真核生物基因表达的转录后调控
- 格式:pdf
- 大小:256.95 KB
- 文档页数:4
真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。
但是,最经济、最主要的调控环节仍然是在转录水平上。
(一)DNA水平的调控DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。
这一类的调控机制包括基因的扩增、重排或化学修饰。
其中有些改变是可逆的。
1、基因剂量与基因扩增细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。
例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。
组蛋白基因是基因剂量效应的一个典型实例。
为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。
基因剂量也可经基因扩增临时增加。
两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。
核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。
所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。
卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。
在基因扩增后,rRNA基因拷贝数高达2×106。
这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。
在基因扩增之前,这500个rRNA基因以串联方式排列。
在发生扩增的3周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。
这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。
目前对这种基因扩增的机制并不清楚。
在某些情况下,基因扩增发生在异常的细胞中。
例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。
有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。
原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。
真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
②原核基因表达调控主要为负调控,真核主要为正调控。
③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。
④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。
⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。
原核生物基因以操纵子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。
真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。
真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
真核生物转录调控的研究进展一、概述真核生物转录调控是分子生物学领域的前沿课题,对于理解生物体基因表达调控机制、揭示生命活动规律具有重要意义。
转录调控作为基因表达过程中的关键环节,其复杂性和动态性使得研究者们不断深入挖掘其内在机制。
在真核生物中,转录过程受到多层次、多因素的精细调控。
这包括顺式作用元件与反式作用因子之间的相互作用,以及转录复合物在启动子区域的组装和调控。
顺式作用元件是DNA序列中的特定区域,能够识别并结合反式作用因子,从而调控转录的起始和效率。
反式作用因子则是一类能够调控基因转录的蛋白质,包括转录因子、辅助因子等。
随着高通量测序、染色质免疫沉淀、生物信息学等技术的发展,人们对真核生物转录调控的认识不断深化。
越来越多的转录因子、顺式作用元件以及它们之间的相互作用被揭示,为我们理解转录调控的复杂性和动态性提供了有力支持。
研究者们还发现了一些新的转录调控机制,如长非编码RNA、转录后修饰等,这些新发现为转录调控研究提供了新的视角和思路。
真核生物转录调控的研究仍面临诸多挑战。
转录调控网络的复杂性使得我们难以全面理解其工作原理;不同组织、不同发育阶段以及不同环境条件下的转录调控机制可能存在差异,这使得研究更加复杂和困难。
未来真核生物转录调控的研究需要更加深入地探索其内在机制,并结合实际应用,为疾病治疗、生物育种等领域提供新的思路和方法。
1. 真核生物转录调控的重要性真核生物转录调控是生命活动中至关重要的一个环节,它决定了基因表达的时间、地点和程度,进而影响了生物体的生长、发育和代谢等各个方面。
在真核生物中,基因表达的调控主要发生在转录水平,通过转录因子、辅助因子和RNA聚合酶等复杂的相互作用来实现。
深入研究真核生物转录调控机制,不仅有助于我们理解生命活动的本质,也为疾病的治疗和生物技术的应用提供了重要的理论基础。
真核生物转录调控在发育过程中起着关键作用。
在生物体的发育过程中,不同组织和器官的形成需要特定基因的精确表达。
真核生物基因表达的调控一、生物基因表达的调控的共性首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。
1、作用范围。
生物体内的基因分为管家基因和奢侈基因。
管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。
可见,调控是普遍存在的现象。
2、调控方式。
基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。
3、调控水平。
一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。
然为节省能量起见,转录的起始阶段往往作为最佳调控位点。
二、真核生物基因表达调控的特点真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。
真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。
1、多层次。
真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。
2、无操纵子和衰减子。
3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。
4、个体发育复杂,而受环境影响较小。
真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。
前者为短期调控,后者属长期调控。
从整体上看,不可逆的长期调控影响更深远。
三、真核生物基因表达调控的机制介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。
1、染色质水平。
真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。
染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。
a.基因丢失:丢失一段DNA或整条染色体的现象。
在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。
某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。
第二节真核基因转录水平的调控一、真核生物的RNA聚合酶有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。
二、真核基因顺式作用元件(一)、顺式作用元件概念指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。
(二)、种类启动子、增强子、静止子1、启动子的结构和功能启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。
但真核同启动子间不像原核那样有明显共同一致的序列。
而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。
RNA聚合酶Ⅱ启动子结构1)TATA框(TATA frame):其一致顺序为TATAA(TAA(T。
TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。
对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。
TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。
2)CAAT框(CAAT frame):位置在-75附近,一致序列为GGC(TCAATCT。
CAAT框可能控制着转录起始的频率。
(3)GC框在-90bp左右的GGGCGG序列称为GC框。
一个在-30—+15即核心启动子(core promoter element,另一为上游启动子区(upstream promoter element在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。
基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子2、增强子的结构和功能增强子(enhancer):又称为远上游序列(far upstream sequence 。
它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。