戴维南定理的解析与练习
- 格式:doc
- 大小:440.01 KB
- 文档页数:7
戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。
(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。
上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。
法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。
开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。
在求解短路电流的进程中,独立源要保存。
电路如下图所示。
依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。
戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。
设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。
当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。
戴维南定理例题 -回复戴维南定理是一个在数学中常见的定理,它有许多不同的应用和例题。
我将从不同的角度给出一些例题来帮助你更好地理解这个定理。
例题1,在直角三角形ABC中,角A的对边长为3,角B的对边长为4。
求角C的对边长。
解:根据戴维南定理,我们可以利用公式a/sinA = b/sinB = c/sinC来求解。
首先,我们可以利用已知的信息计算出sinA和sinB的值,然后代入公式中进行求解。
计算过程如下:sinA = 对边长/斜边长 = 3/5。
sinB = 对边长/斜边长 = 4/5。
然后我们可以利用sinC = c/sinB来求解角C的对边长c:sinC = c/sinB.sinC = c/(4/5)。
c = 4sinC/5。
由此我们可以得出角C的对边长为4sinC/5。
例题2,在三角形ABC中,已知角A的度数为30°,角B的度数为60°,且边a的长度为5。
求边b和边c的长度。
解:根据戴维南定理,我们可以利用公式a/sinA = b/sinB = c/sinC来求解。
首先,我们可以利用已知的信息计算出sinA和sinB的值,然后代入公式中进行求解。
计算过程如下:sinA = sin30° = 1/2。
sinB = sin60° = √3/2。
然后我们可以利用a/sinA = b/sinB来求解边b的长度:5/1/2 = b/√3/2。
b = 5√3/2。
同样的方法,我们可以利用a/sinA = c/sinC来求解边c的长度:5/1/2 = c/sinC.c = 5/sinC.由此我们可以得出边b的长度为5√3/2,边c的长度为10/√3。
这些例题展示了戴维南定理在不同情况下的应用,希望能帮助你更好地理解和掌握这个定理。
复杂直流电路戴维宁定理专题1.利用戴维南定理求解如题83图中的电流I。
(1)断开待求支路,则开路电压U O=V;(5分)(2)等效电阻R O=Ω;(4分)(3)电流I= A。
(3分)题83图83.如图如示,试求:(1)用电源模型的等效变换求ab支路电流I;(6分,要有解题过程)(2)电压源端电压U;(3分)(3)3A恒流源的功率(2分),判断它是电源还是负载(1分)。
第83题图84.(12分)如题84图所示,试分析计算:(1)断开R,利用戴维南定理求有源二端网络的等效电压源模型。
(6分)(2)若a、b两端接上负载R,则R可获得最大功率是多少?(3分)(3)若负载R两端并接一个4μF的电容C,则C储存的电场能量是多少?(3分)第84题图解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。
第二步,将题84图电路除源,画出无源二端网络如下:则无源二端网络的等效电阻R ab=____Ω.第三步,画出题84图的等效电路如下:(2)负载R L可获得最大功率的计算如下:(3)电容C储存的电场能量的计算如下:84.有源二端网络如图(a)所示,试分析计算:(1)利用戴维南定理求其等效电压源。
(8分)(2)若a、b两端接如图(b)所示电路图,则R L可获得的最大功率是多少?(4分)解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。
(3分)第二步,将图(a)电路除源,画出无源二端网络如下:(2分)则无源二端网络的等效电阻R ab=____Ω.(1分)第三步,画出图(a)的等效电路如下:(2分)(2)如图(b)所示,负载R L可获得最大功率的计算如下:(4分)84、如题84(a)图所示电路中,用戴维宁定理求6Ω电阻中的电流I的大小,并计算30V 电压源的功率Pus,并说明是吸收功率还是产生功率。
解:第一步:将待求之路和3A电流源一起移开后如题84(b)图所示,求有源线性二端网络的开路电压U ab= V。
戴维宁定理一、知识点:1、二端(一端口) 网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为 U OC 的理想电压源和一个电阻 R0 串联的等效电路来代替。
如图所示:等效电路的电压 U OC 是有源二端网络的开路电压,即将负载 R L 断开后 a 、b 两端之间的电压。
等效电路的电阻 R0 是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后 , 所得到的无源二端网络 a 、b 两端之间的等效电阻。
二、例题:应用戴维南定理解题:戴维南定理的解题步骤:1.把电路划分为待求支路和有源二端网络两部分,如图 1 中的虚线。
