材料力学-北京交通大学-4章答案
- 格式:doc
- 大小:1.98 MB
- 文档页数:25
静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
北交《材料力学》在线作业一-0010低碳钢的扭转破坏的断面是()。
A:横截面拉伸
B:45度螺旋面拉断
C:横截面剪断
D:45度斜面剪断
答案:C
当τ≥τp时,剪切虎克定律及剪应力互等定理()。
A:虎克定律成立,互等定理不成立
B:虎克定律不成立,互等定理成立
C:二者均成立
D:均不成立
答案:B
有一圆轴受扭后,出现沿轴线方向的裂纹,该轴为()材料。
A:钢
B:铸铁
C:木材
答案:C
在拉压静定结构中,温度均匀变化会()。
A:仅产生应力、不产生变形
B:仅产生变形、不产生应力;
C:既不引起变形也不引起应力
D:既引起应力也产生变形
答案:B
细长柱子的破坏一般是()
A:强度坏
B:刚度坏
C:稳定性破坏
D:物理破坏
答案:C
外力包括: ()
A:集中力和均布力
B:静载荷和动载荷
C:所有作用在物体外部的力。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
材料力学_第二版_范钦珊_第4章习题答案第4章 弹性杆件横截面上的切应力分析4-1 扭转切应力公式p /)(I M x ρρτ=的应用范围有以下几种,试判断哪一种是正确的。
(A )等截面圆轴,弹性范围内加载; (B )等截面圆轴;(C )等截面圆轴与椭圆轴;(D )等截面圆轴与椭圆轴,弹性范围内加载。
正确答案是 A 。
解:p )(I M x ρρτ=在推导时利用了等截面圆轴受扭后,其横截面保持平面的假设,同时推导过程中还应用了剪切胡克定律,要求在线弹性范围加载。
4-2 两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。
设直径大的轴和直径小的轴的横截面上的最大切应力分别为max 1τ和max 2τ,切变模量分别为G 1和G 2。
试判断下列结论的正确性。
(A )max 1τ>max 2τ; (B )max 1τ<max 2τ;(C )若G 1>G 2,则有max 1τ>max 2τ; (D )若G 1>G 2,则有max 1τ<max 2τ。
正确答案是 C 。
解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即γγγ==21由剪切胡克定律γτG =知21G G >时,max 2max 1ττ>。
4-3 承受相同扭矩且长度相等的直径为d 1的实心圆轴与内、外径分别为d 2、)/(222D d D =α的空心圆轴,二者横截面上的最大切应力相等。
关于二者重之比(W 1/W 2)有如下结论,试判断哪一种是正确的。
(A )234)1(α-; (B ))1()1(2234αα--; (C ))1)(1(24αα--; (D ))1/()1(2324αα--。
正确答案是 D 。
解:由max 2max 1ττ=得)1(π16π1643231α-=d M d M xx 即 31421)1(α-=D d(1) )1(222212121α-==D d A A W W (2)(1)代入(2),得 2324211)1(αα--=W W4-4 由两种不同材料组成的圆轴,里层和外层材料的切变模量分别为G 1和G 2,且G 1 = 2G 2。
静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑ 12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin300ACAB FF -= 0Y =∑ cos300ACFW -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos700ACAB FF -= 0Y =∑ sin700ABFW -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos60cos300ACAB FF -= 0Y =∑ sin30sin600ABAC FF W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin30sin300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由x =∑22cos 45042RA F P -=+15.8RA F KN ∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --= 0Y =∑sin 45sin 45010RA RB F F P +-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑ cos45cos450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=0Y =∑ sin30sin600ABAC FF W +-=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=0DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑ sin75sin750AB AD F F -=0Y =∑ cos75cos750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑ cos5cos800AD ND F F '-=cos5cos80ND ADF F '=⋅由对称性及 AD AD F F '=cos5cos5222166.2cos80cos802cos75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O点,列O点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '-= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q2RE F Q '=(2)取ABCE 部分,对C 点列平衡x =∑ cos450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且 RE RE F F '=联立上面各式得: 22RA F Q =2RB F Q P =+(3)取BCE 部分。
材料力学第四版课后习题答案
《材料力学第四版课后习题答案》
材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
第四版课后
习题答案是学习材料力学课程的重要参考资料,通过做习题和查阅答案,学生
可以更好地理解课程内容,掌握解题方法和技巧。
在材料力学的学习过程中,习题是非常重要的一部分。
通过做习题,学生可以
