10月全国自考高等数学(工本)试题及答案解析
- 格式:doc
- 大小:121.50 KB
- 文档页数:4
全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。
2019年10月全国自考高等数学(工本)00023试题及其详解一、单项选择题:本大题共5小题。
每小题3分。
共l5分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点(0,0,2)-在A.x 轴上B.y 轴上C.z 轴上D.Oxy 平面上解:答案是C2.函数(,)f x y =(0,0)处A.连续B.间断C.偏导数存在D.可微解:答案是B.3.已知cos cos sin sin x ydx x ydy -是某个函数(,)u x y 的全微分,则(,)u x y =A. sin cos y xB. sin sin x yC. sin cos x y -D. sin cos x y 解:D 选项,d(sinxcosy)=cosxcosydx-sinxsinydy.答案是D.4.下列微分方程中,属于一阶线性非齐次微分方程的是A.3()ydy x y dx =+B.2(2)xdy x y dx =+C.sin 19dy x y dx -=D.29dy xy dx += 解:B 选项,对2(2)xdy x y dx =+变形,得2dy y x dx x-=.答案是B. 5.下列无穷级数中,绝对收敛的无穷级数是 A. 11(1)3n n n -∞=-∑ B. 1(1)2n n n ∞=-∑ C. 1(1)n n n ∞=-∑ D. 1(1)21n n n n ∞=-+∑ 解:答案是A.二、填空题:本大题共5空,每空2分,共10分。
6.与向量{2,0,α=同方向的单位向量是 .解:{1=,0,222αα=⎨⎪⎪⎩⎭.答案是22⎨⎪⎪⎩⎭. 7.设函数22(,)f x y x y x y +-=+,则(,)f x y = .解:令u=x+y,v=x-y,则2222(,).222u v u v u v f u v +-+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 所以(,)f x y =222x y +.答案是222x y +.8.设积分区域22:9D x y +≤,则二重积分22()D f x y dxdy +⎰⎰在极坐标下的二次积分为 .解:答案是23200()d f r rdr πθ⎰⎰. 9.微分方程(1)612y x y y '''+-+=的特解*y = .解:简化微分方程,令0y ''=,则(1)612x y y '-+=,解得 y=6611121dx dx x x e e C x ---⎡⎤⎰⎰+⎢⎥-⎣⎦⎰=6661161212(1)1(1)dx dx x x e e C x C x x ---⎡⎤⎰⎰⎡⎤+=-+⎢⎥⎣⎦--⎣⎦⎰=62(1)C x +-. 因为0y ''=,所以C=0.故取特解*y =2.答案是2. 10.设函数()f x 是周期为2π的周期函数,傅里叶级数为11(1)sin 2n n nx n π-∞=-+∑,,则()f x 的傅里叶系数0a = .解:0a =π.答案是π.三、计算题:本大题共l2小题,每小题5分,共60分。
2018年10月自考高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列函数中在所给的区间上是有界函数的为( )A. f (x )=e -x (-∞,+∞)B. f (x )=cot x (0,π)C. f (x )=sin x1 (0,+∞) D. f (x )= x 1 (0,+∞) 2.函数y =lg(x -1)的反函数是( )A.y =e x +1B.y =10x +1C.y =x 10-1D.y =x -10+1 3.级数∑∞=+1)1(1n n n 的前9项的和s 9为( ) A.9001 B.32 C.0.9 D.14.下列无穷限反常积分收敛的是( ) A.⎰+∞dx x 211 B.⎰+∞dx x11 C. ⎰+∞xdx ln 1 D. ⎰+∞dx e x 1 5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z y x A 000000,则行列式|-2A |的值为( )A.2xyzB.