第5讲 等离子弧焊及切割简介
- 格式:doc
- 大小:691.00 KB
- 文档页数:7
等离子弧焊与切割及其他焊接技术等离子弧焊与切割及其他焊接技术等离子弧焊原理、设备及材料等离子弧焊接与切割是在钨极氩弧焊的基础上形成的,是焊接领域中较有发展前途的一种先进工艺。
等离子弧焊接利用等离子弧的高温,可以焊接电弧焊所不能焊接的金属材料,甚至解决了氩弧焊所不能解决的极薄金属焊接问题;可以切割氧—乙炔焰不能切割的难熔金属和非金属。
一、等离子弧的形成及类型1.等离子弧的形成焊条电弧焊所形成的电弧(图8—1a)未受到外界的约束,弧柱的直径随电弧电流及电压的变化而变化。
能量不是高度集中,温度限制在5 730~7730℃,故称为自由电弧。
如果对自由电弧的弧柱进行强迫"压缩",就能将导电截面收缩得比较小,从而使能量更加集中,弧柱中气体充分电离。
这样的电弧称为等离子弧。
对自由电弧的弧柱进行强迫压缩作用通称"压缩效应"。
"压缩效应"有如下3 种形式(1)机械压缩效应如图8--1b所示,在钨极(负极)和焊件(正极)之间加上1个较高的电压,通过激发使气体电离形成电弧,此时用一定压力的气体作用于弧柱,强迫其通过水冷喷嘴细孔,弧柱便受到机械压缩,使弧柱截面积缩小,称为机械压缩效应。
(2)热收缩效应如图8—1c 所示,当电弧通过水冷喷嘴,同时又受到不断送给的高速等离子气体流(氩气、氮气、氢气等)的冷却作用,使弧柱外围形成一个低温气流层,电离度急剧下降,迫使弧柱导电截面进一步缩小,电流密度进一步提高,弧柱的这种收缩称为热收缩效应。
(3)磁收缩效应电弧弧柱受到机械压缩和产生热收缩效应后,喷嘴处等离子弧的电流密度大大提高。
若把电弧看成一束平行的同向电流线,则其自身磁场所产生的电磁力,使之相互吸引,由此而产生电磁收缩力,这种磁收缩作用迫使电弧更进一步的受到压缩,如图8—1d所示。
在以上3 种效应的作用下,弧柱被压缩到很细的程度,弧柱内气体也得到了高度的电离,温度高达16000~33000℃,能量密度剧增,而且电弧挺度好,具有很强的机械冲刷力,形成高能束的等离子弧。
项目七等离子弧焊接与切割教学目标:了解等离子弧焊接和切割的原理、特点及应用范围;掌握等离子弧焊的基本方法;能合理制定等离子弧焊工艺。
了解等离子弧堆焊、喷涂和切割的基本方法。
教学活动设计:1在实训室中进行讲练结合的现场教学;2.利用多媒体课件、仿真等辅助教学;教学重点:条电弧焊的原理、工艺特点制定焊条电弧焊工艺;掌握焊条电弧焊操作技术教学难点:能合理制定等离子弧焊工艺。
了解等离子弧堆焊、喷涂和切割的基本方法。
学习单元一认知等离子弧的焊接与切割一、等离子弧的形成1.等离子弧目前,焊接领域中应用的等离子弧实际上是一种压缩电弧,是由钨极气体保护电弧发展而来的。
钨极气体保护电弧常被称为自由电弧,它燃烧于惰性气体保护下的钨极与焊件之间,其周围没有约束,当电弧电流增大时,弧柱直径也伴随增大,二者不能独立地进行调节,因此自由电弧弧柱的电流密度、温度和能量密度的增大均受到一定限制。
实验证明,借助水冷铜喷嘴的外部拘束作用,使弧柱的横截面受到限制而不能自由扩大时,就可使电弧的温度、能量密度和等离子体流速都显著增大。
这种用外部拘束作用使弧柱受到压缩的电弧就是通常所称的等离子弧。
2.等离子弧形成原理目前广泛采用的压缩电弧的方法是将钨极缩入喷嘴内部,并且在水冷喷嘴中通以一定压力和流量的离子气,强迫电弧通过喷嘴孔道,以形成高温、高能量密度的等离子弧,如图67-1所示。
此时电弧受到下述三种压缩作用:(1)机械压缩效应当把一个用水冷却的铜制喷嘴放置在其通道上,强迫这个“自由电弧”从细小的喷嘴孔中通过时,弧柱直径受到小孔直径的机械约束而不能自由扩大,而使电弧截面受到压缩。
这种作用称为“机械压缩效应”。
(2)热收缩效应水冷铜喷嘴的导热性很好,紧贴喷嘴孔道壁的“边界层”气体温度很低,电离度和导电性均降低。
这就迫使带电粒子向温度更高、导电性更好的弧柱中心区集中,相当于外围的冷气流层迫使弧柱进一步收缩。
这种作用称为“热收缩效应”。
(3)电磁收缩效应这是由通电导体间相互吸引力产生的收缩作用。
等离子弧焊接和切割等离子弧切割是一种常用的金属和非金属材料切割工艺方法。
它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧焊接和切割:1.1 等离子弧的产生:(1)等离子弧的概念:自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。
