网格生成技术及应用
- 格式:ppt
- 大小:1.11 MB
- 文档页数:39
基于三角面元的涂层目标fdtd共形网格生成技术
随着科技的发展,计算机技术在各个领域的应用越来越广泛,其中最重要的一个领域就是电磁场仿真。
电磁场仿真技术是一种基于数值模拟的技术,它可以用来模拟电磁场的传播、反射和衰减等物理现象。
其中,基于三角面元的涂层目标FDTD共形网格生成技术是一种重要的电磁场仿真技术。
基于三角面元的涂层目标FDTD共形网格生成技术是一种基于三角面元的网格生成技术,它可以用来模拟涂层目标的电磁场仿真。
该技术的核心思想是将涂层目标的表面分割成一系列三角面元,然后根据三角面元的形状和尺寸,构建出一个共形的网格结构。
这种网格结构可以有效地模拟涂层目标的电磁场仿真,并且可以更好地模拟涂层目标的复杂结构。
此外,基于三角面元的涂层目标FDTD共形网格生成技术还具有计算效率高、精度高等优点。
由于该技术可以有效地模拟涂层目标的电磁场仿真,因此可以提高计算效率,并且可以更好地模拟涂层目标的复杂结构,从而提高精度。
总之,基于三角面元的涂层目标FDTD共形网格生成技术是一种重要的电磁场仿真技术,它具有计算效率高、精度高等优点,可以有效地模拟涂层目标的电磁场仿真,并且可以更好地模拟涂层目标的复杂结构,为电磁场仿真提供了一种有效的方法。
第4卷㊀第6期2019年11月气体物理PHYSICSOFGASESVol.4㊀No.6Nov.2019收稿日期 2019⁃06⁃04 修回日期 2019⁃08⁃21基金项目 国家重点研发计划(2016YFB0200701) 国家自然科学基金(11532016 11672324)第一作者简介 常兴华(1982⁃)㊀男 博士 副研究员 主要研究方向为动态混合网格生成技术㊁非定常数值计算方法㊁数值虚拟飞行.E⁃mail cxh_cardc@126.com通信作者简介 张来平(1968⁃)㊀男 博导 研究员 研究方向为非结构网格生成方法㊁非结构网格高精度数值模拟方法㊁数值虚拟飞行.E⁃mail zhanglp_cardc@126.com㊀㊀DOI 10.19527/j.cnki.2096⁃1642.0760并行重叠/变形混合网格生成技术及其应用常兴华1 2 ㊀王年华1 2 ㊀马㊀戎2 ㊀田润雨3 ㊀张来平1 2(1.中国空气动力研究与发展中心空气动力学国家重点实验室 四川绵阳621000 2.中国空气动力研究与发展中心计算空气动力研究所 四川绵阳6210003.中国空气动力研究与发展中心超高速空气动力研究所 四川绵阳621000)DynamicHybridMeshGeneratorCoupledwithOversetandDeformationinParallelEnvironmentCHANGXing⁃hua1 2 ㊀WANGNian⁃hua1 2 ㊀MARong2 ㊀TIANRun⁃yu3 ZHANGLai⁃ping1 2(1.StateKeyLaboratoryofAerodynamics ChinaAerodynamicsResearchandDevelopmentCenter Mianyang621000 China 2.ComputationalAerodynamicsInstitute ChinaAerodynamicsResearchandDevelopmentCenter Mianyang621000 China 3.HypervelocityAerodynamicsInstitute ChinaAerodynamicsResearchandDevelopmentCenter Mianyang621000 China)摘㊀要 为了适用于柔性变形㊁相对运动等复杂动边界问题 建立了并行环境下重叠和变形相结合的动态混合网格生成技术.通过计算区域分解以及分布式并行实现了重叠和变形技术的结合 其中重叠网格采用了并行化的隐式装配方法 并发展了两种并行化查询策略.变形网格则采用了并行化的径向基函数(RBF)插值方法.并行化动态网格生成方法大幅提高了动态网格生成效率 有利于处理大规模的动边界问题.在此基础上 发展了基于变形/重叠动态混合网格的流动/运动/控制一体化数值模拟方法 进一步改进了耦合模拟软件平台 HyperFLOW.典型应用算例证明了该动态混合网格技术及一体化算法的实用性.关键词 重叠网格 变形网格 并行动态网格生成 数值虚拟飞行 耦合算法㊀㊀㊀中图分类号 V211.3文献标识码 AAbstract Adeforming/oversetcoupledhybridmovinggridgenerationmethodwasdevelopedinparallelenvironmenttodealwithcomplexengineeringproblemsofbothboundarydeformationandrelativemovement.Thecoupledmethodisbasedonadomaindecompositionstrategyanddistributedparallelprocess.Theparallelimplicit⁃hole⁃cuttingmethodbasedontheminimumdistancetowallisadopted