-2xyzC.8xyzD.-8xyz二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.=+∞→xx x arctan lim _______. 7.设f (x )=⎪⎪⎩⎪⎪⎨⎧>=<+.0,2sin ,0,,0,1x xx x k x e x 在x =0处连续,则常数k =______.8.⎰=-dx x 211________.9.设y =e x +sin x ,则dy =______.10.曲线y =2ln 33-+xx 的水平渐近线方程为________. 11.设函数)2)(1()(-+=x x x x f ,则方程0)(='x f 的两个根所在的区间分别为_______.12.A ,B 均为3阶方阵,且|A |=3,|B |=-2,则|B A '|=_______.13.设方程y -xe y =0确定了隐函数y =y (x ),则dxdy =_______. 14.=⎰→x dt t x x 20cos 0lim _______. 15.设⎥⎦⎤⎢⎣⎡-2001X =⎥⎦⎤⎢⎣⎡-1021,则矩阵X =______. 三、计算题(本大题共8小题,每小题6分,共48分)16.求极限3lim xe xx +∞→. 17.求曲线⎩⎨⎧==ty t x 2cos sin 在6π=t 处相应的点处的切线方程和法线方程. 18.求不定积分⎰-.)sin (cos 2dx x x19.求微分方程x e x y y sin cos -=+'满足初始条件0)0(=y 的特解.20.已知⎪⎩⎪⎨⎧π≤<ππ-π≤≤-=,2,2,2,sin )(x x x x x x f 求⎰ππ-2.)(dx x f21.确定函数0)(x x8x 2y >+=的单调区间. 22.求曲线2x e y -=的拐点.23.用消元法求解线性方程组⎪⎩⎪⎨⎧=-+=--=--.x x x ,x x x ,x x x 05231322321321321四、综合题(本大题共2小题,每小题6分,共12分)24.求函数x x f(x)-+=1在区间[-5,1]上的最大值和最小值.25.求由曲线xy =1与直线y=2,x =3所围成的平面图形的面积.。
2016年10月全国自考高等数学(工专)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在同一坐标系下,方程y=ex与x=lny代表的图形【】A.关于y轴对称B.关于x轴对称C.是同一条曲线D.关于直线y=x对称正确答案:C2.当x=0时,ln(1+x)是【】A.与x等价的无穷小量B.比x高阶的无穷小量C.比x低阶的无穷小量D.比x2高阶的无穷小量正确答案:A解析:所以当x→0时,ln(1+x)是与x等价的无穷小量.3.在下列级数中,收敛的选项是【】A.B.C.D.4.d∫arctanxdx= 【】A.B.C.arctanx+CD.arctanxdx正确答案:D5.矩阵A=的逆矩阵是【】A.B.C.D.正确答案:B解析:填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.函数的连续区间是______.正确答案:[3,+∞)7.极限______.正确答案:08.设函数f(x)在点x=0处可导且f′(0)=A,则______.正确答案:A解析:9.设y=6x,则dy=______.正确答案:6xln6dx10.函数y=(ex+e-x)的单调增加区间是______.正确答案:(0,+∞)或[0,+∞)解析:y=(ex+e-x),y′=(ex—e-x),令y′>0,得x>0或x≥0.即原函数的单调增加区间是(0,+∞)或[0,+∞).11.若∫f(x)dx=F(x)+C,则∫2f(2x+1)dx=______.正确答案:F(2x+1)+C解析:因为∫f(x)dx=F(x)+C,所以,∫2f(2x+1)dx=∫f(2x+1)d(2x+1)=F(2x+1)+ C.12.行列式______.正确答案:x解析:13.由参数方程确定的函数为y=y(x),则=______.正确答案:1一ttant解析:因为所以14.无穷限反常积分∫-∞0ex=______.正确答案:115.设矩阵A=,则A2=______.