巩固课堂上所学的知识,提高解题能力和分析问题的能力。
而课后习题答案则
是学生在自学或者复习时不可或缺的参考资料,它可以帮助学生检验自己的答
案是否正确,找出解题的错误,并且了解正确的解题思路和方法。
第四版课后习题答案包含了大量的题目和详细的解答,涵盖了材料力学的各个
方面,包括应力、应变、弹性力学、塑性力学等内容。
通过查阅这些答案,学
生可以更好地理解课程内容,掌握解题方法和技巧,提高自己的学习效率和成绩。
除了对学生学习的帮助,第四版课后习题答案还可以作为教师教学的参考资料。
教师可以根据答案中的解题思路和方法,设计更加贴近学生实际的习题,提高
教学质量和教学效果。
总之,第四版课后习题答案对于学生的学习和教师的教学都具有重要的意义,
它是学习材料力学课程的必备资料,也是提高学习效率和成绩的利器。
希望学
生和教师都能充分利用这份宝贵的资料,共同进步,取得更好的成绩。
第四章弯曲内力4.4 设已知题4.4图(a)~(p)所示各梁的载荷 F 、q 、e M 和尺寸a ,(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)确定maxSF 及max M 。
解:(a)如题4.4图(a)所示。
剪立如题4.4图(a 1)所示坐标系。
(1)列剪力方程和弯矩方程。
应用题4.1(a)解法二提供的列剪力方程和弯矩方程的方法。
AC 段 ()()20S F x F x a =<<()()()20M x F x a x a =-<≤CB 段 ()()02S F x a x a =≤≤()()2M x Fa a x a =≤<(2)作剪力图、弯矩图,如题4.4图(a 2)所示。
(3)梁的最大剪力和弯矩为max2SF F =, max M Fa =(b) 如题4.4图(b)所示。
解法同4.4(a)。
剪立题4.4图(b 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤≤CB 段 ()()2S F x qa a x a =-≤<()()22a M x qa x a x a ⎛⎫=--≤< ⎪⎝⎭(2) 作剪力图、弯矩图,如题4.4图(b 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max32Mqa =(c) 如题4.4图(c)所示。
解法同4.4(a)。
剪立题4.4图(c 1)所示坐标系。
(1)列剪力方程和弯矩方程。
CB 段 ()()023S F x a x a =≤≤()()223M x qa a x a =≤<AC 段 ()()()202S F x q a x x a =-<≤()()()2212022M x q a x qa x a =--+<≤(2) 作剪力图、弯矩图,如题4.4图(c 2)所示。
第四章 扭 转题号 页码 4-5.........................................................................................................................................................1 4-7.........................................................................................................................................................2 4-8.........................................................................................................................................................3 4-9.........................................................................................................................................................4 4-11.......................................................................................................................................................6 4-13.......................................................................................................................................................7 4-14.......................................................................................................................................................8 4-19.......................................................................................................................................................8 4-20.......................................................................................................................................................9 4-21.....................................................................................................................................................10 4-22.....................................................................................................................................................12 