andtwoparalleldonorcellsearchingmethodshavebeendeveloped.Theinterpolationmethodbasedonparallelradialbasisfunction(RBF)isadoptedformeshdeformation.Basedonthecoupledhybridmovinggrids thenumericalvirtualflightsolver HyperFLOW wasimproved.ThecoupledsimulationsystemintegratestheparallelunsteadyRANSsolveronthedeforming/oversetmovinggrids sixdegreesoffreedom(6DOF)motionsolver andflightcontrolsystem.Sometypicalapplicationsdemonstratethecapabilityofpresentmethod.Keywords oversetmesh deformingmesh parallelmovinggridgeneration numericalvirtualflight couplingmethod引㊀言在计算流体力学应用中经常会遇到包含运动边界的流动问题 例如复杂多体分离㊁飞行器机动飞行㊁直升机旋翼运动㊁风力机叶片旋转㊁鸟类/昆虫/鱼类等生物体柔性运动等.针对此类问题开展数值模拟 首先需要解决运动边界条件下的动态网第6期常兴华等并行重叠/变形混合网格生成技术及其应用格生成问题.此外由于此类包含运动边界的流动问题往往是一个多学科耦合问题因此还要发展和动态网格技术相匹配的非定常流动数值模拟方法以及多学科耦合求解算法以满足工程应用的需求.常见的处理运动边界问题的方法有动态重叠网格技术[1]㊁变形网格技术[2]以及内置边界方法[3]等.重叠网格是由若干个子网格块组合形成覆盖整个计算域的网格子网格块之间通过网格装配技术建立插值关系.通过子网格块的刚性运动可以非常方便地模拟大位移㊁相对运动等问题.变形网格技术通过将边界网格的运动传递到内部网格点以生成每个时刻的动态网格其优点是可以保持网格拓扑结构的一致性且适用于柔性边界问题.内置边界方法通过在控制方程中引入模拟物理边界影响的源项降低了网格生成难度且物体运动过程中不需要对网格进行特殊处理但是其在模拟高Reynolds数可压缩流问题时精度仍有待提高.随着CFD所模拟的工程问题越来越复杂多学科耦合㊁精细化数值模拟等都对数值计算方法尤其是网格生成技术提出了更高要求.为了更好地解决柔性变形㊁相对运动㊁大位移运动相互耦合的复杂工程问题重叠网格技术和变形网格技术的结合是一种较好的技术途径.此外为了满足工程应用对精细化数值模拟的要求往往需要采用较大规模的计算网格而串行的重叠网格装配技术以及变形网格技术显然难以满足工程应用对计算效率的要求需要发展并行化的动网格生成技术.针对以上问题作者发展了一种并行环境下重叠和变形耦合的动态混合网格技术该技术采用了基于网格分区的分布式并行方案每一个网格分区根据其所依赖的物理边界运动信息进行变形然后通过并行化重叠网格隐式装配技术进行挖洞和宿主单元查找.其中网格变形采用了基于径向基函数(radialbasisfunction RBF)的插值方法为提高网格变形效率采取了并行化的参考点选择算法以及插值算法.在该动态混合网格技术的基础上发展了流动/运动/控制一体化数值模拟方法进一步改进了作者课题组之前发展的具有完全自主知识产权的多学科耦合数值模拟平台 HyperFLOW.本文将对这些工作进行简要介绍并展示一些典型的应用算例.1㊀动态混合网格生成技术1.1㊀并行环境下重叠/变形网格技术的整体思路一般而言物体的复杂运动可以分解为体轴系内的柔性变形和整体的刚性运动.对于某些附着在其他物体上的部件(如飞行器的尾舵) 除了自身的运动之外还要随着飞行器进行牵连运动因此可采用3组6自由度参数定义其刚性运动即部件自身的自由度部件所附着的物体的自由度部件在其所附着的物体中安装的自由度.图1给出了物体刚性运动定义的示意图其中x0/y0/z0为惯性坐标系(简称C0) x1/y1/z1为飞行器质心坐标系(简称C1) x2/y2/z2为尾舵安装位置的坐标系(简称C2) 则尾舵的运动由其旋转角度㊁C2相对于C1的6自由度参数㊁C1相对于C0的6自由度参数共同决定.分别采用网格变形技术和动态重叠网格技术处理物体的柔性及刚性运动.首先在生成计算网格时需要围绕每一个物体或者部件生成独立的贴体子网格块并采用重叠网格技术将各个子网格块进行组装.子网格块可以采用三棱柱㊁四面体㊁金字塔㊁六边形等多种形式的混合单元(二维情况下为三角形㊁四边形㊁多面体等单元) 当物体发生变形和刚性运动之后首先每个子网格块根据其所依赖的物面点的运动信息在其体轴系内实现内部网格点的变形变形之后的子网格块再跟随物体进行刚性运动随后采用重叠网格技术将各个子网格块进行重新组装.图1㊀坐标系以及物体刚体运动的定义Fig.1㊀Definitionofthereferenceframeandtherigidmovementofbody动态混合网格生成流程如图2所示整个过程均在并行环境下进行采用了基于网格分区的分布式并行策略.