣⎢⎡⎦⎥⎤π4,π2C.⎣⎢⎡⎦⎥⎤π6,π2 D.⎣⎢⎡⎦⎥⎤π6,π3答案 D解析 以点D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,设点P 坐标为()x ,1-x ,x (0≤x ≤1),则BP →=()x -1,-x ,x ,BC 1→=()-1,0,1,设BP →,BC 1→的夹角为α,所以cos α=BP , →·BC 1→||BP →||BC 1→=1()x -12+2x 2×2=13⎝ ⎛⎭⎪⎫x -132+23·2,所以当x =13时,cos α取得最大值32,α=π6.当x =1时,cos α取得最小值12,α=π3. 因为BC 1∥AD 1.故选D.10.(2019·某某期中)在直三棱柱ABC -A 1B 1C 1中,CA =CB =4,AB =27,CC 1=25,E ,F 分别为AC ,CC 1的中点,则直线EF 与平面AA 1B 1B 所成的角是( ) A .30°B.45°C.60°D.90° 答案 A 解析连接AC 1,则EF ∥AC 1,直线EF 与平面AA 1B 1B 所成的角,就是直线EF 与平面AA 1B 1B 所成的角,AC 1与平面AA 1B 1B 所成的角;作C 1D ⊥A 1B 1于D ,连接AD ,因为直三棱柱ABC -A 1B 1C 1中,CA =CB =4,所以底面是等腰三角形,则C 1D ⊥平面AA 1B 1B ,可知∠C 1AD 就是直线EF 与平面AA 1B 1B 所成的角,CA =CB =4,AB =27,CC 1=25,可得C 1D =42-(7)2=3,AD =(7)2+(25)2=33,所以tan∠C 1AD =C 1D AD =33, 所以∠C 1AD =30°.故选A.11.(2019·某某某某中学月考)点A ,B ,C ,D ,E 是半径为5的球面上五点,A ,B ,C ,D 四点组成边长为42的正方形,则四棱锥E -ABCD 体积的最大值为( ) A.2563B .256C.643D .64 答案 A解析 正方形ABCD 对角线长为(42)2+(42)2=8.则球心到正方形中心的距离d =52-42=3.则E 到正方形ABCD 的最大距离为h =d +5=8.则V E -ABCD =13×42×42×8=2563.故选A.12.(2019·四省联考诊断)如图所示,四边形ABCD 为边长为2的菱形,∠B =60°,点E ,F 分别在边BC ,AB 上运动(不含端点),且EF ∥AC ,沿EF 把平面BEF 折起,使平面BEF ⊥底面ECDAF ,当五棱锥B -ECDAF 的体积最大时,EF 的长为( )A .1B.263 C.3D. 2答案 B解析 由EF ∥AC 可知△BEF 为等边三角形,设EF =x ,等边△BEF 的高为32x ,面积为34x 2,所以五边形ECDAF 的面积为2×34×22-34x 2=23-34x 2,故五棱锥的体积为13×⎝ ⎛⎭⎪⎫23-34x 2×32x =x -18x 3(0<x <2).令f ′(x )=⎝ ⎛⎭⎪⎫x -18x 3′=1-38x 2=0,解得x =263,且当0<x <263时,f (x )单调递增,当263<x <2时,f (x )单调递减,故在x =263时取得极大值也即最大值.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m ∥α,m∥β,则α∥β; ②若m ⊥α,m ∥β,则α⊥β; ③若m ∥α,m ∥n ,则n ∥α; ④若m ⊥α,α∥β,则m ⊥β. 其中正确的命题序号是________. 答案 ②④解析 对于①,若m ∥α,m ∥β,则α与β可能相交,故①错误;对于②,若m ⊥α,m ∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β,故②正确;对于③,若m ∥α,m ∥n ,则n 可能在α内,故③错误,对于④,若m ⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m ⊥β,故④正确.故答案为②④. 14.如图,在三棱柱A 1B 1C 1-ABC 中,已知D ,E ,F 分别为AB ,AC ,AA 1的中点,设三棱锥A -FED 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2的值为________.答案124解析 设三棱柱的高为h ,∵F 是AA 1的中点,则三棱锥F -ADE 的高为h2,∵D ,E 分别是AB ,AC 的中点,∴S △ADE =14S △ABC ,∵V 1=13S △ADE ·h2,V 2=S △ABC ·h ,∴V 1V 2=16S △ADE ·h S △ABC ·h =124. 15.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案2解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为2.∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴平面ABC ⊥平面BCC 1B 1,∴BC 为截面圆的直径,∴∠BAC =90°.∵AB =AC ,∴AB =1, ∴侧面ABB 1A 1的面积为2×1= 2.16.(2019·某某四校联考)直三棱柱ABC -A 1B 1C 1的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为32π3,则该三棱柱体积的最大值为____________.答案 4 2解析 设三棱柱底面直角三角形的直角边为a ,b ,则棱柱的高h =a 2+b 2, 设外接球的半径为r ,则43πr 3=32π3,解得r =2,∵上、下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴2h =2r =4.∴h =22,∴a 2+b 2=h 2=8≥2ab ,∴ab ≤4.当且仅当a =b =2时“=”成立. ∴三棱柱的体积V =Sh =12abh =2ab ≤4 2.三、解答题(本大题共70分)17.(10分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD ,点E 为侧棱PB 的中点.求证:(1)PD ∥平面ACE ; (2)平面PAC ⊥平面PBD . 证明 (1) 连接OE .因为O 为正方形ABCD 对角线的交点, 所以O 为BD 的中点. 