正确答案:解析:A2=A·A计算题16.求极限正确答案:17.求微分方程2xdy+ydx=0的通解.正确答案:方程2xdy+ydx=0分离变量后得两端积分得lny=一lnx+1nC,通解为其中C为任意常数.18.设函数y=y(x)由方程ex一y2=xy所确定,求正确答案:方程ex一y2=xy两边同时对x求导得解得19.求曲线y=x3—在点(1,0)处的切线方程.正确答案:y′=3x2+,所求切线的斜率是k= y′|x=1=6.所以所求的切线方程为y=6(x一1),即6x—y一6=0.20.求不定积分∫3x2cosx3dx.正确答案:∫3x22cosx3dx=∫cosx3dx3=sinx3+C.21.求曲线y=2x4一6x2的凹凸区间和拐点.正确答案:函数的定义域为(一∞,+∞),并且y′=8x3一12x,y″=24x2一12=12(2x2一1).令y″=0,得列表讨论由上表知,曲线在是上凹的(下凸的),在是上凸的,和是曲线的两个捞点.22.计算定积分正确答案:令=t,则x=t2一1,当x=0时,t=1;当x=3时,t=2.于是23.当a取什么值时线性方程组有解?在有解时求出其一般解.正确答案:对方程组的增广矩阵进行初等行变换得当a+1=0,即a=一1时,方程组有解.在有解时,其一般解为其中x3为自由未知量.综合题24.求函数的极值.正确答案:函数在定义域(一∞,+∞)内连续,并且x≠0.函数在x=0处不可导.令y′=0解得x=±1(驻点).列表讨论如下:故函数的极小值为,在x=±1处取得;极大值为0 ,在x=0处取得.25.计算曲线相应于0≤t≤的一段弧的长度.正确答案:弧长元素为从而,所求弧长。
2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.平面2x一3y+z一1=0的法向量为( )A.{2,3,一1}B.{4,一6,2}C.{一2,一3,一1}D.{2,3,1}正确答案:B解析:平面2x一3y+z一1=0的法向量为n={2,一3,1},所以{4,一6,2}也是其法向量.2.设函数f(x,y)=φ(x)g(y)在点(x0,y0)的某邻域内有定义,且存在一阶偏导数,则fx(x0,y0)= ( )A.B.C.D.正确答案:D解析:3.设积分区域D:1≤x2+y2≤4,则二重积分( )A.πB.2πC.3πD.4π正确答案:C解析:积分区域D:1≤x2+y2≤4,如图所示,则二重积分=∫θ2πdθ∫12rdr=3π.4.微分方程y”=sinx的通解是y= ( )A.sinx+C1x+C2B.sinx+C1+C2C.一sinx+C1x+C2D.一sinx+C1+C2正确答案:C解析:y”=sinx,则y’=∫y”dx=∫sinxdx=-cosx+C1 y=∫y’dx=∫(-cosx+C1)dx=-sinx+C1x+C2.5.设无穷级数发散,则在下列数值中p的取值为( )A.1B.2C.3D.4正确答案:A解析:填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知向量a={2,1,2},b={一1,3,5},则a.(2b)=_______.正确答案:22解析:a.(2b)=2a.b=2×[2×(一1)+1×3+2×5]=22.7.函数f(x,y)=+ln(x2+y2一1)的定义域是________.正确答案:1<x2+y2≤4解析:由题意知得1<x2+y2≤4.8.设积分区域D:0≤x≤2,|y|≤1,则二重积分正确答案:解析:积分区域D:0≤x≤2,|y|≤1,则9.微分方程y”+y=e-2x的特解y*=______.正确答案:解析:齐次微分方程y”+y=0的特征方程r2+1=0,显然λ=一2不是特征方程的根,则设特解y*=Ae-2x.y*”=4Ae-2x,代入原微分方程得5Ae-2x=e-2x,10.已知无穷级数,则un=______.正确答案:解析:计算题11.求过点A(一2,1,4)及点B(6,一5,7)的直线方程.正确答案:直线过点A(一2,1,4)和B(6,一5,7),则其方向向量n=(8,一6,3),则直线方程为=t,化简得直线方程为12.求函数z=e2ycos3x的全微分dz.正确答案:z=e2ycos3x,z’x=一3e2ysin3x,z’y=2e2ycos3x,则dz=z’xdx+z’ydy=一3e2ysin3xdx+2e2ycos3xdy.13.