基尔霍夫定律叠加原理戴维南定理
- 格式:ppt
- 大小:4.27 MB
- 文档页数:59
成都信息工程大学工程实践中心实验总结报告电路与电子技术基础课程实验总结报告实验方式:线上实验名称实验一线性网络基本定理的研究指导教师赵丽娜成绩姓名代震班级数媒181 学号2018062078四、实验电路与数据记录4.1 实验电路运行结果图:4.2 实验数据记录4.2.1 基尔霍夫定律的研究电流测量:4.2.2 叠加原理的研究表1.1 基尔霍夫定律、叠加原理数据记录表U R1/V U R2/V U RL/V U S1、U S2共同作用-3.63 -0.64 2.44 U S1单独作用-4.86 1.21 1.21U S2单独作用 1.23 -1.85 1.23 U S1、U S2共同作用I1= -0.60 mA I2= -0.21 mA I L= 0.81 mA4.2.3 戴维南定理的研究①开路电压U OC= 4.07 V,短路电流I SC= 2.04 mA。
②等效电阻R o = 1.9951 KΩ。
4.2.4 测定原网络的外特性表1.2 原网络外特性数据记录表R L/Ω∞3K 2K 1K 原网络U/V 4.07 2.44 2.04 1.36 戴维南等效电路U/V 4.07 2.44 2.04 1.362.5 最大功率传输定理表1.3 最大功率传输定理数据记录表R L/Ω∞3K 2K 1K 电压U/V功率P/W五、数据分析及实验结论5.1 基尔霍夫电流和电压定律的验证:(提示:①KCL验证:如何从I1、I2、I L三者电流关系角度验证KCL?②KVL验证:选取某一回路,根据该回路上各支路电压关系验证KVL。
)1.基尔霍夫电流定律的验证:选取节点a,由4.2.1中的图中数据得:I1= -0.60 mA I2= -0.21 mA I L= 0.81 mA-0.60+(-0.21)+0.81=0所以:I1+I2+IL=0符合KCL定律:在集总参数电路中,任何时刻,对任一节点,所有支路电流的代数和恒等零。
电学基础戴维南定理与基尔霍夫定律电学基础:戴维南定理与基尔霍夫定律在电学的广袤世界里,戴维南定理和基尔霍夫定律就像是两座坚实的基石,为我们理解和分析电路提供了强大的工具。
让我们一同走进这两个重要的电学概念,揭开它们神秘的面纱。
先来说说戴维南定理。
简单来讲,戴维南定理告诉我们,对于任何一个线性含源二端网络,都可以等效为一个电压源和一个电阻的串联组合。
这个电压源的电压等于该网络的开路电压,而电阻则等于该网络中所有独立电源置零后所得无源网络的等效电阻。
举个例子吧,假如我们有一个复杂的电路,其中包含了各种电阻、电容、电感以及电源。
但是我们只对其中的某一部分感兴趣,这时候戴维南定理就派上用场了。
我们可以把这部分电路从整个大电路中“拎出来”,然后通过测量或者计算得到它的开路电压和等效电阻,这样就把复杂的问题简单化了。
那么,如何去求解这个开路电压和等效电阻呢?对于开路电压,我们可以通过断开感兴趣的部分与电路的连接,然后计算剩余电路两端的电压。
而求等效电阻时,把所有的独立电源置零,也就是把电压源短路,电流源开路,然后求出剩下电阻网络的等效电阻。
再来说说基尔霍夫定律。
基尔霍夫定律包括电流定律(KCL)和电压定律(KVL)。
基尔霍夫电流定律指出,在任何一个节点上,流入节点的电流之和等于流出节点的电流之和。
这就好比是水流进入和流出一个水池,总的水量是不会凭空增加或减少的。
比如说在一个电路节点处,有三条支路,电流分别为 I1、I2 和 I3,流入节点的电流是 I1 和 I2,流出节点的电流是 I3,那么就有 I1 + I2 = I3。
基尔霍夫电压定律则表明,在任何一个闭合回路中,所有元件两端的电压代数和等于零。
想象一下我们沿着一个电路回路走一圈,升高的电压和降低的电压相互抵消,总和为零。
比如说在一个简单的回路中,有电源、电阻和电容,电源提供的电压为 U,电阻上的电压降为U1,电容上的电压降为 U2,那么就有 U U1 U2 = 0。
电学基础戴维南定理与基尔霍夫定律电学基础:戴维南定理与基尔霍夫定律在电学的世界里,戴维南定理和基尔霍夫定律就像是两座坚固的基石,为我们理解和分析电路提供了重要的理论支持。
无论是简单的电路还是复杂的网络,这两个定律都有着广泛的应用,帮助我们解决各种实际问题。