因为E 为PB 的中点, 所以PD ∥OE .又因为OE⊂平面ACE,PD⊄平面ACE,所以PD∥平面ACE.(2) 在四棱锥P-ABCD中,因为PC⊥底面ABCD,BD⊂底面ABCD,所以BD⊥PC.因为O为正方形ABCD对角线的交点,所以BD⊥AC.又PC,AC⊂平面PAC,PC∩AC=C,所以BD⊥平面PAC.因为BD⊂平面PBD,所以平面PAC⊥平面PBD.18.(12分)(2019·某某执信中学测试)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD的体积.(1)证明在△ABD中,由于AD=4,BD=8,AB=45,所以AD2+BD2=AB2.故AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面PAD,又BD⊂平面MBD,故平面MBD⊥平面PAD.(2)解如图,过P作PO⊥AD交AD于O,由于平面PAD⊥平面ABCD,所以PO ⊥平面ABCD .因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形. 因此PO =32×4=2 3. 在四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt△ADB 中,斜边AB 边上的高为4×845=855,此即为梯形ABCD 的高,所以四边形ABCD 的面积为S =25+452×855=24.故V P -ABCD =13×24×23=16 3.19.(12分)(2019·化州模拟)如图所示,在四棱锥E -ABCD 中,ED ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,AB =AD =12CD =2.(1)求证:BC ⊥BE ;(2)当几何体ABCE 的体积等于43时,求四棱锥E -ABCD 的侧面积.(1)证明 连接BD ,取CD 的中点F ,连接BF ,则直角梯形ABCD 中,BF ⊥CD ,BF =CF =DF , ∴∠CBD =90°,即BC ⊥BD . ∵DE ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥DE ,又BD ∩DE =D ,∴BC ⊥平面BDE . 由BE ⊂平面BDE 得,BC ⊥BE .(2)解 ∵V ABCE =V E -ABC =13×DE ×S △ABC=13×DE ×12×AB ×AD =23DE =43,∴DE =2,∴EA =DE 2+AD 2=22,BE =DE 2+BD 2=23, 又AB =2,∴BE 2=AB 2+AE 2, ∴AB ⊥AE ,∴四棱锥E -ABCD 的侧面积为12×DE ×AD +12×AE ×AB +12×BC ×BE +12×DE ×CD =6+22+2 6. 20.(12分)(2019·某某调研)如图,在长方形ABCD 中,AB =π,AD =2,E ,F 为线段AB 的三等分点,G ,H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB ,CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ; (2)求二面角A -BH -D 的余弦值.(1)证明 因为H 在下底面圆周上,且CD 为下底面半圆的直径, 所以DH ⊥CH ,又因为DH ⊥FH ,且CH ∩FH =H , 所以DH ⊥平面BCHF . 又因为DH ⊂平面ADHF , 所以平面ADHF ⊥平面BCHF .(2)解 以H 为坐标原点,分别以HD ,HC ,HF 所在直线为x ,y ,z 轴建立空间直角坐标系. 设下底面半径为r ,由题意得πr =π, 所以r =1,CD =2.因为G ,H 为DC 的三等分点, 所以∠HDC =30°,所以在Rt△DHC 中,HD =3,HC =1,所以A (3,0,2),B (0,1,2),D (3,0,0), 设平面ABH 的法向量为n =(x ,y ,z ), 因为n ·HA →=(x ,y ,z )·(3,0,2)=0,n ·HB →=(x ,y ,z )·(0,1,2)=0,所以⎩⎨⎧3x +2z =0,y +2z =0,所以平面ABH 的法向量n =(-2,-23,3).设平面BHD 的法向量m =(x ,y ,z ).因为m ·HD →=(x ,y ,z )·(3,0,0)=0,m ·HB →=(x ,y ,z )·(0,1,2)=0,所以⎩⎪⎨⎪⎧ x =0,y +2z =0,所以平面BHD 的法向量m =(0,-2,1),由图形可知,二面角A —BH —D 的平面角为锐角,设为θ,所以二面角A -BH -D 的余弦值为cos θ=|m ·n ||m ||n |=28519. 21.(12分)(2019·某某七中诊断)如图,在多面体ABCDE 中,AC 和BD 交于一点,除EC 以外的其余各棱长均为2.(1)作平面CDE 与平面ABE 的交线l ,并写出作法及理由;(2)求证:平面BDE ⊥平面ACE ;(3)若多面体的体积为2,求直线DE 与平面BCE 所成角的正弦值.(1)解 过点E 作AB (或CD )的平行线,即为所求直线l .∵AC 和BD 交于一点,∴A ,B ,C ,D 四点共面.又∵四边形ABCD 边长均相等,∴四边形ABCD 为菱形,从而AB ∥DC .又AB ⊄平面CDE ,且CD ⊂平面CDE ,∴AB ∥平面CDE .∵AB ⊂平面ABE ,且平面ABE ∩平面CDE =l ,∴AB ∥l .(2)证明 取AE 的中点O ,连接OB ,OD .∵AB =BE ,DA =DE ,∴OB ⊥AE ,OD ⊥AE .又OB ∩OD =O ,∴AE ⊥平面OBD ,∵BD ⊂平面OBD ,故AE ⊥BD .又四边形ABCD 为菱形,∴AC ⊥BD .又AE ∩AC =A ,∴BD ⊥平面ACE . 又BD ⊂平面BDE ,∴平面BDE ⊥平面ACE .(3)解 由V E -ABCD =2V E -ABD =2V D -ABE =2, 即V D -ABE =1.设三棱锥D -ABE 的高为h ,则13⎝ ⎛⎭⎪⎫12·2·3·h =1, 解得h = 3.又∵DO = 3.∴DO ⊥平面ABE .以点O 为坐标原点,OB ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),D (0,0,3),E (0,1,0).∴BC →=AD →=(0,1,3), BE →=(-3,1,0).