等离子弧焊方案
- 格式:ppt
- 大小:9.86 MB
- 文档页数:53
等离子焊接技术与参数设置
等离子焊接技术是一种高能量焊接技术,通过产生高能量的等离子体电弧来实现材料的熔化和焊接。
参数设置是等离子焊接中非常重要的一部分,合适的参数设置可以确保焊接质量和效率。
以下是一些常见的等离子焊接参数设置:
1. 焊接电流:等离子焊接电源通常具有调节焊接电流的功能。
合适的焊接电流取决于焊接材料的厚度和类型,一般需要根据焊接手册或经验来确定。
2. 焊接电压:焊接电压是等离子焊接中的另一个重要参数。
合适的焊接电压取决于等离子体电弧的稳定性和材料的熔化程度。
通常需要调节电压来实现最佳的焊接效果。
3. 焊接速度:焊接速度是等离子焊接中的另一个关键参数。
过快的焊接速度可能导致焊接材料未完全熔化和不良的焊接质量。
相反,过慢的焊接速度可能会导致过度热输入和焊缝的过多熔化。
因此,需要根据焊接材料的类型和厚度来选择合适的焊接速度。
4. 焊接气体流量:等离子焊接常使用保护气体来保护熔化池和电弧。
保护气体的流量对焊接效果有着非常重要的影响。
通常需要根据焊接材料的类型和厚度来选择合适的保护气体流量。
等离子焊接技术的参数设置是一个相对复杂的过程,需要根据
具体情况进行调整和优化。
对于初学者来说,建议多参考焊接手册和经验,或者寻求专业工程师的帮助和指导。
材料的等离子弧焊接引言等离子弧焊接是一种常用的金属焊接方法,它采用高温等离子弧作为热源,在材料表面产生高温,使材料熔化并形成焊缝。
材料的选择对等离子弧焊接的效果具有重要影响。
本文将详细介绍材料的等离子弧焊接过程以及材料选择的考虑因素。
材料的等离子弧焊接过程材料的等离子弧焊接过程通常包括以下几个步骤:1.准备工作:在进行等离子弧焊接前,需要对材料进行准备处理。
这包括清洁焊接表面,去除杂质和氧化物等。
2.设定焊接参数:根据材料的类型和厚度,需要设定适当的焊接参数。
这包括电弧电流、电弧电压、等离子气体流量等。
3.点火:在设定好焊接参数后,点火引燃等离子弧。
等离子弧将产生高温,使材料熔化。
4.焊接:将焊条或焊丝送入焊接区域,通过熔化的材料形成焊缝。
焊接过程中需要保持合适的焊接速度和焊接角度,以确保焊缝质量。
5.冷却:等离子弧焊接后,焊接部位需要进行冷却。
这可以通过在焊接过程中施加冷却剂或者自然冷却来实现。
材料选择的考虑因素在进行材料的等离子弧焊接时,需要考虑以下因素:1.材料类型:不同类型的材料对等离子弧的响应不同。
常见的等离子弧焊接材料包括钢、铝、铜等。
根据材料的特性和应用要求,选择适合的等离子弧焊接材料。
2.材料厚度:材料的厚度会影响焊接参数的设定。
较薄的材料需要较低的焊接电流和焊接速度,而较厚的材料就需要较高的焊接电流和焊接速度。
3.材料表面处理:材料的焊接表面需要进行适当的处理,以去除氧化层、油脂和杂质等。
清洁的焊接表面有利于等离子弧焊接的成功进行。
4.等离子气体选择:等离子气体在等离子弧焊接过程中起着冷却和保护焊缝的作用。
常用的等离子气体包括氩气、氩氩混合气体等。
根据材料和焊接要求选择适合的等离子气体。
结论材料的等离子弧焊接是一种常用的金属焊接方法,通过高温等离子弧使材料熔化并形成焊缝。
在进行等离子弧焊接时,需要考虑材料类型、材料厚度、材料表面处理和等离子气体选择等因素。
通过合理的材料选择和适当的焊接参数设定,可以实现高质量的等离子弧焊接。
等离子焊接原理等离子焊接是通过高度集中的等离子束流获得必要的熔化母材能量的这种焊接过程,通常等离子电弧的能量取决于等离子气体的流量,焊枪喷嘴的压缩效果和使用的电流大小。
普通电弧射流速度为80~150米/秒,等离子电弧的射流速度可以达到300~2000米/秒,等离子电弧由于受到压缩,能量密度可达105—106W/cm2,而自由状态下TIG电弧能量密度50-100W/mm2,弧柱中心温度在24000K以上,而TIG电弧弧柱中心温度在5000~8000K左右【1】。
