旋转机械振动监测和分析
- 格式:pdf
- 大小:534.94 KB
- 文档页数:7
旋转机械故障诊断
旋转机械故障诊断主要是通过观察和分析机械运行过程中
的异常现象来判断故障原因。
以下是一些常见的旋转机械
故障诊断方法:
1. 震动分析:通过测量机械运行时的振动幅值和频率,分
析振动的特点和变化趋势,判断故障位置和类型。
常见的
故障类型包括不平衡、轴承损坏和轴承松动等。
2. 温度监测:通过测量机械的各个部件的温度,判断是否
存在过热的情况。
过高的温度可能是由于摩擦、润滑不良
或散热不良等原因引起的故障。
3. 声音分析:通过对机械工作过程中产生的声音进行分析,判断是否存在异响或噪音。
噪音可以是由于轴承损坏、齿
轮磨损或螺栓松动等引起的。
4. 润滑油分析:通过对机械润滑油的化学成分和物理性质
进行分析,判断是否存在金属粉末、水分或杂质等异常。
这些异常可能是由于零件磨损或润滑油质量不佳引起的故障。
5. 可视检查:通过对机械各个部件的外观进行检查,观察
是否存在磨损、裂纹或松动等现象。
这可以帮助诊断轴承、齿轮和联接件等部件的故障。
以上是常见的旋转机械故障诊断方法,诊断时可以结合多
种方法综合分析,准确判断和定位故障原因,以便及时进
行修复或更换有问题的部件。
第二章 旋转机械振动分析基础振动在设备故障诊断中占了很大的比重,是影响设备安全、稳定运行的重要因素。
振动又是设备的“体温计”,直接反映了设备的健康情况,是设备安全评估的重要指标。
一台机组正常运行时,其振动值和振动变化值都应该比较小。
一旦机组振动值变大,或振动变的不稳定,都说明设备出现了一定程度的故障。
第一节 振动分析的基本概念振动是一个动态量。
图2.1所示是一种最简单的振动形式——简谐振动,即振动量按余弦或正弦函数规律周期性地变化,可以写为()ϕω+=t A y sin (3-1)f πω2=;Tf 1= 试中,y 振动位移;A 振动幅值,反映振动的大小;ϕ振动相位,反映信号在t=0时刻的初始状态;ω为圆频率;f 为振动频率,反映了振动量动态变化的快慢程度;T 为周期。
图2.1简谐振动波形图2.2给出了三组相似的振动波形:图2.2(a )为两信号幅值不等,图2.2(b )为两信号相位不等,图2.2(c )为两信号频率不等。
可见,为了完全描述一个振动信号,必须知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。
(a)幅值不等;(b)相位不等;(c)频率不等图2.2 三组相似的振动波型简谐振动时最简单的振动形式,实际发生的振动要比简谐振动复杂的多。
但是根据付立叶变换理论知道,不管振动信号多复杂,都可以将其分解为若干具有不同频率的简谐振动。
图2.3 付立叶变换图解旋转机械振动分析离不开转速,为了方便和直观起见,常以1x表示与转动频率相等的频率,又称为工(基)频,分别以0.5x、2x、3x等表示转动频率的0.5倍、2倍、3倍等相等的频率,又称为半频、二倍频、三倍频。
采用信号分析理论中的快速傅立叶变换可以很方便地求出复杂振动信号所含频率分量的幅值和相位。
目前频谱分析已成为振动故障诊断领域最基本的工具。
频谱分析所起的作用可以概括为以下两点:1)特定故障的频率特征具有必然性。
例如,转子不平衡的频率为工频,气流基振和油膜振荡等故障的频率为低频,电磁激振等故障为高频。
旋转机械的测试信号及分析旋转机械是一类常见的工业设备,如发电机、风机、泵等。
在使用这些旋转机械之前,常常需要进行测试信号的产生和分析,以确保其正常运转和性能。
下面将介绍旋转机械测试信号的产生和分析方法。
首先是测量旋转机械的转速。
转速是旋转机械的一个重要指标,可以通过接触式或非接触式传感器来测量。
接触式传感器一般使用光电编码器或霍尔传感器,而非接触式传感器则可以使用激光测距仪或红外线测距仪等。
通过测量旋转机械的转速,可以了解其运行状态和工作效率。
其次是测量旋转机械的振动。
振动是旋转机械常见的故障指标之一,可以通过振动传感器来测量。
振动传感器一般使用加速度传感器或压电传感器等。
通过振动的测量和分析,可以了解旋转机械的动态性能和工作状态,及时发现和诊断故障。
另外是测量旋转机械的温度。
温度是旋转机械正常运行的一个重要指标,可以通过温度传感器来测量。
温度传感器一般使用热电偶或热敏电阻等。
通过测量旋转机械的温度,可以了解其热平衡状态和散热性能,预防过热和过冷引起的故障。
