新课改数学选修2-2综合测试题(含答案)
- 格式:doc
- 大小:392.50 KB
- 文档页数:6
高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 41 2.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( )A 2米/秒B 3米/秒C 4米/秒D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( )A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞) 5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ).A -3, 2B -3, 0C 3, 2D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定. 二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________.16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。
数学选修2-2综合测试题(答案)一、选择题1.在复平面内,复数)21(i i z +=对应的点位于 〔B 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.定积分π220sin 2xdx ⎰的值等于〔 A 〕 A .π142- B .π142+ C .1π24- D .π12- 3.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是〔 D 〕 ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+; A.①③B.②④C.①④D.①②③④4.已知32()26(f x x x m m =-+为常数〕在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为〔 A 〕A . -37B .-29C .-5D .-115.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是(C )A .21<<-aB .63<<-aC 3-<a 或6>aD .1-<a 或2>a6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为〔 〕 A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =〔 〕 A .2 B .12 C .12- D .2-8. 已知可导函数))((R x x f ∈的导函数)('x f 满足)()('x f x f >,则当0>a 时,)(a f 和)0(f e a 〔e 是自然对数的底数〕大小关系为 〔 A 〕A . )0()(f e a f a> B .)0()(f e a f a≥C .)0()(f e a f a ≤D .)0()(f e a f a <9.给出以下命题: ⑴假设()0b af x dx >⎰,则f (x )>0; ⑵20sin 4xdx =⎰π;⑶已知()()F x f x '=,且F (x )是以T 为周期的函数,则0()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为( B )A.1B.2C.3D.010.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2011S 的值为〔D 〕20122011.20112010.20102009.20092008.D C B A二、填空题11、一同学在电脑中打出如下假设干个圈:○●○○●○○○●○○○○●○○○○○●…假设将此假设干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 14。
高二数学选修2-2综合测试卷一、选择题1、设)(x f 为可导函数,且满足12)1()1(lim 0-=--®xx f f x ,则过曲线)(x f y =上点))1(,1(f 处的切线斜率为 ( ))A 2B -1C 1D -22、若复数i m m m m z )23()232(22+-+--=是纯虚数,则实数m 的值为A 1或2B 21-或2 C 21-D 23、设)(,)(3bx a f x x f -=的导数是(的导数是( ))A )(3bx a -B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b --4、点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是(的切线的倾斜角的取值范围是( )) A ],0[p B ),43[)2,0(p p pÈ C ]43,2[]2,0[p ppÈ D ),43[]2,0[p p pÈ 5、已知0,,¹Îb a R b a 且,则在①ab b a ³+222;②2³+ba ab ;③2)2(b a a b +£;④2)2(222b a ba +£+这四个式子中,恒成立的个数是(这四个式子中,恒成立的个数是( ))A 1个B 2个C 3个D 4个6、利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n nÎ-´×××´´´=+×××++ ”时,从“k n =”变到”变到 ““1+=k n ”时,左边应增乘的因式是(”时,左边应增乘的因式是( )) A 12+k B112++k k C1)22)(12(+++k k k D132++k k7、若函数2)(3-+=ax x x f 在区间),1(+¥内是增函数,则实数a 的取值范围是(的取值范围是( )) A ),3(+¥ B ),3[+¥- C ),3(+¥- D )3,(--¥ 8、当n 取遍正整数时,nnii -+表示不同值得个数是A 1B 2C 3D 49、函数12)(2++=ax ax x f 在[-3[-3,,2]2]上有最大值上有最大值4。