因此,等离子电弧焊接与电子束(能量密度10 5W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接及穿孔示意图如图1等离子焊接及穿孔示意图等离子电弧的分类按电源的联接方式分类,等离子电弧分非转移弧,转移弧和联合型电弧三种形式【1】。
三种形式都是钨极接负,工件或喷嘴接正。
非转移型电弧弧是在钨极与喷嘴之间形成电弧,在等离子气流压送下,弧焰从喷嘴中喷出,形成等离子焰【1】。
主要适合于导热较好的材料焊接,但由于电弧的能量主要通过喷嘴,因此喷嘴的使用寿命较短,能量不宜过大,不太适合于长时间的焊接,这种形式较少应用在焊接。
转移型电弧是在喷嘴与工件之间形成电弧,由于转移弧难以直接形成,先在钨极与喷嘴之间形成小的非转移弧,然后过渡到转移弧,形成转移电弧时,非转移弧同时切断。
由于这种方式能将更多的能量传递给工件,因此该形式电弧普遍应用到金属材料焊接和切割中。
混合型电弧是指转移电弧和非转移电弧并存,主要用于微束等离子焊接和粉末堆焊。
按电弧形状或成形原理分类,等离子电弧分为微束等离子,熔透型等离子和小孔型等离子三种基本方法。
微束等离子是在小电流,一般在30A以下,通过熔透的方法进行焊接。
通常适用于焊接细材,箔件等,在传感器元件,电子器件,电机接头,网筛加工等运用较为普遍。
熔透型等离子是在等离子气流较小,弧柱压缩较弱的情况下焊接,只对工件进行熔透而不形成小孔的这种方法。
等离子弧焊的工艺方法1、等离子弧焊的基本方法等离子弧焊可分为穿透型、熔透型和微束等离子弧焊三种。
(1)穿透(小孔)型等离子弧焊电弧在熔池前穿透工件形成小孔,随着热源移动在小孔后形成焊道的方法称为穿透(小孔)型等离子弧焊,如下图a所示。
▲等离子弧焊a)穿透型等离子弧焊b)微束等离子弧焊1—电极2—离子气3—冷却水4—保护气5—等离子弧6—焊件7—喷嘴8—维弧9—垫板10—压板它是利用等离子弧的能量密度大、挺直度好、等离子流量大的特点,将焊件熔透并产生一个贯穿焊件的小孔。
被熔化的金属在电弧吹力、液体金属重力和表面张力相互作用下保持平衡。
焊枪前进时,小孔在电弧后方锁闭,形成完全熔透的焊缝。
小孔效应只有在足够的能量密度条件下才能形成。
当工件厚度增大时所需的能量密度也要增加,然而等离子弧能量密度是有限的,所以穿透型等离子弧焊只能在一定的板厚范围内实现。
各种材料一次焊透的厚度见下表。
大电流等离子弧焊一次可焊透厚度穿透型等离子弧焊最适宜焊接厚3~8mm的不锈钢、厚12mm以下的钛合金及铝合金、厚2~8mm的低碳钢或低合金钢,以及铜和铜合金、镍和镍合金的对接焊缝。
(2)熔透型等离子弧焊在焊接过程中只熔透工件而不产生小孔效应的焊接方法称为熔透型等离子弧焊,简称熔透法。
熔透型等离子弧焊是离子气流量较小、弧柱压缩程度较弱时的一种等离子弧焊。
此种方法基本上与钨极氩弧焊相似,随着焊枪向前移动,熔池金属凝固成焊缝。
它适用于板厚小于3mm的薄板I形坡口、不加衬垫单面焊双面成形,厚板开V形坡口多层焊。
其优点是焊接速度比钨极氩弧焊快。
(3)微束等离子弧焊利用小电流(通常在30A以下)进行焊接的等离子弧焊,通常称为微束等离子弧焊,又称为针状等离子弧焊,如上图b所示。
它是采用ф0.6~ф1.2mm的小孔径压缩喷嘴及联合型弧,当焊接电流小于1A时,仍有较好的稳定性。
微束等离子弧焊特别适合于薄板和细丝的焊接。
焊接不锈钢时,最小厚度可以达到0.025mm。
一种等离子弧自动焊焊接方法摘要该等离子弧自动焊焊接方法通过在工件表面生成等离子弧来进行焊接。
将工艺参数设置为适当的数值,通过自动控制等离子弧来实现焊接。
在焊接过程中,使用了保护气体防止氧化,确保焊接质量。
该方法可适用于各种金属的焊接,有很好的应用前景。
在实验中,通过对不同工件进行焊接试验,证明了该方法的有效性和实用性。