在读入初始计算网格之后分别对围绕每个物体的子网格块进行分区并均匀分布至各31气体物理2019年㊀第4卷个进程同时提取其中各个物体或部件的物面网格信息并发送至所有进程.该全局的物面网格信息有两个用途(1)跟随物体进行变形(2)计算空间网格点或单元的最近壁面距离.动态网格生成过程中每个进程仅对其所负责的若干网格分区进行变形和刚性运动的计算且采用相同的物面网格以及物面参考点以保证网格分区边界的匹配.隐式重叠网格装配过程中需要通过各个进程之间的通讯来确定查询以及逻辑判断结果.算法的具体实现过程中如何建立耦合动态混合网格生成的整体程序框架如何保证各个功能模块的封装性㊁可扩展性是一个非常重要的内容.本文采用了C++面向对象的思想开发计算程序网格数据㊁流场数据是程序的核心依据这些数据结构建立MPI底层支撑环境并围绕这些数据㊁底层支撑环境开发具有高度封装性的功能模块从而保证各个模块的可扩展㊁可移植特性也提高了代码的容错能力并降低了维护成本.图3给出了程序的架构示意图各个功能模块之间须根据多学科耦合顶层计算流程的需要建立必要的信息传递接口.图2㊀动态混合网格生成的整体思路Fig.2㊀Sketchmapforthedynamicmeshgenerator图3㊀程序框架示意图Fig.3㊀Frameworkofthesoftwareplatform1.2 重叠网格装配技术重叠网格技术包括挖洞㊁宿主单元搜索以及流场插值3个方面的内容其中挖洞和宿主单元搜索称为重叠网格装配.根据挖洞过程的不同可以分为显式装配[6⁃9]和隐式装配[10⁃15]两类.显式装配过程首先要将落在物体内部的点或单元进行标记形成初始洞边界(判断点是否在物体内部的方法有矢量判别法[4]㊁射线求交法[5]㊁洞映射方法[6]㊁目标x射线法[7]等.) 然后通过一些优化算法将洞边界进行优化(例如割补法[8⁃9])并确定出插值单元最后查找插值单元的宿主单元.隐式装配技术须查找所有点或者单元的宿主单元通过对比单元的质量确定其属性挖洞过程则隐含在查询与判断的过程之中.Lee等[10]在2003提出了隐式装配的概念并将单元的尺度作为是否是活跃单元的判则.其实早在1999年Nakahashi等[11]针对非结构重叠网格的方法中就已经采用了隐式装配技术其采用节点的最近壁面距离作为活跃点的判则.Togashi等[12]进一步将基于最近壁面距离的该方法推广应用于复杂多体分离问题的数值模拟.Loehner等[13]Luo等[14]采用单元的尺度和壁面距离的组合量作为单元属性的判断标准使插值单元和贡献单元的大小匹配有助于提高插值稳定性并减少插值误差.非结构重叠网格隐式装配软件PUNDIT[15]亦采用了隐式装配技术.本文的基于网格分区的并行化装配技术分为两步执行.Step1 通过隐式装配技术划分点的属性Step2 判断插值单元并搜索其宿主单元.Step1中需要搜索所有网格点的宿主单元可以采用两种并行查询策略策略1 整体⁃局部 查询搜集所有分区内的网格点形成整体的网格点集并发送至所有进程然后在每个分区内搜索点集的宿主单元并通过MPI规约操作确定最终的查询结果策略2 辅助网格查询围绕各个物体或部件生成稀疏的辅助网格分别在各套辅助网格内进行宿主单元搜索并通过插值得到网格分区中计算网格点的质量(以最小壁面距离作为质量判则).在点属性划分过程中还采取了一种并行化的阵面推进技术能够快速高效地确定出联通的活跃区域.Step2的搜索过程采用与Step1中策略1类似的方式首先搜集每个网格分区内的插值单元以形41第6期常兴华等并行重叠/变形混合网格生成技术及其应用成整体的插值单元集合然后在各个网格分区内进行宿主单元查找.对于多套网格相互嵌套的问题可能存在多个宿主单元此时需要根据宿主单元的属性以及其最小壁面距离确定唯一的一个.本文将查找的宿主单元分为3个等级第1等级的为活跃单元标记为1 第2等级宿主单元为插值单元标记为⁃1 第3等级的宿主单元为非活跃单元标记为⁃2.优先选择等级较高的宿主单元如果存在多个等级相同的则进一步比较其最小壁面距离选择距离较小的作为最终结果.并行环境下通过如下的MPI通讯流程实现进程之间的逻辑判断(1)通过MPI全局规约命令确定宿主单元的最高等级(2)各个进程内如果宿主单元等级小于最高等级舍去该宿主单元(3)通过MPI全局规约命令确定宿主单元的最小壁面距离(4)各个进程内如果宿主单元的最小壁面距离大于该值则舍去该宿主单元(5)将剩下的唯一的宿主单元广播至所有进程.方法的具体细节请参见文献[16⁃17].1.3 并行化网格变形技术常见的网格变形方法有超限插值(transfiniteinterpolation TFI)方法[2]㊁弹簧松弛法[18⁃19]㊁Delaunay背景网格映射法[20]㊁RBF插值法[21⁃22]等这些方法各具特色并都已经得到广泛应用.在之前的研究工作中作者所在的研究团队发展了弹簧松弛法和Delaunay背景网格映射相结合的网格变形方法[23⁃25]并结合了局部网格重构技术从而可以模拟大变形㊁大位移等问题在多体相对运动问题中也得到了大量应用.在这些工作的基础上本文进一步集成了并行化RBF插值方法.当物面网格量较大时RBF方法中的插值矩阵会变得十分庞大导致空间网格点的插值计算量急剧增加.