最后是测量旋转机械的功率。
功率是旋转机械的工作能力指标,可以通过功率传感器来测量。
功率传感器一般使用电流互感器或电压互感器等。
通过测量旋转机械的功率,可以了解其工作负荷和效率,并及时调整工作参数,以达到最佳工作状态。
针对旋转机械测试信号的分析,可以采用如下方法:首先是时域分析。
时域分析是对旋转机械测试信号在时间域上的变化规律进行分析,常常使用波形图观察信号的振幅、频率、周期等信息。
通过时域分析,可以了解旋转机械的动态性能和瞬态响应。
其次是频域分析。
频域分析是对旋转机械测试信号在频率域上的分布规律进行分析,常常使用功率谱图观察信号的频率成分和能量分布等信息。
通过频域分析,可以了解旋转机械的振动特性和频率分布,为故障诊断提供依据。
另外是相关性分析。
相关性分析是对旋转机械测试信号之间的关系进行分析,常常使用互相关函数或自相关函数来观察信号之间的相关程度。
旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。
大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。
本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。
一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。
轴系异常(包括转子部件)所产生的振动频率特征如表1。
二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。
当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。
这样失速区会以某速度向叶栅运动的反方向传播。
实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。
旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。
在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。
强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。
此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。
旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。
2、喘振旋转失速严重时可以导致喘振。
喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。
第23卷 第1期2010年3月燃 气 轮 机 技 术GAS TURB I NE TECHNOLOGYV o l 23 N o.1M ar.,2010旋转机械振动监测和分析郑月珍(南京汽轮电机(集团)有限责任公司,南京 210037)摘 要:本文介绍旋转机械振动监测和设备故障诊断的意义、旋转机械的常见振动问题和振动测量的原理及测试方法。
最后介绍我公司研制开发的以计算机为核心的旋转机械振动监测和分析系统的主要功能。
关 键 词:机械振动;轴振动;频谱分析;故障诊断中图分类号:O329 文献标识码:A 文章编号:1009-2889(2010)01-0039-061 振动状态在线监测及预测维修旋转机械的振动监测是设备运转状态监测的重要组成部分。
随着生产技术的发展,一种以状态监测为基础的故障诊断和预测技术得到推广与应用。
这种技术的发展,将使设备的维修方式从传统的 事故维修 和 定期维修 过渡到 预知性维修 ,从而大大提高设备的年利用率,减少停机维修时间,降低维修费用,同时也减少了备件库存量。
此外,旋转机械的振动测试技术也是转子现场动平衡和转子动力特性试验研究不可缺少的手段。
近十年来,我国振动状态监测技术得到了重视和研究,在关键设备上配备了监测仪表或监测系统。
例如从国外引进的燃气轮机发电机组都安装了振动保护系统。
对国内制造的200MW、300MW和600MW汽轮发电机组的仪表设计工作正在选择相应的振动保护系统与主机配套。
国内原有的电站设备已逐渐安装机械保护系统及准备安装机械保护系统。
2 旋转机械振动测试概要旋转机械振动测试的主要对象是一个转动部件 转子或转轴,在进行振动测量和信号分析时,也总是将振动与转动密切结合起来,以给出整个转子运动的某些特征。