关键词:等离子弧,自动焊接,保护气体,焊接质量。
一、引言随着工业化和科技进步,焊接工艺也日益发展,从传统的手工焊接到机器自动焊接。
机器自动焊接,通常需要在训练有素的机器操作员的协助下完成,并需要复杂的设备和工具。
为了简化焊接操作,提高效率和精度,需要新的自动化焊接技术。
等离子弧自动焊焊接技术,正是针对这一需求开发出来的一种新技术。
等离子弧自动焊焊接技术,是利用等离子体的高温高能量来进行焊接。
通过在工件表面生成等离子弧,将工件加热到熔点以上,使其熔化融合。
等离子弧的能量消耗极快,且焊接速度较快,能大幅提高焊接效率。
等离子弧焊接过程中,使用保护气体来包围焊接区域,防止氧化,确保焊接质量。
采用等离子弧自动焊焊接技术,不仅能提高焊接效率,而且焊接质量也能得到保障。
1. 等离子弧焊接原理等离子体是具有电中性的高能电离态气体。
在气体放电装置中,通过高压电场和电流的作用,使气体中的电子获得足够的能量,从而脱离原子并与其他原子碰撞,形成等离子体。
等离子体具有高温、高能、高速、高辐射等特性。
在气体放电过程中,等离子体会发出强烈的光辐射和电磁波,这就是等离子弧。
2. 焊接方法等离子弧自动焊焊接方法是一种新型自动化焊接方法。
该方法基于等离子弧焊接原理,通过改变等离子弧的工艺参数实现自动化控制。
具体焊接方法如下:(1) 选择适当的工艺参数,包括等离子弧电流、电压、气体流量等。
(2) 安装等离子弧焊接设备,连接气体管道和电源。
(3) 对工件进行准备,去除油脂和腐蚀性物质。
(4) 确定焊接位置和焊接角度,开启设备。
一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。
等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。
钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。
等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。
等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。
因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。
因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。
◆转移型等离子电弧主要用于金属材料的焊接。
◆联合型等离子电弧主要用于微束等离子的焊接。
3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。
◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。
其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。
◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。
由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。
小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。
等离子弧焊的工艺参数1)焊接电流焊接电流是根据板厚或熔透要求来选定。
焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。
因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。
(2)焊接速度焊接速度应根据等离子气流量及焊接电流来选择。
其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。