为了提高RBF插值效率参照文献[22]的做法选用有限的物面点作为参考点从而可以减少矩阵的规模提高空间网格点的插值效率.由于RBF插值过程不需要网格的拓扑关系因此其并行计算比较容易实现.其包括两部分的并行(1)物面点选择过程的并行(2)插值过程的并行.物面参考点的选择采用贪婪算法以物面点位移的误差作为准则.首先需要将物面点集平均分配到各个进程.在循环判断的过程中每个进程只对其所负责的物面点进行插值运算和比较并求出其中的最大误差点然后通过MPI通讯确定出所有进程中的误差最大点并加入参考点集主进程根据新的参考点集执行插值矩阵的更新以及求逆操作并将其广播至其他所有进程算法的具体流程如图4所示.空间点的插值直接基于网格分区进行每个进程只针对其所负责的网格分区进行插值运算每一个进程中存储相同的插值矩阵这样可以保证分区边界上点的匹配.图4㊀RBF变形网格法中并行化物面参考点选择方法Fig.4㊀ReferencenodeselectingmethodinparallelenvironmentforRBFmovinggridgeneration图5及表1给出了并行化RBF方法的测试算例.模型为简化的三维金枪鱼外形采用了三棱柱㊁四面体形式的混合网格其中物面网格点数9.8ˑ104空间网格单元数7.19ˑ106.采用单进程选择600个物面参考点耗时约16.2s 空间网格变形耗时约30.2s.采用64进程并行物面参考点选择耗时约6.0s 空间网格变形耗时约1.5s.并行效率较低的原因在于物面参考点选择阶段矩阵求逆过程没有并行化空间点位移插值阶段插值系数的计算过程没有并行化.这两部分计算均由主进程负责然后将计算结果发送给其他进程.51气体物理2019年㊀第4卷(a)Surfacemeshesandreferencenodes(rednodes)(b)Averagederrorandmaximumerrorofsurfacenodeswiththenumberofreferencenodes图5㊀物面参考点选择测试算例Fig.5㊀Testcaseforreferencenodeselection表1㊀并行RBF插值效率测试Table1㊀TestforparallelRBFmethodnumberofprocessorsreferencenodesselectionvolumenodesinterpolation116.2s30.2s646.0s1.5s1.4㊀动态混合网格生成实例本节展示了采用上述动态混合网格生成技术得到的一些典型应用实例.图6所示为三维情况下4条鱼群游过程的动态混合网格 网格单元由四面体㊁三棱柱㊁金字塔等组成 总数为1.05ˑ107.物面为三角形网格 网格点数8ˑ104 选取其中1200个作为RBF参考点.采用64进程并行 参考点选择耗时约4.7s 执行一次空间网格变形耗时约3.2s 重叠网格装配耗时约10s.图7所示为飞机外挂物投放过程的重叠网格 载机网格单元数2.5ˑ107 两个外挂物网格单元数约1.2ˑ107.采用256进程并行执行重叠网格装配耗时约7s.图中给出了分离过程中3个典型时刻的空间网格切面.图8给出了机翼外挂物分离的超大规模重叠网格 网格单元总数为2.88ˑ109 采用了12288进程并行计算.此算例采用了并行化的辅助网格查询技术 结合分布式并行计算 因此每个进程占用内存较少.图6㊀三维情况下鱼群游动过程的动态混合网格Fig.6㊀Dynamicmeshesfortheschoolingoffourfishesin3Dcase图7㊀战斗机分离投放过程的动态混合网格Fig.7㊀Dynamicmeshesduringtheseparationprocessbetweentwomissilesandaircraft61第6期常兴华 等 并行重叠/变形混合网格生成技术及其应用图8㊀超大规模重叠网格装配测试Fig.8㊀Hole⁃cuttingforlargescaleoversetmesh2㊀流动/运动/控制一体化数值计算方法针对飞行器机动飞行㊁生物体自主运动等流动㊁运动和控制等多学科耦合问题 作者课题组已经发展了流动/运动/控制耦合的一体化数值方法 并研发了虚拟飞行模拟平台 Hyper⁃FLOW[26⁃28].本文将上述重叠/变形动态混合网格生成技术进一步集成于HyperFLOW平台之中 使之能够适应于同时存在柔性变形和相对运动的复杂动边界问题.HyperFLOW平台[26⁃28]耦合了非定常RANS方程求解㊁刚体动力学求解和飞行控制律等多学科计算模块 并有机集成了动态混合网格生成模块 在统一的理论框架下建立了流动/运动/控制耦合的一体化数值模拟算法.在运动网格上进行非定常RANS方程计算 离散后的方程中含有网格几何量对时间的导数项 为避免由于网格运动引入的额外误差 几何守恒律(geometricconservationlaw GCL)应该和质量守恒㊁动量守恒㊁能量守恒一样在 数值 上得到满足.目前满足几何守恒律的算法很多 作者通过理论分析将其归纳为两类[29] 第1类方法通过在控制方程中引入源项 从而在整体上消除几何守恒误差.第2类方法通过限制面元的速度㊁法向㊁面积等求解方法 以满足面元扫过体积的守恒.通过截断误差分析以及数值测试 我们对各种满足几何守恒律的算法进行了分析[29].