等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。
自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。
(2)等离子弧的产生在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。
①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。
②热压缩效应——当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。
③电磁收缩效应——定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。
电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。
当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。
反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。
1.2 等离子弧焊接1.2.1 基本知识用等离子弧作为热源进行焊接的方法称为等离子孤焊接。
第5讲等离子弧焊及切割
等离子弧是利用等离子枪将阴极(如钨极)和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。
等离子弧可用于焊接、喷涂、堆焊及切割。
本章只介绍焊接及切割。
1 等离子弧工作原理
1.1等离子弧的形式
等离子枪按用途可分为焊枪及割枪,枪的主要组成部分及术语如图1所示。
切割用枪无保护气体2及保护气罩6。
压缩喷嘴5是等离子枪的关键部件,一般需用水冷。
喷嘴孔径dn及孔道长度l0是压缩喷嘴的两个主要尺寸。
喷嘴内通的气体称离子气。
中性的离子气在喷嘴内电离后使喷嘴内压力增加,所以喷嘴内壁与电极4之间的空间称增压室。
电离了的离子气从喷嘴流出时受到孔径限制,使弧柱截面变小,该孔径对弧柱的压缩作用称机械压缩。
水冷喷嘴内壁表面有一层冷气膜,电弧经过孔道时,冷气膜一方面使喷嘴与弧柱绝缘,另一方面使弧柱有效截面进一步收缩,这种收缩称热收缩。
弧柱电流自身磁场对弧柱的压缩作用称磁收缩。
在机械压缩与热收缩的作用下,弧柱电流密度增加,磁收缩随之增强,如电流不变,弧柱电场强度及弧压降都随电流密度增加而增加,所以等离子弧(也称压缩电弧)的电弧功率及温度明显高于自由电弧。
图2a所示的对比中,等离子弧的电弧温度比自由电弧高30%,电弧功率高100%。
由于电离后的离子气仍具有流体的性质,受到压缩从喷嘴孔径喷射出的电弧带电质点的运动速度明显提高(可达300m/s),所以等离子弧具有较小的扩散角及较大的电弧挺度(图2b),这也是等离子弧最突出的优点。
电弧挺度是指电弧沿电极轴线的挺直程度。
等离子弧具有的电弧力、能量密度及电弧挺度等与加工有关的物理性能取决于下列五个参数:
1)电流;
2)喷嘴孔径的几何尺寸;
3)离子气种类;
4)离子气流量;
5)保护气种类;
调整以上五个参数可使等离子弧适应不同的加工工艺。
如在切割工艺中,应选择大电流、小喷嘴孔径、大离子气量及导热好的离子气,以便使等离子弧具有高度集中的热量及高的焰流速度。
而在焊接工艺中,为防止焊穿工件则应选择小的离子气量及较大的喷嘴孔径。
1.2等离子弧的类型
等离子弧按电源的供电方式分为非转移型、转移型及联合型三种形式,其中非转移弧及转移弧是基本的等离子弧形式。
(1)非转移型等离子弧电弧建立在电极与喷嘴之间,离子气强迫等离子弧从喷嘴孔径喷出,也称等离子焰,见图3a。
非转移弧主要用于非金属材料的焊接与切割。
(2)转移型等离子弧电弧建立在电极与工件之间,见图3b。
一般要先引燃非转移弧,然后再将电弧转移至电极与工件之间。
这时工件成为另一个电极,所以转移弧能把较多的能量传递给工件,金属材料的焊接及切割一般都采用转移弧。
(3)联合型弧非转移弧和转移弧同时存在的等离子弧(图3c)。
联合弧需用两个独立电源供电,主要用于电流小于30A以下的微束等离子弧焊接。