如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。
因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。
3)喷嘴离工件的距离喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。
喷嘴离工件的距离一般取3~8mm。
与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。
4)等离于气及流量等离子气及保护气体通常根据被焊金属及电流大小来选择。
大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。
小电流等离子弧焊接通常采用纯氩气作等离子气。
这是因为氧气的电离电压较低,可保证电弧引燃容易。
离子气流量决定了等离子流力和熔透能力。
等离子气的流量越大,熔透能力越大。
但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。
因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。
利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。
保护气体流量应根据焊接电流及等离子气流量来选择。
在肯定的离子气流量下,保护气体流量太大,会导致气流的混乱,影响电弧不乱性和保护效果。
而保护气体流量太小,保护效果也不好,因而,保护气体流量应与等离子气流量保持恰当的比例。
小孔型焊接保护气体流量一般在15~30L/min范围内。
等离子弧焊的基本方法等离子弧焊是一种常用的焊接方法,广泛应用于金属制品的制造和维修领域。
它以其高效、高质量的焊接结果而受到广泛赞誉。
本文将介绍等离子弧焊的基本方法,包括设备和操作步骤。
一、设备等离子弧焊需要以下设备:1. 焊接机:等离子弧焊常用的焊接机有直流等离子弧焊机和交流等离子弧焊机。
直流等离子弧焊机适用于焊接不锈钢、铝合金等材料,而交流等离子弧焊机则适用于焊接碳钢等材料。
2. 焊枪:焊枪是进行焊接操作的工具,通过控制电流和气体流量来实现焊接过程中的熔化和填充。
3. 气体供应系统:等离子弧焊需要使用惰性气体,常见的有氩气和氩气混合气体,用于保护焊接区域,防止氧气和水蒸气的污染。
4. 辅助设备:包括电源线、气管、冷却系统等。
二、操作步骤1. 准备工作:将焊接机和气体供应系统连接好,并确保电源和气源的正常供应。
检查焊枪和电缆是否完好,以及气体管路是否畅通。
2. 清洁工作:将待焊接的金属表面进行清洁,去除表面的油污、氧化物等杂质,以确保焊接接头的质量。
3. 调整焊接参数:根据焊接材料的种类和厚度,调整焊接机的电流和气体流量。
一般来说,电流越大,焊接速度越快,但过大的电流可能导致熔洞过深;气体流量的调整应根据焊接材料和焊接位置的不同进行合理设置,以保证焊接质量。
4. 进行焊接:将焊枪对准焊接接头,触发开关开始焊接。
在焊接过程中,焊枪应保持与焊接接头的距离适当,通常为2-5毫米。
焊接速度应均匀,保持一定的稳定性,以免焊接接头出现焊缝不均匀的情况。
5. 焊后处理:焊接完成后,及时关闭焊机和气源,并进行焊后处理。
包括清理焊渣、修整焊缝等工作,以保证焊接接头的质量。
三、注意事项1. 安全第一:在进行等离子弧焊时,应注意个人防护,佩戴焊接手套、护目镜等防护装备,以避免受伤。
2. 保持通风:等离子弧焊过程中会产生大量的烟雾和有害气体,应保持通风良好的工作环境,以确保操作人员的健康。
3. 选择合适的材料:不同的材料适合不同的焊接方法,选择合适的材料可以提高焊接质量。
等离子弧焊的基本方法等离子弧焊是一种常见的金属焊接方法,它利用高温等离子弧将金属材料加热并连接在一起。