4-23.....................................................................................................................................................13 4-24.....................................................................................................................................................15 4-26.....................................................................................................................................................16 4-27.....................................................................................................................................................18 4-28.....................................................................................................................................................19 4-29.....................................................................................................................................................20 4-33.....................................................................................................................................................21 4-34.....................................................................................................................................................22 4-35.....................................................................................................................................................23 4-36.. (24)(也可通过左侧的题号书签直接查找题目与解)4-5 一受扭薄壁圆管,外径D = 42mm ,内径d = 40mm ,扭力偶矩M = 500N ·m ,切变模量G =75GPa 。
静力学部分第一章基本概念受力图工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学汤2-1 解:由解析法,23co s 80R X F X P P Nθ==+=∑12sin 140R Y F YP P Nθ==+=∑故:161.2R F N==1(,)a rc c o s 2944R Y R RF F P F '∠==工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123co s 45co s 453R X F X P P P K N==++=∑13sin 45sin 450R Y F YP P ==-=∑故:3R F K N== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:X =∑sin 300A C AB F F -=Y=∑co s 300A C F W -=0.577A B F W=(拉力)1.155A C F W=(压力)(b ) 由平衡方程有:X =∑co s 700A C AB F F -=Y=∑sin 700A B F W -=1.064A B F W=(拉力)0.364A CF W=(压力)(c ) 由平衡方程有:X =∑co s 60co s 300A C AB F F -=Y=∑sin 30sin 600A B A C F F W +-=0.5A B F W= (拉力)0.866A C F W=(压力)(d ) 由平衡方程有:X =∑sin 30sin 300A B A C F F -=Y=∑co s 30co s 300A B A C F F W +-=0.577A B F W= (拉力)0.577A C F W= (拉力)工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2-4 解:(a )受力分析如图所示:由x =∑4c o s 450R A F P ⋅-=15.8R A F K N∴=由0Y =∑s in 450R A R B F F P ⋅+-=7.1R B F K N∴=(b)解:受力分析如图所示:由x =∑c o s 45c o s 450R A R B F F P ⋅--=Y=∑s in 45s in 450R A R B F F P ⋅+-=联立上二式,得:22.410R A R B F K N F K N==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5R A F K N= (压力)5R B F K N=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2A C F G =由x =∑c o s 0A C r F F α-=12c o s G G α∴=由0Y =∑s in 0A C N F F W α+-=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2s in N F W G W α∴=-⋅=-2-7解:受力分析如图所示,取左半部分为研究对象由x =∑co s 45co s 450R A C B P F F --=Y=∑sin 45sin 450C B R A F F '-=联立后,解得:0.707R A F P=0.707R B F P=由二力平衡定理0.707R B C B C B F F F P'===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑co s 60co s 300A C AB