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
新课改高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为100分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为30分,试卷Ⅱ分值为70分。
第I 卷一.选择题(本大题有10小题,每小题3分,共30分) 1.在“近似替代”中,函数在区间上的近似值( ))(x f ],[1+i i x x (A )只能是左端点的函数值(B )只能是右端点的函数值)(i x f )(1+i x f (C )可以是该区间内的任一函数值)(D )以上答案均正确()∈i i f ξξ(],[1+i i x x 2.已知,其中m 为实数,i 为虚数单位,若,则m 的22123i 4(56)i z m m m z m =-+=++,120z z -=值为 ( )(A) 4(B)(C) 6(D) 01-3.已知,下列各式成立的是 ( )1,1x y <<(A ) (B ) (C ) (D )2x y x y ++->221x y +<1x y +<1xy x y+>+4.设f (x )为可导函数,且满足=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是(1)(1)lim2x f f x x→--( )(A )2(B )-1(C )(D )-2125.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )必要条件6.函数在处有极值10, 则点为( )223)(a bx ax x x f +--=1=x ),(b a (A )(B )(C ) 或 (D )不存在)3,3(-)11,4(-)3,3(-)11,4(-7.,则的最小值为( )1x y z ++=22223x y z ++(A)1(B)(C)(D)34611588.曲线, 和直线围成的图形面积是 ( )xy e =xy e -=1x =(A)(B)(C)(D) 1e e --1e e -+12e e ---12e e -+-9.点是曲线上任意一点, 则点到直线的距离的最小值是( )P x x y ln 2-=P 2y x =-(A) 1 (B) (C) 2 (D) 10.设(),当时,的最大值为,则的最小值为2()f x x ax b =++,a b R ∈[]11,x ∈-()f x m m ( )(A) (B) 1 (C) (D) 21232第I 卷二.填空题(本大题有4小题,每小题4分,共16分)11.定义运算,若复数满足,其中为虚数单位,则复数a b ad bc c d =-z 112z zi-=i.z =12.如图,数表满足:⑴第行首尾两数均为;⑵表中递推关系类似杨辉三角,n n 记第行第2个数为.根据表中上下两行数据关系,(1)n n >()f n 可以求得当时, .2n …()f n =13.设函数f (x )=n 2x 2(1-x )n (n 为正整数),则f (x )在[0,1]上的最大值为.14.设,,,且,,则的i a R +∈i x R +∈12,,i n = 222121n a a a ++= 222121n x x x ++= 1212,,,n na a a x x x 值中,现给出以下结论,其中你认为正确的是 .①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1三 解答题(本大题共5小题,共54分)15(本小题满分10分)(1)求定积分的值;(2)若复数,,1222x dx --⎰12()z a i a R =+∈234z i =-且为纯虚数,求12z z 1z12 234 34 7 7 4… … …16(本小题满分10分)现要制作一个圆锥形漏斗,其母线长为,要使其体积最大,求高为多少?l 17(本小题满分12分)已知函数11()ln()x f x x x =+-+(1)求的单调区间;()f x (2)求曲线在点(1,)处的切线方程;()y f x =1()f (3)求证:对任意的正数与,恒有.a b 1ln ln b a b a-≥-18(本小题满分10分)(提示:请从以下两个不等式选择其中一个证明即可,若两题都答以第一题为准)(1)设,,,且i a R +∈i b R +∈12,,i n = 12122n n a a a b b b ++=++= 求证:2221211221n n na a a ab a b a b +++≥+++ (2)设()求证:i a R +∈12,,i n = 21212222122334122()()n n n a a a a a a a a a a a a a a a ++≤++++++++ 19(本小题满分12分)设数列满足{}n a 211123,,,,,n n n a a na n +=-+= (1)当时,求,并由此猜想出的一个通项公式;12a =234,,a a a {}n a (2)当时,证明对所有,有13a ≥1n ≥ ①2n a n ≥+②1211111112n a a a ++≤+++新课改高二数学选修2-2模块综合测试题参考答案一 选择题1 C2 B3 D4 D5 A6 B7 C8 D9 B 10 A二 填空题11 1-i 1213 14 ③⑤222n n -+242()n n n ++三 解答题15 (1)(2)10316 当高时, h =3max V =17 (1)单调增区间 ,单调减区间0(,)+∞10(,)- (2)切线方程为 44230ln x y -+-=(3)所证不等式等价为10ln a bb a+-≥而,设则,由(1)结论可得,1111()ln()f x x x =++-+1,t x =+11()ln F t t t=+-由此,所以即011()(,)(,)F t +∞在单调递减,在单调递增,10min ()()F t F ==10()()F t F ≥=,记代入得证。