求曲面z=3xy在点处的切平面方程.正确答案:F(x,y,z)=z—3xy,则Fx=-3y,Fy=一3x.Fz=1,则所以法向量n=(一1,一3,1),所求切平面方程为一1×(x一1)一3×+1×(z一1)=0,即x+3y—z一1=0.14.求函数f(x,y)=的梯度gradf(x,y).正确答案:15.计算二重积分.其中D是由y=x,=2及xy=1所围成的区域.正确答案:积分区域D如图所示.=∫12一4x+4x3dx=(-2x2+x4)|12=9.16.计算三重积分,其中Ω是由x2+y2=1,z=0及z=1所围成的区域.正确答案:积分区域如图示在柱面下的积分区域Ω:0≤r≤1,0≤θ<2π,0≤z≤1,17.计算对弧长的曲线积分∫C(x2y一2)ds,其中C为从点A(一2,1)到B(1,1)的直线段.正确答案:C为直线y=1,则C的参数方程所以∫C(x2y一2)ds=∫-21(x2一2)dx=一3.18.计算对坐标的曲线积分∫C(y2一xy)dy,其中C为抛物线y=x2上从点A(一1,1)到点B(1,1)的一段弧.正确答案:曲线C的方程为y=x2,则dy=2xdx,于是∫C(y2一xy)dy=∫-11(x4一x3)2xdx=19.求微分方程=e3x-2y的通解.正确答案:,得e2ydy=e3xdy,两边同时程分得∫e2ydy=∫e3xdx,则20.求微分方程y”+2y’+2y=0的通解.正确答案:微分方程y”+2y’+2y=0的特征方程为r2+2r+2=0,解之得r1,2=一1±i,所以微分方程的通解为y=e-x(C1cosx+C2sinx).21.判断无穷级数的敛散性.正确答案:22.已知f(x)是周期为2π的周期函数,它在[一π,π)上的表达式为求f(x)傅里叶级数(ancosnx+bnsinnx)中的系数b4.正确答案:综合题23.求函数f(x,y)=14x+32y一8xy一2x2一10y2一26的极值.正确答案:求对x,y的偏导数得fx=14—8y一4x,fy=32-8x-20y,二阶偏导数A=fxx(x0,y0)=一4,B=fxy=一8,C=fyy=一20,△=B2-AC=-16<0则点是函数的极值点,A<0,此驻点为极大值点,代入函数得极大值为24.证明对坐标的曲线积分∫C(3x2y+8xy2一20)dx+(x3+8x2y+14)dy在整个xOy面内与路径无关.正确答案:P=3x2y+8xy2一20,Q=x3+8x2y+14,25.将函数f(x)=展开为x的幂级数.正确答案:已知=1一x+x2+…+(一1)nxn+…(一1<x<1),用2x代替x得=1—2x+(2x)2+…+(一1)n(2x)n+…=1—2x+4x2+…+(一2)nxn+…(一1<x<1).。
20XX 年10月高等教育自学考试高等数学(一)试题(课程代码00020)一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.函数x x x f ---=41)(的定义域是A.[1,4]B.[1,+∞)C.(-∞,4]D.[-4,-1] 2.函数1212)(+-=x x x f 的反函数=-)(1x f A. )1(21x x -- B. )1(21x x -+ C. )1(22x x +- D. )1(22x x ++ 3.极限=+++∞→4412lim 22x x x x A. 0 B.41 C. 21 D.∞ 4.函数431)(2-+-=x x x x f 的全部间断点为 A. x=-1及x=4 B. x=-1及x=-4C. x=1及x=-4D. x=1及x=45.设函数f(x)在x=1处可导,则=')1(f A. 1)1()(lim0--→x f x f x B. x f x f x )1()(lim 0-→ C. x f x f x )1()(lim 1-→ D. 1)1()(lim 1--→x f x f x 6.函数2156)(3+--=x x x x f 的单调减少区间为A.(-∞,-1)B.(5,+∞)C. (-∞,-1)与(5,+∞)D.(-1,5)7.若C e dx x f x +=⎰221)(,则f(x)= A.221x e B. 221x xe C. 2x xe D. 2x e 8.定积分⎰-=112)sin(dx x xA. -1B. 0C. 1D. 29.