结果表明 第1类格式在整体上消除了几何守恒律误差 虽然能够保持均匀流的守恒 但是在非均匀流情况下添加的源项不能够和几何守恒律误差相互抵消 会残留一部分误差 而这部分误差可能会影响数值计算的精度 第2类格式在理论上更为严格 能够保证每个面元上体积通量的守恒 因此对于均匀流或者非均匀流都能够严格满足几何守恒律.详细内容请参见文献[29].根据耦合计算策略的不同 耦合计算方法一般可分为全耦合㊁松耦合和紧耦合3种.全耦合即将各个学科的控制方程视为一个统一㊁完整的系统进行求解.由于流动控制方程㊁运动/动力学方程等在性质上存在较大差异 因此全耦合格式比较难以实现.这里采用解耦方法进行耦合问题的求解 为了解决不同耦合程度的气动/运动耦合问题 我们建立了统一的框架 可通过参数选取实现不同时间精度的松耦合和紧耦合计算[30].我们选用圆柱自激震荡算例对松耦合㊁紧耦合算法进行了考核 与文献结果进行了对比 并对紧耦合㊁松耦合的适用范围进行了测试.结果表明 当物体密度远大于周围流体密度时 采用松耦合或者紧耦合均能够得到较好的计算结果 但是当物体密度接近或者小于周围流体密度时 采用松耦合的方式将难以得到收敛的计算结果 此时采用紧耦合算法是比较合适的选择.最后我们通过一维稳定性分析对该结论进行了验证[30].在此基础上 进一步耦合了飞行控制律 实现了 气动/运动/控制 的一体化数值模拟.在本文中 我们进一步将基于动态重叠网格的非定常RANS方程求解方法集成于HyperFLOW平台.其中涉及到第1节中介绍的重叠网格并行隐式装配 以及重叠区的物理量插值.我们将重叠边界视为一种特殊的网格块间交界面信息 从而很容易在并行分区环境下 实现重叠区的信息交换.关于重叠插值算法 我们目前仍采用普遍采用的双线性(2D)或三线性(3D)插值方法.具体的实现过程这里不再详述.3㊀一体化算法应用实例本节给出几个一体化算法的应用实例.第1个算例为战斗机纵向机动开环控制过程的模拟.通过给定水平尾舵的舵偏规律 战斗机在71面附近采用各向异性三棱柱网格 而远场采用各向同性的四面体网格.机身网格随体运动 水平尾舵根据控制律进行偏转 通过动态重叠与机身网格进行信息交换.图9所示为其纵向机动过程中的典型数值模拟结果(压力云图以及空间的Q等值面).图10所示为一体化算法在生物外流流体力学方面的典型应用.首先 模拟了二维情况下 在未考虑控制时4条鱼的自主群游起动过程(见图10(a)).4条鱼排成菱形阵形从静止流场中加速游动.鱼体的尾涡之间发生了非常剧烈的相互干扰 其中后鱼的游速大于前鱼 说明其受到了有益的流向干扰.其次 我们耦合简单的PID控制律 对二维情况下单个鱼体的转向过程进行了模拟(见图10(b)).数值模拟结果表明 建立的控制律能够较好地实现控制目标 鱼顺利完成了连续转弯及方向控制.最后 我们对三维鱼体自主游动的加速过程进行了模拟.图10(c)所示为鱼加速起动过程中的流场结构 达到更好的加速效果.需要指出的是 果 之中.因此 流场 关于机动过程中气动(水动)的演化㊁闭环控制效果的评估等 工作中陆续发表.=1.98ˑ107 t=Re=1.98ˑ107 t=Re=1.98ˑ107 t=0.4620s δ=15.00ʎQ⁃等值面)resultsforthepitchingmotionofanaircraftpressurecontourandQ⁃isosurface)(a)Fourfishschoolingwithoutcontrol(2D contourofvorticity)图10㊀一体化算法在生物外流流体力学方面的应用Fig.10㊀ApplicationsofHyperFLOWforbio⁃fluidsimulations4 结论本文介绍了作者在重叠/变形耦合动态混合网格生成技术及流动/运动/控制耦合一体化算法方面的研究工作.我们利用面向对象模块化软件设计方法初步建立了适用于复杂动边界问题的一体化数值模拟软件平台.典型飞行器俯仰机动过程和鱼体自主游动的数值模拟结果表明我们发展的动态混合网格生成技术及一体化数值模拟平台对于复杂动边界问题具有良好的适应性展现了广阔的应用前景.下一步工作中需要在如下几个方面加强研究(1)自适应网格技术的集成.通过自适应网格和重叠㊁变形网格技术的结合能够进一步提高数值模拟过程的自动化程度和数值模拟效果(2)DES数值模拟技术的研究与集成主要目的是为了提高飞行器在大迎角情况下复杂分离流动的数值模拟精度(3)多学科耦合模拟软件架构深化研究.我们将采用基于事件驱动的设计思路进一步增强软件的模块化㊁封装性和可扩展性.通过底层网格数据㊁流场数据的集中管理实现各种数值格式在空间上气体物理2019年㊀第4卷的混合运算以进一步提高数值模拟效果(4)结构动力学模块研制与集成.在飞行器机动飞行过程中结构载荷更大有可能导致结构的大变形进而导致气动力的巨大变化.为了准确模拟机动飞行过程必须考虑结构变形带来的影响.致谢㊀感谢国家重点研发计划(2016YFB0200701)以及国家自然科学基金(11532016 11672324)对本文工作的支持.参考文献(References)[1]㊀StegerJL DoughertyFC BenekJA.Achimeragridscheme[C].PresentedatAppliedMechanics Bioengi⁃neering andFluidsEngineeringConference June20⁃22 1983 Houston AmericanSocietyofMechanicalEn⁃gineers.