让我们先来聊聊戴维南定理。
想象一下,你面对一个复杂的电路,其中有很多个电阻、电源等等元件,看起来眼花缭乱,让人不知所措。
这时候,戴维南定理就像一把神奇的剪刀,能把复杂的电路剪切成两部分。
一部分是我们需要研究的“目标电路”,另一部分则是可以被等效成一个简单的电源和电阻串联的组合。
这个等效的电源电压被称为戴维南电压,它的值等于原来电路在断开目标电路后的开路电压。
而等效电阻呢,被称为戴维南电阻,它的值等于原来电路中所有电源都置零(电压源短路,电流源开路)后,从断开处看进去的等效电阻。
比如说,我们有一个电路,其中包含了多个电阻和一个电源。
我们想要研究其中某一部分电阻两端的电压和电流。
通过戴维南定理,我们就可以把这部分电阻之外的电路等效成一个简单的电源和电阻串联,这样计算起来就简单多了。
戴维南定理的优点在于它能够将复杂的电路简化,使得分析和计算变得更加容易。
特别是在解决含有多个电源和复杂电阻网络的电路问题时,它的作用尤为明显。
接下来,我们再谈谈基尔霍夫定律。
基尔霍夫定律分为电流定律(KCL)和电压定律(KVL)。
基尔霍夫电流定律(KCL)说的是,在任何一个节点(也就是电路中三条或三条以上支路的连接点)上,流入节点的电流之和等于流出节点的电流之和。
这就好比是水流进入和流出一个节点,进来的水总量必须等于出去的水总量,不然水就会在节点处堆积或者消失,这显然是不符合实际的。
举个例子,如果一个节点上有三条支路,其中两条支路流入节点的电流分别是 2A 和 3A,那么从第三条支路流出的电流必然是 5A,这样才能满足 KCL。
而基尔霍夫电压定律(KVL)则是说,在任何一个闭合回路中,沿回路绕行一周,所有元件的电压代数和等于零。
一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。
三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。
5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式即为∑U=0。
叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。
它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。
戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。
该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。
四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。
二、实验项目名称:Multisim 仿真软件环境联系三、实验学时:四、实验原理:(包括知识点,电路图,流程图)1.基尔霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。
即∑I=02.基尔霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。
即∑U=0(3).叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)4.戴维南定理任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
五、实验目的:1.熟悉并掌握Multisim仿真软件的使用2.掌握各种常用电路元器件的逻辑符号3.设计电路并仿真验证KCL、KVL定律和叠加定理、戴维南定理六、实验内容:(介绍自己所选的实验内容)利用Multisim仿真软件,绘制用于验证KCL、KVL定律和叠加定理、戴维南定理的模拟电路模拟电路,并利用Multisim仿真软件获取验证所需的实验数据,并根据实验数据计算出理论值与Multisim仿真电路的模拟值比较,验证KCL、KVL定律和叠加定理、戴维南定理。
七、实验器材(设备、元器件):计算机;multisim10.0仿真软件八、实验步骤:(编辑调试的过程)(1). 验证基尔霍夫电流定律1. 利用Multisim仿真软件绘制出电路图(四.1),图中的电流I1、I2、I3的方向已设定,2.加入两直流稳压电源接入电路,令U1=6V,U2=12V。