设函数⎰='=-2)(,则)(2x t t x f dt e x f A.x x e --2 B. x x e -2C. x xe x ---2)12( D. x x e x --2)12( 10.设函数y x xy z +=2,则偏导数=∂∂)1,1(y z A. 4ln2+4 B. 4ln2-4 C.42ln 4+ D. 42ln 4-二、简单计算题(本大题共5小题,每小题4分,共20分)11.解方程02111=-++x x 12.求极限xx x x 3)2tan(lim 20+→ 13.企业生产某产品的固定成本为20万元,生产x 件的可变成本为3x 2+2x 万元,求总成本函数及边际成本。
全国2019年10月高等教育自学考试高等数学(工本)试题、详细答案及考点分析课程代码:00023请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题:本大题共5小题,每小题3分,共15分。
在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点()2,0,0-在A .x 轴上B .y 轴上C .z 轴上D .oxy 平面上解:使用空间直角坐标系坐标轴、坐标面特征进行讨论。
x 轴上点的坐标为()0,0,a ,y 轴上点的坐标为()0,,0b ,z 轴上点的坐标为()c ,0,0,oxy 平面上点的坐标为()0,,b a ,oyz 平面上点的坐标为()c b ,,0,oxz 平面上点的坐标为()c a ,0,,故选C.考核知识点:空间直角坐标系(识记);考核要求:知道空间直角坐标系的定义及相关的概念.2.函数()y x y x f +=,在点()0,0处A .连续B .间断C .偏导数存在D .可微解:使用多元函数连续性方法进行求解。
由于()0,00lim 00f y x y x ==+→→因此函数()y x y x f +=,在点()0,0处连续,选A.考核知识点:二元函数的极限与连续(识记);考核要求:知道二元函数连续的概念.3.已知ydy x ydx x sin sin cos cos -是某个函数()y x u ,的全微分,则()=y x u ,A .xy cos sin B .yx sin sin C .yx cos sin -D .yx cos sin 解:对各项使用全微分法进行求解。
对A ,B ,C ,D 选项进行全微分,可得A :()()xdy y ydx x x y d y x du cos cos sin sin cos sin ,+-==B :()()xdy y ydx x y x d y x du sin cos sin cos sin sin ,+==C :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,+-=-=D :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,-==故选D.考核知识点:全微分(领会);考核要求:会求函数的全微分.4.下列微分方程中,属于一阶线性非齐次微分方程的是A .()dx y x ydy +=3B .()dx y x xdy 32+=C .19sin =-y x dx dyD .92=+xy dxdy解:使用微分方程的基本概念进行选择。
高等数学(工本)试题课程代码:00023请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.在空间直角坐标系中,点(-1, 2, 4)到x 轴的距离为A .1B .2C D 2.设函数(,)z f x y =在00(,)x y 某领域内有定义,则(0,0)|x y z x∂=∂ A .0(,)(,)lim h f x h y f x y h→+- B .0(,)(,)limh f x h y h f x y h →++- C .00000(,)(,)lim h f x h y h f x y h →++- D .00000(,)(,)lim h f x h y f x y h →+- 3.设积分曲线22:1L x y +=,则对弧长的曲线积分()L x y ds +=⎰A .0B .1C .πD .2π4.微分方程xy y '+A .可分离变量的微分方程B .