[2]NakamichiJ.CalculationsofunsteadyNavier⁃Stokese⁃quationsaroundanoscillating3Dwingusingmovinggridsystem[R].AIAA1987⁃1158 1987.[3]KimD ChoiH.Immersedboundarymethodforflowa⁃roundanarbitrarilymovingbody[J].JournalofComputa⁃tionalPhysics 2006 212(2) 662⁃680.[4]BenekJA StegerJL DoughertyFA.AflexiblegridembeddingtechniquewithapplicationtotheEulerequa⁃tions[R].AIAA1983⁃1944 1983.[5]LaBozzettaWF GatzkeTD EllisonS etal.MACGS⁃towardsthecompletegridgenerationsystem[R].AIAA1994⁃1923 1994.[6]ChiuIT MeakinR.Onautomatingdomainconnectivityforoversetgrids[R].AIAA1995⁃0854 1995.[7]MeakinRL.ObjectX⁃raysforcuttingholesincompositeoversetstructuredgrid[R].AIAA2001⁃2537 2001.[8]ChoKW KwonJH LeeS.Developmentofafullysys⁃temizedchimeramethodologyforsteady/unsteadyproblems[J].JournalofAircraft 1999 36(6) 973⁃980.[9]李亭鹤阎超李跃军.重叠网格技术中割补法的研究与改进[J].北京航空航天大学学报2005 31(4)402⁃406.LiTH YanC LiYJ.Investigationandenhancementofcut⁃pastealgorithminoverlappinggrid[J].JournalofBeijingUniversityofAeronauticsandAstronautics2005 31(4) 402⁃406(inChinese).[10]LeeYL BaederJD.Implicitholecutting-anewap⁃proachtooversetgridconnectivity[R].AIAA2003⁃4128 2003.[11]NakahashiK TogashiF SharovD.Anintergrid⁃boundarydefinitionmethodforoversetunstructuredgridapproach[R].AIAA1999⁃3304 1999.[12]TogashiF ItoY NakahashiK etal.Oversetunstruc⁃turedgridsmethodforviscousflowcomputations[J].AIAAJournal 2006 44(7) 1617⁃1623.[13]LoehnerR SharovD LuoH etal.Overlappingun⁃structuredgrids[R].AIAA2001⁃0439 2001.[14]LuoH SharovD BaumJ etal.Anoverlappingunstruc⁃turedgridmethodforviscousflows[R].AIAA2001⁃2603 2001.[15]RogetB SitaramanJ.Robustandefficientoversetgridassemblyforpartitionedunstructuredmeshes[J].JournalofComputationalPhysics 2014 260 1⁃24.[16]常兴华马戎张来平.并行化非结构重叠网格隐式装配技术[J].航空学报2018 39(6) 121780.ChangXH MaR ZhangLP.Parallelimplicithole⁃cuttingmethodforunstructuredoversetgrid[J].ActaAeronauticaetAstronauticaSinica 2018 39(6)121780(inChinese).[17]ChangXH MaR WangNH etal.Parallelimplicithole⁃cuttingmethodforunstructuredChimeraGrid[C].10thInternationalConferenceonComputationalFluidDy⁃namics(ICCFD10) 2018 Barcelona Spain.