_真核生物基因表达调控
- 格式:ppt
- 大小:10.35 MB
- 文档页数:118
真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
真核生物基因表达的调控一、生物基因表达的调控的共性首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。
1、作用范围。
生物体内的基因分为管家基因和奢侈基因。
管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。
可见,调控是普遍存在的现象。
2、调控方式。
基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。
3、调控水平。
一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。
然为节省能量起见,转录的起始阶段往往作为最佳调控位点。
二、真核生物基因表达调控的特点真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。
真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。
1、多层次。
真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。
2、无操纵子和衰减子。
3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。
4、个体发育复杂,而受环境影响较小。
真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。
前者为短期调控,后者属长期调控。
从整体上看,不可逆的长期调控影响更深远。
三、真核生物基因表达调控的机制介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。
1、染色质水平。
真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。
染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。
a.基因丢失:丢失一段DNA或整条染色体的现象。
在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。
某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。
真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。
真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。
2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。
转录调控包括转录因子的结合和调节,以及染色质状态的改变。
转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。
它们可以增强或抑制基因的转录,从而影响基因表达。
3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。
这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。
这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。
4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。
染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。
常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。
5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。
这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。
它们可以影响基因的转录后处理和调控基因表达的多样性。
综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。
简述真核生物基因表达调控过程真核生物基因表达调控过程是指在真核生物细胞中,如何通过一系列的调控机制,将基因中的遗传信息转化为蛋白质,以实现细胞功能的正常发挥。
基因表达调控过程可以分为转录调控和转录后调控两个阶段。
在转录调控阶段,首先是在细胞核中进行转录。
细胞核中的DNA被RNA聚合酶酶识别并解链,形成单链mRNA。
但并不是所有基因都会被转录,细胞会根据需要选择性地进行转录。
这是通过转录因子的作用来实现的。
转录因子是一类能够与DNA特定序列结合的蛋白质,它们能够促进或抑制转录的进行。
转录因子的结合位点位于启动子区域,当转录因子结合到启动子区域时,会引发一系列的反应,包括启动RNA聚合酶的活性和引导其结合到合适位置上,从而促使转录的进行。
转录因子的表达受到多种因素的调控,如细胞内的信号分子、细胞周期等。
转录后调控是指在mRNA合成后,通过一系列的调控机制来决定其在细胞中的命运。
mRNA在合成后需要经过剪接、修饰和运输等过程。
剪接是指将mRNA中的内含子去除,将外显子进行连接的过程。
通过剪接的不同方式,可以生成不同的mRNA亚型,从而在翻译过程中产生不同的蛋白质。
修饰是指在mRNA上加上帽子和尾巴等化学修饰,这些修饰可以保护mRNA不被降解,并帮助mRNA与翻译机器结合。
运输是指mRNA离开细胞核,进入到细胞质中,进一步参与翻译过程。
这个过程受到RNA结合蛋白的调控。
在翻译过程中,mRNA被核糖体识别并翻译成蛋白质。
这个过程也受到多种调控机制的影响。
一方面,mRNA上的启动子序列会影响翻译的起始位置,从而决定蛋白质的翻译起始位点。
另一方面,mRNA的稳定性也会影响翻译的效率和蛋白质的表达水平。
mRNA 的稳定性受到RNA结合蛋白和非编码RNA的调控。
总的来说,真核生物基因表达调控过程是一个复杂而精细的调控网络。
通过转录调控和转录后调控的相互作用,细胞可以根据内外环境的需要,在不同的时空位置上产生不同类型的蛋白质,以实现细胞功能的正常发挥。
真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。
真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。
本文将就这些层次进行详细介绍。
一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。
染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。
染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。
DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。
组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。
非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。
二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。
转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。
转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。
转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。
启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。
转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。
三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。
RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。
剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。
剪切的方式和位置不同,可以产生不同的转录产物。