本文将介绍等离子弧焊的基本方法,包括设备准备、焊接准备、焊接操作和焊后处理。
一、设备准备进行等离子弧焊之前,需要准备以下设备:1. 焊接机:等离子弧焊需要特殊的焊接机,常见的有直流等离子弧焊机和交流等离子弧焊机。
2. 电源:等离子弧焊需要稳定的电源供应,通常采用直流电源或交流电源。
3. 焊枪:焊枪是进行等离子弧焊的工具,它通过电弧产生高温等离子弧。
4. 气体供应系统:等离子弧焊需要使用惰性气体(如氩气)作为保护气体,防止焊接区域被氧化。
二、焊接准备在进行等离子弧焊之前,需要进行以下焊接准备工作:1. 清洁金属表面:将待焊金属表面清洁干净,以去除油污、氧化物等杂质,以保证焊接质量。
2. 选择合适的焊接参数:根据待焊金属的种类、厚度和焊接要求,选择合适的焊接电流、电压和气体流量等参数。
3. 调整焊枪角度和距离:根据焊接位置和焊接要求,调整焊枪的角度和距离,使焊接电弧能够充分覆盖焊接区域。
三、焊接操作进行等离子弧焊时,需要进行以下操作:1. 开启电源和气体:先开启焊接机的电源,然后开启气体供应系统,确保稳定的电源和气体供应。
2. 接触电弧:将焊枪靠近待焊金属,使电极与金属表面轻轻接触,然后迅速抬起焊枪,产生电弧。
3. 移动焊枪:在产生电弧后,持续移动焊枪,使电弧在焊接区域形成等离子弧,加热金属并使其熔化。
4. 控制焊接速度:根据金属的种类和厚度,控制焊接速度,以保证焊缝的质量和均匀性。
5. 观察焊接质量:在焊接过程中,需要不断观察焊接质量,确保焊缝的形成和焊接区域的均匀加热。
四、焊后处理焊接完成后,需要进行以下焊后处理工作:1. 清理焊缝:将焊接过程中产生的熔渣和氧化物清理干净,使焊缝表面光滑。
2. 检查焊接质量:对焊接质量进行检查,确保焊缝的质量和强度达到要求。
3. 去除保护气体:将焊接区域的保护气体排空,以免影响周围环境。
1概述等离子弧焊是利用等离子弧作为热源的一种焊接方法,是普通钨极气体保护焊的一种特殊形式。
其稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度,所以单面焊时无需在背面实施机械支撑,对接焊时无需进行坡口预加工。
国内某客车项目欲在蒙皮时使用等离子弧焊接,这与传统的手工焊接相比,不仅能够保证焊缝质量,亦可提高生产经济效率,降低生产成本,因此研究碳钢车体的等离子弧焊技术有较为重要的意义。
2工艺试验(1)母材分析客车蒙皮采用05CuPCrNi的耐候钢,试验采用板厚分别为3mm和8mm(需加工),填充金属为ϕ1.0mm的ER309LSi焊丝,表1为试验母材及焊丝的化学成分,保护气体为99.999%的高纯氩,气体流量为20L/min,离子气体为95%Ar+5%H2,气体流量为8L/min,两种气体流量均可微调。
(2)试验方法试件的加工尺寸分别为350mm×150mm×8mm(表面需要开槽处理,槽深3mm,倒直角)和350mm×80mm×3mm,试件的接头和组装如图1所示。
本试验的设备为等离子弧焊机(型号为TransTig4000JobG/F),如图2a所示;根据设计要求需要对焊枪角度进行调整,因此也要对工艺装备进行简单模拟,如图2b所示。
考虑到组焊过程中的整体组装间隙一般较难保证在1mm以内,因此本试验针对0~3mm的间隙进行焊接试验,并寻求较为良好的焊接参数。
为此,分别进行了间隙0mm、0.5mm、1.0mm、1.5mm、2mm以及3mm的工艺试验,首先焊前打磨待焊区域,然后用丙酮擦洗待焊区域,将焊接试件固定在简易工装上焊接,表2~表4是等离子弧焊接参数。
而后对焊接试样进行PT探伤,对焊缝截面进行腐蚀并做宏观分析。
3试验结果分析(1)焊缝外观结果图3是在表2参数下得到的焊缝外观,其间隙分别为0mm、0.5mm、1.0mm以及1.5mm。
由图3可以看出其焊缝成形良好,表面无气孔、夹渣等缺陷,对其分别进行PT探伤,检测合格,满足标准要求。