2.断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab。
4.画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性),内阻 R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
例 1:电路如图,已知 U1=40V, U2=20V, R1=R2=4, R3=13 ,试用戴维宁定理求电流I3。
解: (1) 断开待求支路求开路电压UOCU U 40 20I = 1 2 = = 2.5 AR + R 4 +41 2UOC = U2 + I R2 = 20 +2.5 4 =30V或: UOC = U1 – I R1 = 40 –2.5 4 = 30VUOC 也可用叠加原理等其它方法求。
(2) 求等效电阻 R0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)R RR = 1 2 = 20 R + R1 2(3) 画出等效电路求电流 I3U OC 30I = = = 2 A3 R + R 2 +130 3例 2:试求电流 I1解: (1) 断开待求支路求开路电压 UOCUOC = 10 – 3 1 = 7V(2) 求等效电阻 R0R0 =3(3) 画出等效电路求电流 I3 a327V _ b 解得: I1 = 1. 4 A【例 3】 用戴维南定理计算图中的支路电流 I 3。
戴维宁定理
一、知识点:
1、二端(一端口) 网络的概念:
二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理
任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。
如图所示:
等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。
等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。
二、 例题:应用戴维南定理解题:
戴维南定理的解题步骤:
1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。
4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。
解:(1) 断开待求支路求开路电压
U OC
U OC = U 2 + I R 2 = 20 +2.5 ⨯ 4 =
30V
或: U OC = U 1 – I R 1 = 40 –2.5 ⨯ 4 = 30V
U OC 也可用叠加原理等其它方法求。
(2) 求等效电阻R 0
将所有独立电源置零(理想电压源
用短路代替,理想电流源用开路代替)
(3) 画出等效电路求电流I 3
例2:试求电流 I 1
A 5.24420402121
=+-=+-=R R U U I Ω=+⨯=22
1210R R R R R A 213
23030OC 3=+=+=R R U I
解:(1) 断开待求支路求开路电压U OC
U OC = 10 – 3 ⨯ 1 = 7V
(2) 求等效电阻R 0
R 0 =3 Ω
(3) 画出等效电路求电流I 3
解得:I 1 = 1. 4 A
【例3】 用戴维南定理计算图中的支路电流I 3。
解:① 等效电源的电动势E 可由图1-58(b)求得
于是
或
② 等效电源的内阻R O 可由图1-58(c)求得
因此 3Ω +
_ 2Ω a
b I 1 7V
③ 对a和b两端讲,R1和R2是并联的,由图1-58(a)可等效于图1-58(d)。
所以
【例4】电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。
解:图1-59(a)的电路可等效为图1-59(b)的电路。
将a、b间开路,求等效电源的电动势E,即开路电压U ab0。
应用结点电压法求a、b间开路时a和b两点的电位,即
将a、b间开路,求等效电源的内阻R0
R0=3KΩ//6KΩ+2KΩ//1KΩ//2KΩ=2.5KΩ
求电阻R中的电流I
三、应用戴维宁定理应注意的问题:
应用戴维南定理必须注意:
①戴维南定理只对外电路等效,对内电路不等效。
也就是说,不可应用该定理求出等效电源电动势和内阻之后,又返回来求原电路(即有源二端网络内部电路)的电流和功率。
②应用戴维南定理进行分析和计算时,如果待求支路后的有源二端网络仍为复杂电路,可再次运用戴维南定理,直至成为简单电路。
③使用戴维南定理的条件是二端网络必须是线性的,待求支路可以是线性或非线性的。
线性电路指的是含有电阻、电容、电感这些基本元件的电路;非线性电路指的是含有二极管、三极管、稳压管、逻辑电路元件等这些的电路。
当满足上述条件时,无论是直流电路还是交
流电路,只要是求解复杂电路中某一支路电流、电压或功率的问题,就可以使用戴维南定理。
四、练习题:
1、用戴维南定理求图中5Ω电阻中的电流I ,并画出戴维南等效电路
2、试用戴维南定理计算图示电路中3欧电阻中的电流I.(-35/31(A ))
3、试用戴维南定理计算图示电路中6欧电阻中的电流I 。
(0.75A )
4、如图中已知US1=140V US2=90V R1=20欧姆 R2=5欧姆 R3=6欧姆,用戴维宁定律计算电流 I 3 值 (10A )
5、计算图示电路中的电流I 。
(用戴维南定理求解)(2A )
- 10V + 6Ω
3Ω
3Ω 5A 2A - 20V +
题3图
6、计算图示电路中的电流I。
(用戴维南定理求解)(-1A)
7、计算图示电路中的电流I。
(用戴维南定理求解)
(1.6A)
7、用戴维南定理计算图中的支路电流I3。
(10A)
8、电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。
(0.35 mA)
9、用戴维南定理求下图所示电路中的电流I(2A)。