真核生物基因表达调控
- 格式:docx
- 大小:19.76 KB
- 文档页数:3
真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。
真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。
2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。
转录调控包括转录因子的结合和调节,以及染色质状态的改变。
转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。
它们可以增强或抑制基因的转录,从而影响基因表达。
3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。
这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。
这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。
4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。
染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。
常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。
5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。
这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。
它们可以影响基因的转录后处理和调控基因表达的多样性。
综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。
真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。
真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。
本文将就这些层次进行详细介绍。
一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。
染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。
染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。
DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。
组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。
非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。
二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。
转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。
转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。
转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。
启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。
转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。
三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。
RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。
剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。
剪切的方式和位置不同,可以产生不同的转录产物。
真核基因表达调控的五个水平真核基因表达调控是指在真核生物中,通过一系列的调控机制来控制基因的表达。
这些调控机制可以分为五个水平:染色质水平、转录水平、RNA加工水平、转运水平和翻译水平。
染色质水平是指通过改变染色质的结构和状态来调控基因表达。
在真核生物中,染色质通常会以一种紧密的形式存在,称为紧密染色质。
这种紧密染色质不容易被转录因子识别和结合,从而抑制基因的转录。
而在某些特定的时机,染色质会发生松弛,使得转录因子能够更容易地与基因的启动子结合,从而促进基因的转录。
这种染色质的结构和状态的改变可以通过DNA甲基化、组蛋白修饰和非编码RNA等机制来实现。
转录水平是指通过调控转录过程来控制基因表达。
转录是指将DNA 中的基因信息转录成RNA的过程。
在转录过程中,转录因子会结合到基因的启动子区域,通过与RNA聚合酶的相互作用来启动和调节转录过程。
转录因子的结合位置和数量可以影响基因的转录水平。
此外,还有一些转录调控因子可以通过与转录因子相互作用,调节其活性和稳定性,从而进一步调控基因的转录。
RNA加工水平是指通过对转录后的RNA分子进行剪接、修饰和降解等加工过程来调控基因表达。
在转录后,RNA分子需要经过剪接来去除其中的内含子序列,形成成熟的mRNA分子。
剪接的方式和位置可以影响基因的表达模式。
此外,还有一些修饰酶可以对RNA 分子进行修饰,如加上甲基或磷酸基团,从而影响其稳定性和功能。
另外,RNA分子还会受到RNA降解酶的作用,从而降解掉一部分RNA分子,进一步调控基因的表达水平。
转运水平是指通过调控RNA分子的运输和定位来调控基因表达。
在真核生物中,RNA分子需要通过核孔复合体来从细胞核转运到细胞质,然后再到达特定的亚细胞位置。
在细胞质中,RNA分子可以与翻译机器相互作用,从而进一步调控基因的翻译。
此外,还有一些RNA分子可以通过与RNA结合蛋白相互作用,形成RNA颗粒体或RNA复合体,从而影响RNA的稳定性和功能。
第十章作业
1. 简述真核生物基因表达调控的7个层次。
①染色体和染色质水平上的结构变化与基因活化
②转录水平上的调控,包括基因的开与关,转录效率的高与低
③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。
④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控
⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制
⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制
⑦对mRNA选择性降解的调控
2. 真核基因表达调控与原核生物相比有何异同?
相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要;
②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。
不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。
②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。
③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。
④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。
3. DNA 甲基化对基因表达的调控机制。
甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。
DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。
4. 转录因子结合DNA的结构基序(结构域)有哪几类?
①螺旋-转折-螺旋
②锌指结构
③碱性-亮氨酸拉链
④碱性-螺旋-环-螺旋
5. 真核基因转调控中有几种方式能够置换核小体?