(4)双弧现象正常的转移弧应建立在电极与工件之间,但对于某一个喷嘴,如离子气过小,电流过大或者喷嘴与工件接触,喷嘴内壁表面的冷气膜便容易被击穿而形成如图4所示的串联双弧,这时,一个电弧产生在电极与喷嘴之间,另一个电弧产生在喷嘴与工件之间。
出现双弧将会破坏正常的焊接与切割,严重时还会烧毁喷嘴。
1.3等离子弧的电流极性
(1)切割用等离子弧切割时只采用直流正接的电流极性,即工件接电源的正极。
切割电流范围:30~1000A。
(2)焊接
1)直流正接大多数焊接工艺采用直流正接极性电流,如焊合金钢、不锈钢、钛合金及镍基合金等。
电流范围:0.1~500A。
2)直流反接电极接电源正极的反接极性电流用于焊接铝合金。
由于这种方法钨极烧损严重且熔深浅,仅限于焊接薄件,电流不超过100A。
3)正弦交流正弦交流电流用来焊铝镁合金,利用正接极性电流获得较大的熔深而用反接极性电流清理工件表面的氧化膜,电流范围:10~100A。
为防止反接极性电弧熄灭,焊接设备需有稳弧装置,由于存在焊缝深宽比小及钨极烧损等问题,这种方法趋于被方波交流电流取代。
4)变极性方波交流变极性方波交流电流是正反接极性电流及正、负半周时间均可调的交流方形波电流。
用变极性方波交流等离子弧焊铝、镁合金时可获得较大的焊缝深宽比及较少的钨极烧损。
2 等离子弧焊接
2.1基本焊接方法
按焊缝成形原理,等离子弧有两种基本焊接方法:小孔型等离子弧焊及熔透型等离子弧焊,其中30A以下的熔透型等离子弧焊又可称为微束等离子弧焊。
(1)小孔型等离子弧焊利用小孔效应实现等离子弧焊的方法称小孔型等离子弧焊,亦称穿透性焊接法。
1)小孔法原理在对一定厚度范围内的金属进行焊接时,适当地配合电流、离子气流及焊接速度三个工艺参数,等离子弧将会穿透整个工件厚度,形成一个贯穿工件的小孔,如图5。
小孔周围的液体金属在电弧吹力、液体金属重力与表面张力作用下保持平衡。
焊枪前进时,在小孔前沿的熔化金属沿着等离子弧柱流到小孔后面并遂渐凝固成焊缝。
小孔法焊接的主要优点在于可以单道焊接厚板,板厚范围:1.6~9mm。
小孔法一般仅限于平焊;然而,对于某些种类的材料,采取必要的工艺措施,用小孔法可实现全位置焊接。
2)焊接特点小孔法焊接所具有的优点是:
a、孔隙率低。
b、由于小孔法产生较为对称的焊缝,焊接横向变形小。
c、由于电弧穿透能力强,对厚板可实现单道焊接。
d、不开坡口实现对接焊,焊前对工件坡口加工量减少。
小孔法的缺点是:
a、焊接可变参数多,规范区间窄。
b、厚板焊接时,对操作者的技术水平要求较高,并且小孔法仅限于自动焊接。
c、焊枪对焊接质量影响大,喷嘴寿命短。
d、除铝合金外,大多数小孔焊工艺仍限于平焊位置。
(2)熔透型等离子弧焊焊接过程过程中,只熔透工件,但不产生小孔效应的等离子弧焊方法,又称熔透型焊接法。
1)熔透法原理当离子气流量较小,弧柱受压缩程度较弱时,这种等离子弧在焊接过程中只熔化工件而不产生小孔效应,焊缝成形原理与氩弧焊类似。
主要用于薄板焊接及厚板多层焊。
2)微束等离子弧焊微束等离子通常采用如图3c所示的联合弧。
由于非转移弧的存在,焊接电流小至1A以下电弧仍具有较好的稳定性,能够焊接细丝及箔材。
这时的非转移弧又称维弧,而用于焊接的转移弧又称主弧。
3)焊接特点与GTAW焊相比,熔透法等离子弧焊具有优点是:
a电弧能量集中,因此焊接工艺具有焊接速度快;焊缝深宽比大,截面积小;薄板焊接变形小,厚板焊接缩孔倾向小及热影响区窄等优点。
b、电弧稳定性好。
由于微束等离子弧焊接采用联合弧,电流小至0.1A时电弧仍能稳定燃烧,因此可焊超薄件,如厚度0.1mm不锈钢片。
c、电弧挺直性好。
以焊接电流10A为例,等离子弧焊喷嘴高度(喷嘴到工件表面的距离)达6.4mm时,弧柱仍较挺直,而钨极氩弧焊的弧长仅能采用0.6mm(弧长大于0.6mm后稳定性变差)。
钨极氩弧的扩散角约450,呈圆锥形(见图6a),工件上的加热面
积与弧长成平方关系,只要电弧长度有很小变化将引起单位面积上输入热量的较大变化。
而等离子弧的扩散角仅50左右(见图6b)基本上是圆柱形,弧长变化对工件上的加热面积和电流密度影响比较小,所以等离子弧焊弧长变化对焊缝成形的影响不明显。
d、由于等离子弧焊的钨极内缩在喷嘴之内,电极不可能与工件相接触,因而没有焊缝夹钨的问题。
与GTAW焊相比,熔缝法的主要缺点是:
a、由于电弧直径小,要求焊枪喷嘴轴线更准确地对中焊缝。
b、焊枪结构复杂,加工精度高。
焊枪喷嘴对焊接质量有着直接影响,必需定期检查、维修,及时更换。