[18]BlomFJ.Considerationsonthespringanalogy[J].Inter⁃nationalJournalofNumericalMethodsinFluids 200032(6) 647⁃668.[19]BatinaJT.UnsteadyEulerairfoilsolutionsusingunstruc⁃tureddynamicmeshes[J].AIAAJournal 1990 28(8)1381⁃1388.[20]LiuXQ QinN HaoX.FastdynamicgriddeformationbasedonDelaunaygraphmapping[J].JournalofCompu⁃tationalPhysics 2006 211(2) 405⁃423.[21]RendallTCS AllenCB.Efficientmeshmotionusingradialbasisfunctionswithdatareductionalgorithms[J].JournalofComputationalPhysics 2009 229(17)6231⁃6249.[22]RendallTC AllenCB.Reducedsurfacepointselectionoptionsforefficientmeshdeformationusingradialbasisfunctions[J].JournalofComputationalPhysics 2010229(8) 2810⁃2820.[23]张来平段旭鹏常兴华等.基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J].空气动力学学报2009 27(1) 32⁃40.ZhangLP DuanXP ChangXH etal.Ahybriddy⁃namicgridgenerationtechniqueformorphingbodiesbasedonDelaunaygraphandlocalremeshing[J].ActaAerodynamicaSinica 2009 27(1) 32⁃40(inChi⁃nese).[24]张来平常兴华赵钟等.复杂外形静动态混合网02第6期常兴华等并行重叠/变形混合网格生成技术及其应用格生成技术研究新进展[J].气体物理2016 1(1)42⁃61.ZhangLP ChangXH ZhaoZ etal.Recentprogressofstaticanddynamichybridgridgenerationtechniqueso⁃vercomplexgeometries[J].PhysicsofGases 2016 1(1) 42⁃61(inChinese).[25]ZhangLP ChangXH DuanXP etal.Applicationsofdynamichybridgridmethodforthree⁃dimensionalmov⁃ing/deformingboundaryproblems[J].Computers&Flu⁃ids 2012 62 45⁃63.[26]HeX HeXY HeL etal.HyperFLOW Astructured/unstructuredhybridintegratedcomputationalenvironmentformulti⁃purposefluidsimulation[J].Pro⁃cediaEngineering 2015 126 645⁃649.[27]常兴华马戎张来平等.基于计算流体力学的 虚拟飞行 技术及初步应用[J].力学学报2015 47(4) 596⁃604.ChangXH MaR ZhangLP etal.StudyonCFD⁃basednumericalvirtualflighttechnologyandpreliminaryapplication[J].ChineseJournalofTheoreticalandAppliedMechanics 2015 47(4) 596⁃604(inChi⁃nese).[28]ZhangLP ChangXH MaR etal.ACFD⁃basednu⁃mericalvirtualflightsimulatoranditsapplicationincontrollawdesignofamaneuverablemissilemodel[J].ChineseJournalofAeronautics 2019(inpress).[29]ChangXH MaR ZhangLP etal.Furtherstudyonthegeometricconservationlawforfinitevolumemethodondynamicunstructuredmesh[J].Computers&Fluids2015 120 98⁃110.[30]马戎常兴华赫新等.流动/运动松耦合与紧耦合计算方法及稳定性分析[J].气体物理2016 1(6)36⁃49.MaR ChangXH HeX etal.Looseandstrongcou⁃plingmethodsforflow/kinematicscoupledsimulationsandstabilityanalysis[J].PhysicsofGases 2016 1(6) 36⁃49(inChinese).12。