3. 接入直流数字毫安表分别至三条支路中,测量支路电流。
理解电路中的基尔霍夫定律与戴维南定理电路中的基尔霍夫定律与戴维南定理是电路分析中常用的两个重要原理。
通过理解和应用这两个定律,我们可以更好地理解和解决电路中的问题。
基尔霍夫定律是基于电流守恒和电荷守恒原理的。
它由两个部分组成:基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律也称为电流定律,它指出电路中的节点处的所有电流代数和为零。
这个定律是基于电流守恒原理的,即电流在节点处的进出是平衡的。
基尔霍夫第二定律也称为电压定律,它指出沿着任何闭合路径的电压代数和为零。
这个定律是基于电荷守恒原理的,即电荷在闭合回路中是守恒的。
通过应用基尔霍夫定律,我们可以根据电流和电压的关系来解决电路中的问题。
戴维南定理是基于电压和电流之间的线性关系的。
它可以帮助我们计算电路中的电流和电压。
根据戴维南定理,电路中的任何两个节点的电压差等于电流通过这两个节点的电阻的乘积的代数和。
这个定理是基于欧姆定律的推论,即电流与电压之间存在线性关系。
通过应用戴维南定理,我们可以计算电路中的电流和电压分布,从而了解电路的行为和特性。
理解电路中的基尔霍夫定律与戴维南定理对于解决电路问题至关重要。
它们提供了一种分析电路的有效方法,帮助我们理解电路中的各种参数和变量之间的关系。
通过使用这两个定律,我们可以计算电流、电压、功率等电路参数,预测电路的稳定性和性能。
此外,它们还能帮助我们设计和优化电路,提高电路的效率和可靠性。
为了更好地应用基尔霍夫定律与戴维南定理,我们需要有一些基础的电路知识和分析技巧。
首先,我们需要了解基本的电路元件,如电阻、电感和电容等,并熟悉它们的性质和特性。
其次,我们需要了解电路拓扑结构,如串联、并联和混合连接等,并能够分析和计算电路中的参数。
此外,我们还需要学习使用符号和方程表示电路,并掌握解方程的技巧和方法。
在实际应用中,我们可以将基尔霍夫定律和戴维南定理与其他电路分析方法和工具结合起来使用。
例如,我们可以使用模拟电路仿真软件来模拟和验证电路的性能。
叠加定理戴维南定理基尔霍夫定理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!叠加定理、戴维南定理与基尔霍夫定理:电路分析中的重要工具在电路分析领域,叠加定理、戴维南定理和基尔霍夫定理是至关重要的工具。
实验二基尔霍夫定律和迭加原理一、实验目的加深对基尔霍夫定律和迭加原理的内容和适用范围的理解。
二、原理及说明1、基尔霍夫定律是集总电路的基本定律。
它包括电流定律和电压定律。
基尔霍夫电流定律:在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即:ΣI=0基尔霍夫电压定律:在集总电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零,即:ΣU=02、迭加原理是线性电路的一个重要定理。
把独立电源称为激励,由它引起的支路电压、电流称为响应,迭加原理可简述为:在任意线性网络中,多个激励同时作用时,总的响应等于每个激励单独作用时引起的响应之和。
三、仪器设备电工实验装置: DG012T、DY031、DG05-1四、实验步骤1、基尔霍夫定律1)按图1.2.1接线。
其中I1、I2、I3是电流插口,K1、K2是双刀双掷开关。
2)先将K1、K2合向短路线一边,调节稳压电源,使U S1=10V,U S2=6V,(用DG054-1T的20V直流电压表来分别测量DY031TTT的输出电压)。
3)将K1、K2合向电源一边,按表1.2.1和表1.2.2中给出的各参量进行测量并记录,验证基尔霍夫定律。
图1.2.1表1.2.2 基尔霍夫电压定律2、迭加原理实验电路如图1.2.1。
4)把K2掷向短路线一边,K1掷向电源一边,使Us1单独作用,测量各电流、电压并记录于表1.2.3中。
5)把K1掷向短路线一边,K2掷向电源一边,使Us2单独作用,测量各电流、电压并记录在表1.2.3中。
6)两电源共同作用时的数据在实验步骤1中取。