F F W ⋅--=Y=∑sin 30sin 600A B A C F F W +-=联立上二式,解得: 7.32A BF K N=-(受压)27.3A CF K N=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑s in c o s 0D B T W αα-=D B T W c tg α∴==(2)取B 点列平衡方程:由Y=∑s in c o s 0B D T T αα'-=230B D T T ctg W ctg K Nαα'∴===2-10解:取B 为研究对象:工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理由Y=∑s in 0B C F P α-=sin B C P F α∴=取C 为研究对象:由x =∑c o s s in s in 0B C D C C E F F F ααα'--=由0Y =∑s in c o s c o s 0B C D C C E F F F ααα--+=联立上二式,且有B C B CF F '= 解得:2c o s 12s in c o s C E P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑c o s 0N H C E F F α'-=C E C EF F '= 故有:22c o s 1c o s 2s in c o s 2s in N H P P F ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750A B A D F F -=Y=∑co s 75co s 750A B A D F F P +-=联立后可得: 2c o s 75A D AB P F F ==取D 点平衡,取如图坐标系:x =∑co s 5co s 800AD N D F F '-=c o s 5c o s 80N D A DF F '=⋅由对称性及A D A DF F '=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理c o s 5c o s 5222166.2c o s 80c o s 802c o s 75N N D A D P F F F K N'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑co s co s 300R A D C F F P α+-=Y=∑sin sin 300R A F P α-=联立上二式得:2.92R A F K N=1.33D C F K N=(压力)列C 点平衡x =∑405D C A C F F -⋅=Y=∑305B C A C F F +⋅=联立上二式得:1.67A C F K N=(拉力)1.0B CF K N=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑R D R E F F '=Y =∑R D F Q =联立方程后解得:R D F =2R E F Q'=(2)取ABCE 部分,对C 点列平衡x =∑co s 450R E R A F F -=Y=∑sin 450R B R A F F P --=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理且 R ER EF F '=联立上面各式得:R AF =2R B F Q P=+(3)取BCE 部分。
第四章弯曲内力设已知题图(a)~(p)所示各梁的载荷 F 、q 、e M 和尺寸a ,(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)确定max S F 及max M 。
解:(a)如题图(a)所示。
剪立如题图(a 1)所示坐标系。
(1)列剪力方程和弯矩方程。
应用题(a)解法二提供的列剪力方程和弯矩方程的方法。
AC 段 ()()20S F x F x a =<<()()()20M x F x a x a =-<≤CB 段 ()()02S F x a x a =≤≤()()2M x Fa a x a =≤<(2)作剪力图、弯矩图,如题图(a 2)所示。
(3)梁的最大剪力和弯矩为max2SF F =, max M Fa =(b) 如题图(b)所示。
解法同(a)。
剪立题图(b 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤≤CB 段 ()()2S F x qa a x a =-≤<()()22a M x qa x a x a ⎛⎫=--≤< ⎪⎝⎭(2) 作剪力图、弯矩图,如题图(b 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max32Mqa =(c) 如题图(c)所示。
解法同(a)。
剪立题图(c 1)所示坐标系。
(1)列剪力方程和弯矩方程。
CB 段 ()()023S F x a x a =≤≤()()223M x qa a x a =≤<AC 段 ()()()202S F x q a x x a =-<≤()()()2212022M x q a x qa x a =--+<≤(2) 作剪力图、弯矩图,如题图(c 2)所示。
(3) 梁的最大剪力和弯矩为max2SF qa =, 2max M qa =(d) 如题图(d)所示。
解法同(a)。
剪立题图(d 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()00S F x x a =≤<()()00M x x a =≤<CB 段 ()()2S F x F a x a =-<<()()()22M x F a x a x a =-<≤(2) 作剪力图、弯矩图,如题图(d 2)所示。
(3) 梁的最大剪力和弯矩为maxSF F =, max M Fa =(e) 如题图(e)所示。
解法同(a)。
剪立题图(e 1)所示坐标系。
(1)列剪力方程和弯矩方程。
3()()403M x Fx x a =≤≤ CB 段 ()()123S F x F a x a =<<()()()323FM x x a a x a =+≤≤DB 段 ()()5233S F x F a x a =-<<()()()53233M x F a x a x a =-≤≤(2) 作剪力图、弯矩图,如题图(e 2)所示。
(3) 梁的最大剪力和弯矩为max53SF F =, max53M Fa =(f) 如题图(f)所示。
解法同(a)。
剪立题图(f 1)所示坐标系。
(1)列剪力方程和弯矩方程。
2a ()()302ee M M x x M x a a =-<<CB 段 ()()322e S MF x a x a a =≤<()()3322ee M M x x M a x a a=-<≤(2) 作剪力图、弯矩图,如题图(f 2)所示。