①占先模式:可以解释转录时染色质结构的变化。
该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。
②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构
6. 简述真核生物转录水平调控过程。
真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的蛋白质-DNA复合物,只有当一个或多个转录因子结合到DNA上,形成有功能的启动子,才能被RNA聚合酶所识别并结合。
转录起始复合物的形成过程为:TFⅡD结合TA TA盒;RNA聚合酶识别并结合TFⅡD-DNA复合物形成一个闭合的复合物;其他转录因子与RNA 聚合酶结合形成一个开放复合物。
在这个过程中,反式作用因子的作用是:促进或抑制TF ⅡD与TATA盒结合;促进或抑制RNA聚合酶与TFⅡD-DNA复合物的结合;促进或抑制转录起始复合物的形成。
②反式作用因子:一般具有三个功能域(DNA识别结合域、转录活性域和结合其他蛋白结合域);能识别并结合上游调控区中的顺式作用元件;对基因的表达有正性或负性调控作用。
③转录起始的调控:⑴反式作用因子的活性调节:a.表达式调节——反式作用因子合成出来就具有活性;b.共价修饰——磷酸化和去磷酸化,糖基化;c.配体结合——许多激素受体是反式作用因子;d.蛋白质与蛋白质相互作用——蛋白质与蛋白质复合物的解离与形成。
⑵反式作用因子与顺式作用元件的结合:反式作用因子被激活后,即可识别并结合上游启动子元件和增强子中的保守性序列,对基因转录起调节作用。
⑶反式作用因子的作用方式——成环、扭曲、滑动、Oozing。
⑷反式作用因子的组合式调控作用:每一种反式作用因子结合顺式作用元件后虽然可以发挥促进或抑制作用,但反式作用因子对基因调控不是由单一因子完成的而是几种因子组合发挥特定的作用。
7.解释下列名词:异染色质、活性染色质、印记基因、占先模型、CpG岛、绝缘子、GC盒、基础转录
异染色质:折叠压缩程度高,处于凝集状态,经碱性染料染色着色深。
活性染色质:活性染色质是指具有转录活性的染色质。
印记基因:由表观遗传修饰决定的,来源于双亲的特异性表达的基因。
占先模型:可以解释转录时染色质结构的变化。
该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。
CpG岛:CpG二核苷酸序列通常成串出现并零散地分布于基因组中,此序列被称为CpG岛。
绝缘子:是近年发现的一类特殊顺式作用元件,它不同于增强子,其功能是阻止激活或阻遏作用在染色质上的传递,使染色质的活性限定于结构域之内。
GC盒:有两个拷贝,位于CAAT框的两侧,由GGCGGG组成,是一个转录调节区,有激活转录的功能。
基础转录:是指由核心启动子与通用转录因子结合后起始的转录过程。
第十一章作业
1.试述病毒与肿瘤之间的关系
肿瘤:失去接触抑制而无限分裂的一群细胞。
分为良性和恶性两大类。
病毒癌基因:致瘤病毒中能在体内诱发肿瘤并在体外引起细胞转化的基因。
编码病毒癌基因的主要有DNA病毒和RNA病毒。
大约有15% - 20% 的癌症是由病毒感染引起的。
DNA转化病毒的早期基因含有多功能癌基因。
致癌潜能存在于一种功能或一组相关的功能之中,这些功能在病毒裂解周期的早期就被激活。
当转化发生时,相应基因整合到宿主的基
因组中,并且呈组成型表达。
2.简述细胞中原癌基因转变为癌基因的主要途径
①点突变:原癌基因活化是导致癌变最常见的机制。
②LTR插入:当LTR插入原癌基因启动子区域或邻近部位后,可从根本上改变基因的正常
调控规律。
③基因重排
④缺失:很多原癌基因5’上游区存在负调控序列,一旦该序列发生缺失或突变,就丧失抑制基因表达调控的能力。
④基因扩增:使每个细胞中基因拷贝数增加,从而直接增加可用的转录模板。
3.什么是传统疫苗,什么是基因工程疫苗?
传统疫苗:采用病原微生物及其代谢产物,经过人工减毒、脱毒、灭活等方法制成的疫苗。
基因工程疫苗:是指用基因工程的方法,表达病原微生物的一段基因序列,将表达产物(多数是无毒性、无感染能力,但具有较强的免疫原性)用作疫苗,例如正在使用的大多数乙型肝炎疫苗就是基因工程疫苗。
4.什么是基因治疗?
基因治疗是将具有治疗价值的基因,即“治疗基因”装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,直接进行表达。
基因治疗操作必须将基因直接导入人体细胞,技术难度大、安全要求高。