表1.2.3 迭加原理五、实验报告1、用表1.2.1和表1.2.2中实验测得数据验证基尔霍夫定律和迭加原理2、根据图1.2.1给定参数,计算表1.2.2中所列各项并与实验结果进行比较。
实验三戴维南定理及功率传输最大条件一、实验目的1、用实验方法验证戴维南定理的正确性。
2、学习线性含源一端口网络等效电路参数的测量方法。
一、叠加定理的应用范围与限制1. 请简要说明叠加定理的定义及其应用范围。
叠加定理指出,在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
叠加定理适用于线性电路,即电路中元件的电压、电流与作用在其上的电压、电流之间呈线性关系。
2. 请举例说明叠加定理在实际电路中的应用。
叠加定理在电路分析、测试和电路设计等方面具有广泛的应用。
例如,在电路分析中,可以分别计算每个独立源单独作用时的电路响应,然后叠加得到总响应,简化了电路分析过程。
在电路测试中,可以利用叠加原理测量电路中各个独立源对电路响应的影响。
在电路设计中,可以根据叠加原理对电路进行优化设计。
3. 请分析叠加定理的适用限制。
叠加定理的适用限制主要包括以下几点:(1)电路必须是线性的,即电路中元件的电压、电流与作用在其上的电压、电流之间呈线性关系。
(2)电路中的独立源必须满足线性关系,即独立源之间不能相互影响。
(3)叠加定理只能应用于线性电路,对于非线性电路,叠加定理不再适用。
二、叠加定理与其他电路定理的关系1. 请比较叠加定理与戴维南定理的关系。
叠加定理和戴维南定理都是电路分析中的基本定理,它们之间有一定的联系。
叠加定理适用于线性电路,而戴维南定理和诺顿定理则适用于线性有源二端网络。
在电路分析中,可以先将电路简化为戴维南或诺顿等效电路,然后利用叠加定理进行进一步分析。
2. 请说明叠加定理与基尔霍夫定律的关系。
叠加定理和基尔霍夫定律都是电路分析中的基本定理。
基尔霍夫定律描述了电路中电流和电压的分布规律,而叠加定理则描述了电路中各个独立源对电路响应的影响。
在实际电路分析中,可以利用基尔霍夫定律和叠加定理相结合的方法,对电路进行更深入的分析。
三、叠加定理的实验验证1. 请简述叠加定理实验验证的步骤。
叠加定理实验验证的步骤如下:(1)搭建实验电路,确保电路满足叠加定理的适用条件。
叠加原理和戴维南定理实验报告篇一:实验报告1:叠加原理和戴维南定理的验证实验报告叠加原理和戴维南定理的验证姓名班级学号叠加原理和戴维南定理的验证一.实验目的:1. 通过实验加深对基尔霍夫定律、叠加原理和戴维南定理的理解。
2. 学会用伏安法测量电阻。
3. 正确使用万用表、电磁式仪表及直流稳压电源。
二.实验原理:1.基尔霍夫定律:1).电流定律(KCL):在集中参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零,即??=0。
流出节点的支路电流取正号,注入节点的支路电流取负号。
2).电压定律(KVL):在集中参数电路中,任何时刻,对任一回路内所有支路或原件电压的代数和恒等于零,在即??=0。
凡支路电压或原件电压的参考方向与回路绕行方向一致者为正量,反之取负号。
2.叠加原理在多个独立电源共同作用的线性电路中,任一支路的电流(或电压)等于各个电源独立作用时在该支路所产生的电流(或电压)的代数和。
3. 戴维南定理:任一线性有源二端网络对外电路的作用均可用一个等效电压源来代替,其等效电动势EO等于二端网络的开路电压UO,等效内阻RO等于该网络除源(恒压源短路、开流源开路)后的入端电阻。
实验仍采取用图2-3-1所示电路。
可把ac支路右边以外的电路(含R3支路)看成是以a与c为端钮的有源二端网络。
测得a、c两端的开路电压Uab即为该二端网络的等效电动势EO,内阻可通过以下几种方法测得。
(1)伏安法。
将有源二端网络中的电源除去,在两端钮上外加一已知电源E,测得电压U和电流I,则URO=(2)直接测量法。
将有源二端网络中的电压源除去,用万用表的欧姆档直接测量有源二端网络的电阻值即为RO。
本实验所用此法测量,图2中的开关S1合向右侧,开关S2断开,然后用万能表的欧姆挡侧a、c两端的电阻值即可。
(3)测开路电压和短路电流法。
测量有源二端网络的开路电压U0和短路电流IS。
则R0=U0/IS测试如图2-3-3所示,开关S打开时测得开路电压U0,闭合时测得短路电流IS。