齐次微分方程C .一阶线性齐次微分方程D .一阶线性非齐次微分方程 5.已知函数()f x 是周期为2π的周期函数,它在[)-π,π上的表达式为0,π0()1,0πx f x x -<⎧=⎨<⎩≤≤,()S x 是()f x 傅里叶级数的和函数,则(2π)S =A .0B .12C .1D .2非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共5小题,每小题2分,共10分)6.已知向量{3,7,6}=-α与向量{9,,18}k =β平行,则常数k =__________.7.已知函数cos xz e y =,则2z x y ∂∂∂=__________. 8.设积分区域222:9x y z Ω++≤,三重积分222()f x y z dv Ω++⎰⎰⎰在球面坐标下三次积分为__________.9.微分方程2x y y e ''+=的一个特解y *=__________.10.已知无穷级数2312341333n n u ∞==++++∑,则通项u n =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.求直线19211x y z -+==--与直线42112x y z --==的夹角. 12.设f 是可微的二元函数,并且22(,)z f x y x y =-+,求全微分dz .13.已知方程225xy e x y z z -+--=确定函数(,)z z x y =,求,z z x y ∂∂∂∂. 14.设函数(,)arctany f x y x =,求梯度grad (,)f x y . 15.计算二重积分221D dxdy x y+⎰⎰,其中积分区域22:12D x y +≤≤. 16.计算三重积分xdv Ω⎰⎰⎰,其中积分区域Ω是由0,1,0,1,0x x y y z =====及24x y z ++= 所围.17.验证对坐标的曲线积分22L xy dx x ydy +⎰与路径无关,并计算(2,2)22(1,1)I xy dx x ydy =+⎰.18.计算对坐标的曲面积分222()()()I x yz dydz y xz dxdz z xy dxdy ∑=-+-+-⎰⎰,其中∑是柱面221x y +=及0,2z z ==所围柱体表面的外侧. 19.求微分方程22(4)(4)x dy y dx +=+的通解.20.求微分方程220y y y '''-+=的通解.21.判断无穷级数1n n -∞= 22.求幂级数121nn x n ∞=+∑的收敛半径和收敛域.四、综合题(本大题共3小题,每小题5分,共15分)23.求函数22(,)654161415f x y xy x y x y =--+--的极值.24.求由平面0,1z x y =+=及曲z xy =面所围立体的体积.25.将函数()sin 2f x x =展开为x 的幂级数.全国2012年7月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
1
全国2018年10月高等教育自学考试
高等数学(工本)试题
课程代码:00023
一、单项选择题(本大题共20小题,每小题2分,共40分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知函数f(x)=x ,g(x)=-x 2+4x-3,则函数f[g(x)]的定义域为( ) A.(-∞,+∞)
B.(]1,∞-
C.[1,3]
D.空集 2.函数f(x)=xe -|sinx|在),(+∞-∞内是( ) A.奇函数 B.偶函数 C.周期函数
D.有界函数
3.已知函数f(x)=⎪⎩⎪⎨⎧
≥+<-0
x ,a x 0x ,)x 1(x
1 在(-∞,+∞)内处处连续,则常数a=( )
A.0
B.1
C.e -1
D.e
4.极限=-++++∞→)2n n 2n 21(lim n Λ( )
A.
41 B.
2
1 C.2
1-
D.-∞
5.极限=π→x
3sin x
5sin lim x ( )
A.3
5-
B.-1
C.1
D.
3
5 6.设函数y=='--y ,x 1
x 212则( ) A.2
2x 1)x 21(4+- B.22
x 1)x 21(2+-- C.2
2x 1)x 21(2-- D.