高二数学选修2-2 综合测试题f xg ′ x)>0 ,且 g ( 3) 0 , 不等式 f x g x)<0的解集是()( ) ( ( ) (一、 :A. ( -3,0) ∪(3 ,+∞)B. ( -3,0) ∪(0 , 3)1、 i 是虚数 位。
已知复数 Z1 3i (1i )4 , 复数 Z 点落在()C.( -∞,- 3) ∪(3 ,+∞)D. (-∞,- 3) ∪(0 , 3)3 iA .第四象限B .第三象限C .第二象限D .第一象限12、在古希腊, 达哥拉斯学派把 1, 3, 6, 10,15,21,28,⋯ 些数叫做三角形数, 8、已知函数 f ( x) x 2bx 的 象在点 A(1, f (1)) 的切 的斜率 3,数列因 些数 的点可以排成一个正三角形f (n)的前 n 和 S n ,S 2011 的 ()200820092010 2011A.B.C .D .200920102011201213610159、 函数 f(x) =kx 3 +3(k -1)x 2 k 2 + 1在区 ( , )上是减函数, k 的取 范 是第 n 个三角形数 (( )0 4)A . nB .n(n 1)C . n21D .n( n 1)1B. 0 k1C. 0 k1122A. k3 3D. k333、求由曲 yx ,直 yx 2 及 y 所 成的 形的面 的 ()10、函数 yf ( x) 在定 域 ( 3内可 ,其 象如 所示, yf ( x) 的 函数,3)..24x ) dx B.4xdx C.20 2)dyyf ( x) , 不等式 f ( x)0 的解集()A.(2 x0 (2 y y 2 )dy D.(4 y 0224、 复数 z 的共 复数是 z , 且 z1, 又 A( 1,0) 与 B(0,1) 定点 , 函数f ( z)( z1)A .1 U 2,3,13( z i ) ︱取最大 在复平面上以 z ,A,B 三点 点的 形是C .3 , 1 U 1,2 A,等 三角形B,直角三角形C,等腰直角三角形D,等腰三2 2角形11、 已知函数 f (x)5、函数 f(x) 的定义域为 R ,f(-1)=2,对任意 xR , f ' ( x) 2 , 则 f ( x)2x4 的解集为小 是(A)(-1 , 1)(B)(-1,+∞ )(c)(-∞, -l)(D)(-∞,+ ∞ )A.24n 12 n 14( k1) 12( k 1) 13用数学归纳法证明整除时, 当 nk1时,对于 335(n N) 能被 85可变形为6、A. 56·3 4k 14k 152k 1) B.4 4 k 12 2k4k 12 k 14 k 15 2k 1)12、函数 f ( x)x325(3 3 ·35 ·5 C. 35D. 25(3、 f x g x 分 是定 在 R 上的奇函数和偶函数, 当 x <0, f ′ x g x +的取 范 (7( ) ,( )( ) ( )A .(-24,8)B .1,2 U 4 , 83 3D .3, 1 U 1 , 4U 8,322 331 x 3 ax2 bx 1( a 、 bR) 在区 [-1,3] 上是减函数, ab 的最3B. 3C.2D. 323x 29x 3, 若函数 g( x) f ( x) m 在 x [ 2,5] 上有 3 个零点, m)B .( -24,1]C .[1,8]D .[1,8)高二数学选修2-2 综合测试题(答题卡)三、解答题:(70 分)一、选择题( 60分)。
高中数学选修2-2综合测试题(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3i C .1+3iD .1-3i2.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0 B .锐角 C.π2D .钝角3.用反证法证明命题“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A .假设|f (1)|,|f (2)|,|f (3)|都不小于12B .假设|f (1)|,|f (2)|,|f (3)|都小于12C .假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D .假设|f (1)|,|f (2)|,|f (3)|至多有一个小于124.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a5.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③①②C .①②③D .②③①6.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r)×2π×R +r2,所以,圆环的面积等于以线段AB =R -r为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={}(x ,y )|(x -d )2+y 2≤r 2(其中0<r<d)绕y 轴旋转一周,则所形成的旋转体的体积是( )A .2πr 2dB .2π2r 2dC .2πrd 2D .2π2rd 27.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 1258.下面给出了关于复数的四种类比推理:①复数的加减法运算,可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2,可以类比得到复数z 的性质:|z |2=z 2;③方程ax 2+bx +c =0,(a ,b ,c ∈R ,且a ≠0)有两个不同的实数根的条件是b 2-4ac >0,类比可得方程ax 2+bx +c =0,(a ,b ,c ∈C 且a ≠0)有两个不同的复数根的条件是b 2-4ac >0;④由向量加法的几何意义,可以类比得到复数加法的几何意义.其中类比得到的结论正确的是( ) A .①③ B .②④ C .②③D .①④9.