高等固体物理中科大1概论
- 格式:ppt
- 大小:18.31 MB
- 文档页数:243
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
固体物理学概论固体物理学是研究物质的结构和性质的一门学科,它涵盖了领域广泛且深奥的知识。
本文将为读者介绍固体物理学的基础知识和主要研究内容。
一、晶体结构晶体是物质在固态中具有长程有序的结构,其原子、离子或分子按照规则排列。
晶体结构对物质的性质和功能具有重要影响。
固体物理学研究晶体结构的方法和特性,发展了晶体学的基本理论。
1. 空间点阵空间点阵是描述晶体结构的重要工具,它由一组等距离的格点所组成。
常见的点阵有简单立方点阵、面心立方点阵和体心立方点阵等。
这些点阵可以通过平移和旋转操作来描述晶体的周期性。
2. 晶胞和晶格晶胞是晶体中基本重复单元,它由一组原子、离子或分子构成。
晶格是由晶胞组成的整体结构,它描述了晶体中原子的排列方式。
晶胞和晶格可以通过晶体学的实验方法进行确定。
二、电子结构电子结构是固体物理学中的核心内容,它研究了电子在晶体中的行为和性质。
电子结构决定了物质的导电性、磁性以及光学性质等。
1. 能带理论能带理论是描述晶体中电子分布的重要理论模型。
根据能量分布,电子在晶体中具有禁带和能带的概念。
导带和价带之间的能隙决定了物质的导电性质。
2. 费米能级费米能级是描述固体中电子填充状态的参考能量。
它决定了电子在晶体中的分布规律,以及固体的导电性质。
费米能级的位置和填充程度影响了物质的导电性。
三、磁性和磁性材料磁性是固体物理学研究的另一个重要方向。
固体材料在外加磁场下表现出不同的磁性行为,如铁磁性、顺磁性和反铁磁性等。
1. 磁化强度和磁矩磁化强度是描述材料对磁场响应的物理量,它与材料中的磁矩相关。
磁矩是材料中带有自旋的原子或离子产生的磁场。
2. 磁性材料的分类磁性材料可以根据其磁性行为进行分类。
铁磁材料在外加磁场下显示出强烈的磁化行为,顺磁材料对外加磁场表现出弱磁化行为,而反铁磁材料在一定温度下表现出特殊的磁性行为。
四、光学性质固体物理学还研究了固体材料的光学性质。
物质在光场中的相互作用导致了光的传播、吸收和散射等现象。
高等固体物理学固体物理作为凝聚态物理学中最大的分支,以固体特别是原子排列具有周期性结构的晶体为对象,基本任务是从微观上解释固体物质的宏观物理性质、构成物质的各种粒子的运动形态及其相互关系,是物理学中内容极丰富、应用极广泛的分支学科。
最近几十年来,由于新的实验条件和技术以前所未有的速度发展和进步,新材料不断涌现,因此不断开拓出固体物理新的研究领域。
同时,固体物理学的成就和实验手段对电子技术、计算技术以至整个信息产业、化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成许多新的交叉学科。
对于经济和社会乃至人类日常生活具有革命性的影响。
本书对固体物理前沿的许多重要课题给出了简明的介绍,以清晰的教学方式提供了该领域已经得到很好确立的基础的背景材料。
把导论性的介绍与不断更新的高等论题成功地整合在一起,相关领域的研究生与高水平的研究人员将会从中受益并引起广泛的兴趣。
而对于希望对当代固体物理巨大的挑战得到一些概览的其他领域的学者也很有价值。
全书内容共分16章:1.导言;2.无相互作用电子气;3.BornOppenheimer近似;4.二次量子化;5.HatreeFock近似;6.相互作用电子气;7.金属中的局域磁矩;8.局域磁矩的淬火:近藤问题;9.屏蔽与等离子体激元;10.玻色化;11.电子-晶格相互作用;12.金属中的超导电性;13.无序:定域与例外;14.量子相变;15.量子Hall效应及其它拓扑态;16.强耦合电子:莫特性(Mottness)。
本书把传统主题与现代进展有机地结合在一起的写作风格是其它书籍很少见到的。
它的内容清新、广泛,行文清晰,且容易理解,是高等固体物理学的一部很有价值的参考书。
中科大固体物理
中科大固体物理专业是中科院固体物理研究所的研究生培养项目之一,该研究所成立于1982年3月,由国际著名物理学家、中国科学院院士葛庭燧先生创建。
经过三十多年的发展,现已成为凝聚态物理和材料科学基础研究的基地型研究所。
固体物理研究所是中科院材料物理重点实验室、安徽省纳米材料与技术重点实验室、安徽省特种金属材料工程实验室、安徽省纳米材料工程技术中心、中科院合肥物质科学研究院物质科学计算中心的依托单位,是凝聚态物理专业和材料物理与化学专业的硕士、博士学位培养基地,拥有物理学博士后流动站。
研究方向包括:纳米材料技术,新型功能材料,计算材料物理,内耗与固体缺陷,极端环境材料物理,核能工程材料,特种金属材料等。
1。