设平面BCE 的一个法向量为n =(x ,y ,z ),由⎩⎨⎧ y +3z =0,3x -y =0得,平面BCE 的一个法向量为n =(1,3,-1).又DE →=(0,1,-3),于是cos 〈DE →,n 〉=235·2=155. 故直线DE 与平面BCE 所成角的正弦值为155. 22.(12分)如图,△ABC 的外接圆⊙O 的半径为5,CD ⊥⊙O 所在的平面,BE ∥CD ,CD =4,BC =2,且BE =1,tan∠AEB =2 5.(1)求证:平面ADC ⊥平面BCDE ;(2)试问线段DE 上是否存在点M ,使得直线AM 与平面ACD 所成角的正弦值为27?若存在,确定点M 的位置,若不存在,请说明理由.(1)证明 ∵CD ⊥平面ABC ,BE ∥CD , ∴BE ⊥平面ABC ,∴BE ⊥AB .∵BE =1,tan∠AEB =25,∴AE =21,从而AB =AE 2-BE 2=2 5.∵⊙O 的半径为5,∴AB 是直径,∴AC ⊥BC ,又∵CD ⊥平面ABC ,BC ⊂平面ABC ,∴CD ⊥BC ,故BC ⊥平面ACD .∵BC ⊂平面BCDE ,∴平面ADC ⊥平面BCDE .(2)解 方法一 假设点M 存在,过点M 作MN ⊥CD 于N ,连接AN ,作MF ⊥CB 于F ,连接AF . ∵平面ADC ⊥平面BCDE ,平面ADC ∩平面BCDE =DC , MN ⊂平面BCDE ,∴MN ⊥平面ACD ,∴∠MAN 为MA 与平面ACD 所成的角. 设MN =x ,计算易得,DN =32x ,MF =4-32x , 故AM =AF 2+MF 2=AC 2+CF 2+MF 2 =16+x 2+⎝ ⎛⎭⎪⎫4-32x 2, sin∠MAN =MNAM =x 16+x 2+⎝ ⎛⎭⎪⎫4-32x 2=27, 解得x =-83(舍去),x =43, 故MN =23CB ,从而满足条件的点M 存在,且DM =23DE . 方法二 以点C 为坐标原点,CA ,CB ,CD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系,则A (4,0,0),B (0,2,0),D (0,0,4),E (0,2,1),C (0,0,0),则DE →=(0,2,-3).易知平面ACD 的法向量为BC →=(0,-2,0),假设M 点存在,设M (a ,b ,c ),则DM →=(a ,b ,c -4),再设DM →=λDE →,λ∈(0,1] ,∴⎩⎪⎨⎪⎧ a =0,b =2λ,c -4=-3λ⇒⎩⎪⎨⎪⎧ a =0,b =2λ,c =4-3λ,即M (0,2λ,4-3λ),从而AM →=(-4,2λ,4-3λ).设直线AM 与平面ACD 所成的角为θ,则sin θ=|cos 〈AM →,BC →〉|=|2λ×(-2)|216+4λ2+(4-3λ)2=27, 解得λ=-43或λ=23,其中λ=-43应舍去,而λ=23∈(0,1],故满足条件的点M 存在,且点M 的坐标为⎝ ⎛⎭⎪⎫0,43,2.。
第8讲 立体几何中的向量方法(二)——求空间角一、选择题1.(2016·长沙模拟)在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为( ) A.π6B.π4C.π3D.π2解析 建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2. 答案 D2.(2017·郑州调研)在正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的正弦值为( ) A.32B.33C.35D.25解析 设正方体的棱长为1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (1,1,0),B 1(1,1,1),A (1,0,0),C (0,1,0),D 1(0,0,1),所以BB 1→=(0,0,1),AC →=(-1,1,0),AD 1→=(-1,0,1). 令平面ACD 1的法向量为n =(x ,y ,z ),则n ·AC →=-x +y =0,n ·AD 1→=-x +z =0,令x =1,可得n =(1,1,1), 所以sin θ=|cos 〈n ,BB 1→〉|=13×1=33. 答案 B3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎨⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23. 答案 B4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( ) A.45° B.60° C.90°D.30°解析 如图所示,取AC 的中点N ,以N 为坐标原点,建立空间直角坐标系.则A ⎝ ⎛⎭⎪⎫0,-a 2,0,C ⎝ ⎛⎭⎪⎫0,a 2,0,B 1⎝ ⎛⎭⎪⎫3a 2,0,a ,D ⎝ ⎛⎭⎪⎫0,a 2,a 2,C 1⎝ ⎛⎭⎪⎫0,a 2,a , ∴AB 1→=⎝ ⎛⎭⎪⎫3a 2,a 2,a ,AD →=⎝ ⎛⎭⎪⎫0,a ,a 2,CC 1→=(0,0,a ). 设平面AB 1D 的法向量为n =(x ,y ,z ), 由n ·AB 1→=0,n ·AD →=0,可取n =(3,1,-2). ∴cos 〈CC 1→,n 〉=CC 1→·n|CC 1→||n |=-2a a ×22=-22,∴直线CC 1与平面AB 1D 所成的角为45°. 答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), 设平面A 1BD 的一个法向量 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎨⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2017·昆明月考)如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________. 解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60°7.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于__________.解析 以D 为坐标原点,建立空间直角坐标系,如图.