移动网格方法及其应用共3篇移动网格方法及其应用1移动网格方法及其应用移动网格方法是一种基于时间的离散化方法,用于处理动态网格问题。
它是在传统网格方法基础上发展而来的,对于处理曲线和曲面等复杂几何体和流体运动问题具有很好的效果。
由于其可以在处理网格中动态添加或删除网格点,所以能够大大提高计算效率和精度,被广泛应用于流体力学、结构力学、人工智能等领域。
移动网格方法最基本的思想是将要解决的复杂问题分解成无数个较为简单的小问题进行求解,然后再把这些小问题组合在一起。
针对不同的物理问题,可以采用不同的网格规律。
为了使移动网格方法更加高效,可以在网格中嵌入其他算法,例如基于树的多级静态网格算法、基于稳定性的失笼技术等。
在流体力学中,移动网格方法是一种比较常用的数值计算方法。
它可以很好地处理复杂几何体内的流动现象,如弯管、尖锐物体等。
同时,移动网格方法在边界条件处理方面也有一定的优势,能够自动适应以及处理复杂边界,避免移动边界带来的边界条件更新问题。
基于移动网格方法的振荡器自可控平衡(OSC)引发了强烈的兴趣,它可以模拟OSC产生的不同模态。
除此之外,移动网格方法在其他领域也具有广泛的应用。
例如在结构力学中可以用于求解离散化问题、在人工智能中可以用于机器学习中的卷积神经网络处理问题、在大气科学中可以用于求解混合积分方程组等。
总之,移动网格方法是一种有效解决动态网格问题的方法,它可以很好地处理流体力学、结构力学和人工智能等领域中的问题。
随着计算机技术的不断提高和人们对于精度、效率的不断追求,相信移动网格方法将会得到越来越广泛的应用移动网格方法是一种广泛适用的数值计算方法,可以有效地解决动态网格问题,特别适用于解决流体力学、结构力学和人工智能等领域中的问题。
随着计算机技术不断提高,移动网格方法将会得到越来越广泛的应用。
未来,我们可以期待该方法在更多学科领域的发展和应用,为解决实际问题带来更多的便利和突破移动网格方法及其应用2移动网格方法及其应用随着科技的不断发展,人们对于数据分析的需求也日益增长。
结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。
Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。
现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。
在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。
其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。
数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。
在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。
这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。
三维约束Delaunay 四面体网格生成算法及实现一、引言网格生成是工程科学与计算科学相交叉的一个重要研究领域,是有限元前置处理的关键技术。
从总体上讲,网格生成技术分为结构化网格和非结构化网格两大类,其中,非结构网格能适应复杂外形且自动性高,逐渐成为数值求解偏微分方程的有效方法之一,它在有限元分析、科学计算可视化、生物医学和机器人等学科领域具有重要的应用价值。
当前,典型的非结构四面体网格生成算法主要有八叉树法(Octree )、前沿推进法(AFT)和Delauay法等。
较其它方法而言,Delauay 法具有成熟的理论基础和判断准则,更适用于三维实体的网格生成。
Delaunay 法最早由Delaunay 于1934 年提出,在此基础上,Chew、Ruppert 、Miller 和等学者在算法改良方面开展了大量研究。
目前,二维Delaunay 法的研究已趋成熟,但三维Delaunay 法在处理复杂实体的边界一致性问题仍是学者研究的热点。
本文在前人研究的基础上,采用约束Delaunay 四面体(Constrained Delaunay Tetrahedralization , CDT 法来处理指定区域的边界一致性问题,编制了基于CDT勺三维自适应四面体网格生成程序,并对工程实例进行了分析。
二、CDT定义及算法(一)CDT定义在三维区域的四面体网格生成中,四面体的外接球内部不包含任何网格顶点的四面体称为符合Delaunay 准则的四面体,如果一个点集的四面体生成中每个四面体都符合Delaunay 准则,则此四面体生成是点集的Delaunay 四面体生成。
在一定条件限定之下以Delaunay 准则为标准将空间分解成许多四面体称为约束Delaunay 四面体生成。
通常情况下,将约束Delaunay 三角(二维)/四面体(三维)生成的问题记为CDT。
(二)CDT存在性由于三维空间存在不能划分为四面体集合的多面体(如多面体),故给定一个用分段线性复合体(piecewise linear complexes , PLCs)描述的三维区域,的CDT可能不存在。