2.1旋转机械的振动问题转子是旋转机械的核心部件。
通常转子是用油膜轴承、滚动轴承或其它类型轴承支承在轴承座或机壳、箱体及基础等非转动部件上,构成了所谓的 转子 支承系统 。
核电厂运营阶段旋转设备振动测量与故障分析摘要:核电机组的规划、购买、装置、运行,都是非常关键的一环。
为了确保核电转机的正常工作,在机组运营过程中,对转机进行了离线振动监控。
以专业的勘测设备和研究软件为基础,结合振动研究的专业知识,对振动超标的设施展开了故障研究,并实施了相应的修缮处理,最终使其振动实现了一个正常的能力,给核电站运营的正常开展给予了牢固的保证。
关键词:振动监测系统振动测量故障分析在当代的生产过程中,对器械设施进行故障判断已引起了人们的广泛关注,若无法有效察觉并解决问题,将会造成设施自身的损伤,而且会引起机器失效、人员伤亡等重大不良后果。
在持续生产过程的中,一个重要的装置只要发生故障,就会影响到整个装置的正常运转,给项目企业带来很大的经济损失。
对核电站而言,利用故障判断技术,及早察觉设施故障,提前更换到备用,是减低事故产生,降低经济损失,预防危害的一种行之合理的措施。
振动,是衡量装备工作情况的一个关键评估指标。
振动的强弱,将直接影响到装置是否可以持续稳定地工作。
在机器工业和别的工业领域中,有着相当多的不良振动现象,它们的出现造成了巨大的损失,有的还潜藏着危险的祸根,因此,运用振动项目的理论、技术和措施,对这些问题进行分析和处理,是当前的迫切需要。
1核电厂振动研究在电厂运作中的设施和构造中,通常有着机器振动,比如汽轮机、发电机、风机、水泵等旋转机械的振动,轴承座、汽缸、发电机定子、凝汽器等固定构造的振动,汽、水管道及热交换器的振动,还有厂房、砼基础、横纵梁等土建构造的振动。
对核动力装置中的关键设施开展振动勘测核研究,并对其实施预防性判断,可以合理地避免突然的振动事故,极大限度地减少经济受损,解决潜在危险。
在2005年,某个核电厂曾使用高频振动频谱的检测,查出了某核二级泵齿轮箱小齿轮的的初步磨损。
按照出现的问题,对其展开的有效的处理,从而避免了重大磨损事故的产生。
1.1CSI2130在核电的应用CSI2130是目前核电设备中常用的一种状态研究仪,用于对核电设备的振动进行勘测核研究,并将其与之相匹配的“AMSMachineryManagerClient”管理软件用于数据库的管控和振动研究。
如何对旋转机械设备进⾏振动分析检测?亚泰光电来源:亚泰光电机器设备的旋转部件会不时产⽣频率介于50Hz~10kHz之间的振动,我们可以测量设备的振动幅度,以便从中了解滚轴及其它转动部分的物理状态,这个监控过程⼀般称为振动分析。
这些设备如果出现机械问题及电⽓问题,均会引起振动幅度的变异,振动⼤⼩与设备问题的严重性息息相关。
如果能掌握振动的⼤⼩及变异来源,就能在设备尚未严重恶化之前,事先完成检修⼯作,以避免造成设备更⼤的损坏,⽽影响⽣产或增加维修费⽤。
⼀、振动显⽰信号 设备振动显⽰出来的信号⽐较复杂,但从确定性⾓度,分为确定性信号和⾮确定性信号。
在旋转部件中,有不少是确定性信号: 机组的联接及转⼦存在不对中、不平衡。
齿轮箱中轮齿的点蚀、剥落、断齿 滚动轴承中零部件损坏 滑动轴承中存在油膜涡动等等这些常见的故障。
这些确定性信号都有可以⽤函数关系来描述,即通过理论计算和频谱分析技术均可确定它们的特征频率,从⽽确定故障的类型和部位。
振动分析仪利⽤电压加速度传感器将振动信号转换为电信号。
⽽对电信号进⾏处理和分析,就能反推出设备各种振动量的准确值。
从振动量的值来了解设备及其部件的状况,进⽽判断这些设备运转状态是否良好。
这样就可以把检测到的振动情况可作为是否停机之依据,降低意外当机的机率。
还可以分析出故障的部位和故障原因,并推断出检修的⽅法。
⼆、振动的⼀些基本概念 为了更好地研究振动分析设备故障诊断技术,⾸先要对振动有⼀定的了解。
1、表⽰振动的要素包括:振幅、频率、相位、能量等。
振幅:表明振动幅度的⼤⼩,振幅能说明设备或部件损坏的严重程度。
频率:表明振动的来源,能说明设备或机械组件损坏的原因。
相位:代表测点间振动的相互关系,能说明设备或机械组件的运转模态。
能量:代表振动的破坏⼒,设备或机械组件损坏的冲击状况。
2、其中振幅有三种数据类型:位移值(毫⽶)、速度值(毫⽶/秒)、加速度值。
位移值,⽤于低转速成设备诊断上。