(3) 梁的最大剪力和弯矩为max32eSM F a=, max32e M M =(g) 如题图(g)所示。
解法同(a)。
剪立题图(g 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()3082S a F x qa qx x ⎛⎫=-<≤ ⎪⎝⎭()2310822a M x qax qx x ⎛⎫=-≤≤ ⎪⎝⎭CB 段 ()182S aF x qa x a ⎛⎫=-≤< ⎪⎝⎭()()182a M x qa a x x a ⎛⎫=--≤≤ ⎪⎝⎭(2) 作剪力图、弯矩图,如题图(g 2)所示。
(3) 梁的最大剪力和弯矩为max38SF qa =, 2max9128M qa =(h) 如题图(h)所示。
解法同(a)。
剪立题图(h 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x F x a =-<<()()0M x Fx x a =-≤≤CD 段 ()()722S FF x a x a =<< ()()()7922FM x x a a x a =-≤≤DB 段 ()()5232S FF x a x a =-<<()()()53232M x F a x a x a =-≤≤(2) 作剪力图、弯矩图,如题图(h 2)所示。
(3) 梁的最大剪力和弯矩为max72SF F =, max52M Fa =(i) 如题图(i)所示。
解法同(a)。
剪立题图(i 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()02S a F x qa x ⎛⎫=-≤< ⎪⎝⎭()21022a M x qx x a ⎛⎫=-≤≤ ⎪⎝⎭ CB 段 ()93822S aa F x qx qa x ⎛⎫=-+<<⎪⎝⎭()221993281622aa M x qx qax qa x ⎛⎫=-+-≤≤ ⎪⎝⎭(2) 作剪力图、弯矩图,如题图(i 2)所示。
(3) 梁的最大剪力和弯矩为max58SF qa =, 2max18M qa = (j) 如题图(j)所示。
解法同(a)。
剪立题图(j 1)所示坐标系。
支座反力40RC RE F F kN ==(1)列剪力方程和弯矩方程。
AC 段 ()()3001S F x qx x x =-=-≤<()()22115012M x qx x x =-=-≤≤CB 段 ()()1012S F x x =<<()()102512M x x x =-≤≤DE 段 ()()1023S F x x =-<<()()151023M x x x =-≤≤EB 段 ()()1203034S F x x x =-<≤()()()215434M x x x =--≤≤(2) 作剪力图、弯矩图,如题图(j 2)所示。
(3) 梁的最大剪力和弯矩为max30SF kN =, max 15M kN m =(k) 如题图(k)所示。
解法同(a)。
剪立题图(k 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤≤CB 段 ()()()22S F x q x a a x a =-≤<()()221222M x qx qax qa a x a =-+≤<(2) 作剪力图、弯矩图,如题图(k 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max M qa =(l) 如题图(l)所示。
解法同(a)。
剪立题图(l 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤<CB 段 ()()2S F x qa a x a =-≤<()()222a M x qa x qa a x a ⎛⎫=--+<< ⎪⎝⎭(2) 作剪力图、弯矩图,如题图(l 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max12Mqa =(m) 如题图(m)所示。
解法同(a)。
剪立题图(m 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()()202S q F x a x x a =-<≤()()()02qxM x a x x a =-≤≤CB 段 ()()()2322S qF x x a a x a =-≤<()()()223222qM x x ax a a x a =-+≤≤(2) 作剪力图、弯矩图,如题图(m 2)所示。
(3) 梁的最大剪力和弯矩为max2SqaF =, 2max18M qa = (n) 如题图(n)所示。
解法同(a)。
剪立题图(n 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()()7804S q F x a x x a =-<≤()()()17204e M x qx a x M x a =--≤≤CB 段 ()()()3424S qF x a x a x a =-≤<()()()2223224qM x a ax x a x a =+-≤≤(2) 作剪力图、弯矩图,如题图(n 2)所示。
(3) 梁的最大剪力和弯矩为max74SF qa =, 2max4964M qa =(o) 如题图(o)所示。
解法同(a)。
剪立题图(o 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =≤≤()()2102M x qx x a =≤≤CD 段 ()()()23S F x q a x a x a =-≤≤()()()22132M x qx q x a a x a =--≤≤DB 段 ()()()434S F x q x a x a =-≤≤()()()24342q M x a x a x a =-≤≤ (2) 作剪力图、弯矩图,如题图(o 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max M qa =(p) 如题图(p)所示。
解法同(a)。
剪立题图(p 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =≤<()()2102M x qx x a =≤≤CD 段 ()()2S F x qx qa a x a =-<<()()()222x M x q qa x a a x a =--≤≤DE 段 ()()323S F x qx qa a x a =-<<()()22135232M x qx qax qa a x a =-+≤≤EB 段 ()()()434S F x q x a a x a =-<≤()()()24342q M x a x a x a =-≤≤(2) 作剪力图、弯矩图,如题图(p 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max M qa =作题图(a)、(b)所示各梁的剪力图和弯矩图。