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 与B 的大小关系为( )A .A >B B .A ≥BC .A <BD .A ≤B10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )二、填空题(本大题共4小题,每小题5分,共20分) 11.若复数z 满足z +i =3+ii,则|z |=________.12.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为________. 13.我们把1,4,9,16,25,…这些数称作正方形数,这是因为这些数目的点可以排成一个正方形,如下图所示:第n 个正方形数是________.14.若O 为△ABC 内部任意一点,连接AO 并延长交对边于A ′,则AO AA ′=S 四边形ABOCS △ABC,同理连接BO ,CO 并延长,分别交对边于B ′,C ′,这样可以推出AO AA ′+BO BB ′+COCC ′=________;类似地,若O 为四面体ABCD 内部任意一点,连接AO ,BO ,CO ,DO 并延长,分别交相对的面于A ′,B ′,C ′,D ′,则AO AA ′+BO BB ′+CO CC ′+DODD ′=________.三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤) 15.(本小题满分12分)已知F (x )=1x-t (t -4)d t ,x ∈(-1,+∞).(1)求F (x )的单调区间; (2)求函数F (x )在[1,5]上的最值.16.(本小题满分12分)在△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2.在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.17.(本小题满分12分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =13是函数f (x )的极值点,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,试说明理由.18.(本小题满分14分)已知数列{a n }满足a 1=a ,a n +1=12-a n. (1)求a 2,a 3,a 4;(2)猜想数列{a n }的通项公式,并用数学归纳法证明.高中数学选修2-2综合测试题参考答案1.选D ∵z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,∴z =1-3i.2.选D f ′(x )=e x ·cos x +e x ·(-sin x )=e x (cos x -sin x ).当x =1时,cos x -sin x <0,故f ′(1)<0,所以倾斜角为钝角.3.选B “|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”. 4.解析:选A 由题意可得a =⎠⎛01x -13d x =x 113-+-13+110=32x 2310=32;b =1-⎠⎛01x 12d x =1-x 323210=1-⎝⎛⎭⎫23-0=13;c =⎠⎛01x 3d x =x 4410=14.综上,a >b >c .5.选B 该三段论应为:一次函数的图象是一条直线(大前提),y =2x +5是一次函数(小前提),y =2x +5的图象是一条直线(结论).6.选B 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体类似于为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .7.选D ∵55=3 125,56=15 625,57=8 125, 58=390 625,59=1 953 125,510=9 765 625,…∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n (n ∈Z ,且n ≥5)的末四位数字为f (n ),则f (2 015)=f (502× 4+7)=f (7).∴52 015与57的末四位数字相同,均为8 125.8.选D ②中|z |2∈R ,但z 2不一定是实数.③中复数集不能比较大小,不能用b 2-4ac 来确定根的个数.9.选Cx 1+x +y 1+y >x 1+x +y +y1+x +y =x +y 1+x +y.10.选C 由函数f (x )在x =-2处取得极小值可知x <-2,f ′(x )<0,则xf ′(x )>0;x >-2,f ′(x )>0,则-2<x <0时,xf ′(x )<0,x >0时,xf ′(x )>0.11.解析:∵z =3+i i -i =(3+i )(-i )-i 2-i =-i 2-3i -i =1-4i ,∴z =1+4i.∴|z |=12+42=17.答案:1712.解析:∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),y =x 3+ax +b 的导数y ′=3x 2+a .∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b , k =3×12+a ,解得a =-1,b =3,∴2a +b =1. 答案:113.解析:观察前5个正方形数,正好是序号的平方,所以第n 个正方形数应为n 2. 答案:n 214.解析:根据面积公式,在△ABC 中, AO AA ′=AA ′-OA ′AA ′=1-OA ′AA ′ =1-S △OBC S △ABC =S 四边形ABOC S △ABC ,所以AO AA ′+BO BB ′+CO CC ′=3-S △OBC +S △OAC +S △OABS △ABC=3-S △ABCS △ABC=2.根据体积分割方法,同理可得在四面体ABCD 中, AO AA ′+BO BB ′+CO CC ′+DODD ′=4-V O -ABD +V O -ACD +V O -ABC +V O -BCDV A -BCD=4-V A -BCDV A -BCD =3.答案:2 3 15.