设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的一个法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎨⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n = (2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 答案 238.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.解析 延长FE ,CB 相交于点G ,连接AG ,如图所示. 设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角. ∵BH =322,EB =1,∴tan ∠EHB =EB BH =23. 答案 23 三、解答题9.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC , (2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC .在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322, 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,可得EG ⊥平面AFC . 因为EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB→|为单位长度,建立空间直角坐标系G -xyz , 由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0).所以AE→=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22. 故cos 〈AE →,CF →〉=AE →·CF →|AE→||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.10.(2016·全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°. (1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥EF , 所以AF ⊥平面EFDC . 又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC . (2)解 过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |= 3.可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC→=0,m ·AB →=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.11.(2017·济南质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面P AC 所成的角是( ) A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA→=(2a ,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2, CB →=(a ,a ,0),设平面P AC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·AP →=0,解得⎩⎨⎧x =0,y =z ,可取n =(0,1,1), 则 cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, 又∵〈CB→,n 〉∈(0°,180°),∴〈CB →,n 〉=60°, ∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案 A13.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________.解析 ∵CD→=CA →+AB →+BD →,∴CA→·BD →=|CA →|·|BD →|· cos 〈CA →,BD →〉=-24. ∴ cos 〈CA→,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补,∴所求的二面角为60°. 答案 60°14.(2016·四川卷)如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC=∠P AB=90°,BC=CD=12AD.E为棱AD的中点,异面直线P A与CD所成的角为90°.(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,知BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CD⊥P A,CD⊥AD,P A∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△P AD中,P A=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是P A与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH =22.在Rt △P AH 中,PH =P A 2+AH 2=322, 所以sin ∠APH =AH PH =13.法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD→,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE→=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2), 设平面PCE 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎨⎧x -2z =0,x +y =0,设x =2,解得n =(2,-2,1). 设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13.。