2
2
x 1)x 21(4-
--
7.设函数y=x x ,则=')2(y ( ) A.4
B.4ln2
2
C.)2ln 1(4
1
+ D.4(1+ln2) 8.设函数f(x 2)=x 4+x 2+1,则=')1(f ( )
A.-1
B.-2
C.1
D.3
9.若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在a,b 之间满足)c (f '=0的点c
( )
A.必存在且只有一个
B.不一定存在
C.至少存在一个
D.不存在 10.函数f(x)=ln(1+x 2)-x 在(-∞,+∞)内是( ) A.单调增函数 B.单调减函数 C.时而单增时而单减的函数 D.以上结论都不对
11.已知一个函数的导数为y '=2x,且x=1时y=2,则这个函数是( ) A.y=x 2+C
B.y=x 2+1
C.2
3x 21y 2+=
D.y=x+1
12.函数f(x)在[a,b]上连续是
dx )x (f b
a
⎰
存在的( )
A.必要条件
B.充分必要条件
C.充分条件
D.既不充分也不必要
13.下列广义积分收敛的是( )
A.dx x x ln 2⎰
+∞
B.dx x ln x 1
2⎰
+∞ C.dx x ln x 12⎰+∞ D.dx x ln x 122⎰
+∞ 14.在空间直角坐标系中,方程x=0表示的图形是( ) A.x 轴 B.原点(0,0,0) C.yoz 坐标面 D.xoy 坐标面
15.设函数z=x y ,则=∂∂y
z
( )
A.x y lnx
B.yx y-1
C.x y
D.x y lnx+yx y-1
16.交换积分次序后,二次积分
⎰
⎰
--=2
2
x 40
dy )y ,x (f dx
2
( )
A.
⎰⎰
-2
y 40
2
dx )y ,x (f dy B.
⎰⎰
---2
y 4y 42
2
dx )y ,x (f dy
C.
⎰⎰
--20
y 42
dx )y ,x (f dy D.
⎰
⎰
--2
2
y 40
2
dx )y ,x (f dy
17.设C 为圆周x=acost,y=asint(a>0,0≤t ≤2π),则曲线积分
⎰
=+C
22ds )y x (( )
3
A.2πa 2
B.2πa 3
C.-πa
D.πa 18.微分方程y y '=''的通解是y=( ) A.Ce x B.C 1e x +C 2 C.C 1e x +C 2x
D.Ce x +x
19.设无穷级数∑∞
=1
n n
a
收敛,无穷级数∑∞
=1
n n
b
发散,则无穷级数∑∞
=+1
n n n
)b a
(( )
A.条件收敛
B.绝对收敛
C.发散
D.可能收敛也可能发散
20.幂级数Λ++++7
53x 71x 51x 31x 的收敛域是( ) A.(-1,1) B.[)1,1- C.(]1,1-
D.[-1,1]
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
21.已知)0x (x 1x )x 1
(f 2>++=,则f(x)=_______________.
22.极限=++
∞
→n
n )2
n 11(lim _______________. 23.设函数f(x)在x=0处可导,且f(0)=0,则极限=→x
)
x (f lim
0x _______________.
24.函数f(x)=lnx 在区间[1,e]上满足拉格朗日公式e
1)
e (
f )1(f )c (f --='的c=_______________.
25.不定积分⎰
=xdx 22
x _______________. 26.已知⎰
=x
,x sin dt )t (f 则f(0)=_______________.
27.设向量α={-2,3,-6},β={a,1,-1},当α与β垂直时,则常数a=_______________. 28.设积分区域B:x 2+y 2≤9,则二重积分⎰⎰
=--B
y x
dxdy e 2
2
_______________.
29.函数f(x)=
x
31
-展开成x-2的幂级数为_______________. 30.微分方程xdx+ydy=0的通解为_______________.
三、计算题(本大题共5小题,每小题5分,共25分) 31.求极限.3
x 2
x 1lim
3x --+→
32.计算不定积分⎰
-.dx x
x 1
2
33.求过点(3,0,1),(1,2,3),(-1,0,0)的平面方程.
4
34.计算二重积分
⎰⎰+B
2
dxdy x
1y
,其中积分区域B:0≤x ≤1,-1≤y ≤0.
35.已知方程e xy +y-cosx 2=3确定函数y=y(x),求
.dx
dy 四、应用和证明题(本大题共3小题,每小题5分,共15分) 36.求函数f(x)=x 4-2x 2+5在[-2,2]上的最大值和最小值.
37.证明:当x →0时,无穷小量x(e x -1)+x 2e x 与x 2是同阶无穷小. 38.证明:当x ≥0时,有不等式arctgx ≤x 成立.。