解:F(x )=1x⎰- (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 21x -=13x 3-2x 2-⎝⎛⎭⎫-13-2 =13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4; 由F ′(x )<0,即x 2-4x <0,得0<x <4, ∴F (x )的单调递增区间为(-1,0)和(4,+∞), 单调递减区间为(0,4).(2)由(1)知F(x )在[1,4]上递减,在[4,5]上递增,∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253.16. 证明:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2, ∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2.所以1AD 2=1AB 2+1AC2.猜想:类比AB ⊥AC ,AD ⊥BC 猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2.如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. 17.解:(1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0, ∴-a3≤1,且f ′(1)=2a ≥0.∴a ≥0.故实数a 的取值范围为[0,+∞). (2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0.∴b >-7,且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞). 18.解:(1)由a n +1=12-a n 可得a 2=12-a 1=12-a ,a 3=12-a 2=12-12-a =2-a3-2a,a 4=12-a 3=12-2-a 3-2a=3-2a 4-3a . (2)推测a n =(n -1)-(n -2)an -(n -1)a.下面用数学归纳法证明:①当n =1时,左边=a 1=a , 右边=(1-1)-(1-2)a 1-(1-1)a=a ,结论成立.②假设n =k 时等式成立,有a k =(k -1)-(k -2)ak -(k -1)a ,则当n =k +1时, a k +1=12-a k=12-(k -1)-(k -2)a k -(k -1)a=k -(k -1)a2[k -(k -1)a ]-[(k -1)-(k -2)a ]=k -(k -1)a(k +1)-ka.故当n =k +1时,结论也成立. 由①②可知,对任何n ∈N *都有a n =(n -1)-(n -2)a n -(n -1)a.。
新课改高二数学选修2-2模块综合测试题
(本科考试时间为120分钟,满分为100分)
说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为30分,试卷Ⅱ分值为70分。
第I 卷
一.选择题(本大题有10小题,每小题3分,共30分)
1.在“近似替代”中,函数)(x f 在区间],[1+i i x x 上的近似值( )
(A )只能是左端点的函数值)(i x f (B )只能是右端点的函数值)(1+i x f (C )可以是该区间内的任一函数值()∈i i f ξξ(],[1+i i x x )(D )以上答案均正确
2.已知22123i 4(56)i z m m m z m =-+=++,,其中m 为实数,i 为虚数单位,若120z z -=,则m 的值为 ( ) (A) 4
(B) 1-
(C) 6
(D) 0
3.已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (2
1
=
r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面
体的体积为( )
(A )R s s s s V )(214321+++= (B )R s s s s V )(3
1
4321+++= (C )R s s s s V )(4
1
4321+++=
(D )R s s s s V )(4321+++= 4.设f (x )为可导函数,且满足0(1)(1)
lim 2x f f x x
→--=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是
( )
(A )2 (B )-1 (C )
1
2
(D )-2 5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0” 的 ( )
(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )必要条件
6.函数2
23)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( )
(A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在
(A )在第一象限 (B )在第二象限 (C )在第三象限 (D )在第四象限
8. 曲线x y e =,x y e -= 和直线1x =围成的图形面积是 ( )
(A)1
e e -- (B) 1
e e -+ (C) 1
2e e --- (D) 1
2e e -+-
9.点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )
(A) 1 (B)
(C) 2 (D)
10.设2()f x x ax b =++(,a b R ∈),当[]
11,x ∈-时,()f x 的最大值为m ,则m 的最小值为 ( ) (A) 12 (B) 1 (C) 3
2
(D) 2
第I 卷
二.填空题(本大题有4小题,每小题4分,共16分) 11.定义运算
a b ad bc c d =-,若复数z 满足11
2z zi
-=,其中i 为虚数单位,则复数 z = .
12.如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角,
记第(1)n n >行第2个数为()f n .根据表中上下两行数据关系, 可以求得当2n …时,()f n = .
13.设函数f (x )=n 2x 2(1-x )n (n 为正整数),则f (x )在[0,1]上的最大值为 .
14.物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。
则它们相遇时,A 物体的运动路程为:
三 解答题(本大题共5小题,共54分) 15(本小题满分10分) (1) 求定积分
1
22
2x dx --⎰
的值; (2)若复数12()z a i a R =+∈,234z i =-,
且
1
2
z z 为纯虚数,求1z 1 2 2
3 4 3 4 7 7 4 … … …
16(本小题满分10分) 求由x y sin =与直线π
322x
y =所围成图形的面积
17(本小题满分12分) 已知函数11
()ln()x f x x x =+-
+ (1)求()f x 的单调区间;
(2)求曲线()y f x =在点(1,1()f )处的切线方程; (3)求证:对任意的正数a 与b ,恒有1ln ln b a b a
-≥-.
18(本小题满分10分)
已知0≥a ,函数x e ax x x f )2()(2-=.
(Ⅰ)当x 为何值时,)(x f 取得最小值?证明你的结论; (Ⅱ)设)(x f 在]1,1[-上是单调函数,求a 的取值范围
19(本小题满分12分)
设数列{}n a 满足2
11123,,,,,n n n a a na n +=-+=
(1) 当12a =时,求234,,a a a ,并由此猜想出{}n a 的一个通项公式; (2) 当13a ≥时,证明对所有1n ≥,有 ①2n a n ≥+ ②1211111112
n a a a ++≤+++
新课改高二数学选修2-2模块综合测试题参考答案
1 C
2 B
3 B
4 D
5 A
6 B
7 D
8 D
9 B 10 A
11 1-i 12 22
2
n n -+ 13 242(
)n n n ++ 14 72m 15 (1)
13
+ (2)103
16 解:由⎪⎪⎩
⎪
⎪⎨⎧-=-=⇒⎪⎩⎪⎨⎧==22
4322sin y x x
y x y ππ或 ⎩⎨
⎧==00y x 或⎪⎪⎩
⎪
⎪⎨⎧
==
22
43y x π,本题的图形由两部分构成,首先计出]0,43[π-上的面积,再计算出]43,0[π上的面积,然后两者相加即可;于是
--++=-+-=
-
-
⎰⎰x x x
dx x x dx x x S cos ()cos 32()322(sin )sin 322(
4
32
4
300
4
3ππ
π
πππ 8
)
238(16)324
302
πππ
-+=x 17 (1)单调增区间0(,)+∞ ,单调减区间10(,)- (2)切线方程为 44230ln x y -+-= (3)所证不等式等价为10ln a b
b a
+-≥ 而1111()ln()f x x x =++
-+,设1,t x =+则1
1()ln F t t t
=+-,由(1)结论可得,011()(,)(,)F t +∞在单调递减,在单调递增,由此10min ()()F t F ==,所以10()()F t F ≥=即
110()ln F t t t =+-≥,记a
t b
=代入得证。
18解析:(1)略
(2)由+-=x
e a x x
f )22()(/
]2)1(2[)2(2
2
a x a x e e ax x x
x
--+=-
令0)(/
=x f ,即02)1(22
=--+a x a x ,得2111a a x +--=,+-=12a x
21a +,其中21x x <
当x 变化时,)(/x f 、)(x f 的变化情况如下表:
x ),(1x -∞ 1x ),(21x x 2x ),(2+∞x
)(/x f
+
0 -
0 +
)(x f
极大值
极小值
当0≥a 时,)(,0,121x f x x ≥-<在),(21x x 上单调递减;
由此可得:)(x f 在]1,1[-上是单调函数的充要条件为12≥x ,即1112≥++-a a ,解得4
3≥a ; 即所求a 的取值范围为),4
3[+∞; 19。