肝素钠及其杂质的在体积排阻色谱柱上分离图谱
- 格式:pdf
- 大小:375.03 KB
- 文档页数:4
问题肝素中多硫酸软骨素杂质的柱前衍生高效液相色谱分析赵峡;李广生;于广利;王金霞;王皓;孙淑萌;郑晨【摘要】基于肝素和多硫酸软骨素(OSCS)在单糖组成上的差别,建立了可用于肝素中OSCS检测的柱前衍生高效液相色谱法.采用3 mol/L三氟乙酸,将受污染的问题肝素在110 ℃下充氮封管水解4 h,在碱性条件下与1-苯基-3-甲基-5-吡唑啉酮进行衍生化反应,再采用C_(18)反相色谱柱,以0.1 mol/L磷酸盐(pH=6.7)缓冲液/乙腈(体积比82:18)为流动相,在流速1.0 mL/min,柱温25 ℃及紫外检测波长245 nm的条件下进行液相色谱分析.结果表明,肝素和OSCS的单糖色谱峰具有良好的分离度,测得2批问题肝素中OSCS杂质的质量分数分别为19.6%和28.3%.该方法具有良好的精密度和重现性,易于推广,适合于肝素中OSCS杂质的检测,并可用于硫酸软骨素A和C与硫酸软骨素B的区分和鉴别.【期刊名称】《高等学校化学学报》【年(卷),期】2010(031)003【总页数】5页(P479-483)【关键词】肝素;多硫酸软骨素;高效液相色谱;1-苯基-3-甲基-5-吡唑啉酮【作者】赵峡;李广生;于广利;王金霞;王皓;孙淑萌;郑晨【作者单位】中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003;中国海洋大学医药学院,海洋药物教育部重点实验室,青岛,266003【正文语种】中文【中图分类】其他Vol.312010 年 3 月向等学校化学学报CHEMICAL JOURNAI. OVCHINESEUNIVERSITIESNo.3 479~483问题肝素中多硫酸软骨素杂质的柱前衍生高效液相色谱分析赵峡,李广生,于广利,王金霞,王皓,孙淑萌,郑晨(中国海洋大学医药学院,海洋药物教育部重点实验室,青岛 266003 )摘要基于肝素和多硫酸软骨素( Oscs)在单糖组成上的差别,建立了可用于肝素中 OSCS 检测的柱前衍生高效液相色谱法.采用 3mol/L 三氟乙酸,将受污染的问题肝素在110℃ 下充氮封管水解 4h ,在碱性条件下与1一苯基一3-甲基一5- 吡唑啉酮进行衍生化反应,再采用 C ,。
GC及GC-MS方法检测肝素钠中溶剂残留杂质研究张相雷;许卉【摘要】目的:建立肝素钠中溶剂残留杂质的快速简便检测方法,并对未知杂质进行研究.方法:采用GC外标法对肝素钠中常见杂质进行检测,结合GC-MS进行合理的方法设计对出现的未知杂质做深入研究.结果:杂质各峰均能完全分离,检测限为0.3μg·mL-1,定量限为1.3μg·mL-1,在1.3~1200μg·mL-1范围内峰面积与浓度呈良好线性关系,准确度回收率为103.9%,中间精密度为3.7%,未知杂质经GC-MS确认为三甲基硅醇.结论:本方法兼顾检测的简便有效性及杂质的准确灵敏检出,对于肝素钠实际生产中溶剂残留的质量控制具有较高的实用价值.【期刊名称】《北方药学》【年(卷),期】2017(014)008【总页数】2页(P2-3)【关键词】肝素钠;GC-MS溶剂残留;乙醇;三甲基硅醇【作者】张相雷;许卉【作者单位】烟台大学药学院烟台 264005;烟台大学药学院烟台 264005【正文语种】中文【中图分类】R927肝素钠作为临床用量最大的抗凝血药物,广泛收载于各国药典,我国是肝素生产和出口大国[1]。
肝素钠的主要成分为高度硫酸化的糖胺聚糖[2],其生产工艺随着近年来的不断改进,使用的溶剂逐渐集中于对人体相对更安全的乙醇。
《中国药典》检测方法使用内标物正丙醇进行内标法检测,检测的杂质除乙醇外,还包括乙醛、甲醇和丙酮[3]。
而在实际生产过程中,乙醇使用前进行质量控制,其中含有的乙醛、甲醇量极低,丙酮基本不能检出。
因此在产品的工艺质量研究及半成品检测中采用GC外标法检测乙醇残留量,简便快速,对出现的未知杂质使用相同条件结合GC-MS进行鉴定在肝素钠溶剂残留杂质研究上具有较强实用性,并可作为药典方法的有益补充。
1.1 实验仪器:气相色谱仪Glarus500(PerkinElmer仪器公司);GC-MS气质联用QP-2010(岛津仪器公司);电子天平BT125D(赛多利斯科学仪器);氮氢空一体机NHA300(北京中惠普分析技术研究所)。
肝素钠GansunaHeparin Sodium■本品系自猪或牛的肠黏膜中提取的硫酸氨基葡聚糖的钠盐,属黏多糖类物质,是由不同分子量的糖链组成的混合物,由α-D-氨基葡萄糖(N-硫酸化,O-硫酸化,或N-乙酰化)和O-硫酸化糖醛酸(α-L-艾杜糖醛酸或β-D葡萄糖醛酸)交替连接形成聚合物,具有延长血凝时间的作用。
按干燥品计算,每1mg中抗Ⅱa因子效价不得少于180 IU,抗Xa因子效价与抗IIa因子效价比为0.9~1.1。
■[修订]■核酸取本品,加水溶解并稀释制成每1ml中含4mg的溶液,照紫外-可见分光光度法(附录ⅣA)测定,在260nm的波长处,吸光度不得大于0.10。
■[增订]■蛋白质取本品适量,精密称定,加水溶解并稀释制成每1ml中约含30mg的溶液,作为供试品溶液;另取牛血清白蛋白对照品适量,分别加水制成每1ml中各含0、10μg、20μg、30μg、40μg与50μg的溶液,作为对照品溶液,照蛋白质含量测定法(附录ⅦM 第二法)测定。
按干燥品计,含蛋白质不得过0.5%。
■[增订]■有关物质取本品适量,精密称定,加水溶解并定量稀释制成每1ml中约含100mg的溶液,涡旋混合至完全溶解,取0.5ml,加入1 mol/L盐酸溶液0.25ml和25%亚硝酸钠溶液0.05ml,振摇混匀,反应40分钟,加入1mol/L氢氧化钠溶液0.2ml终止反应,作为供试品溶液;取肝素对照品250mg,加水2ml,涡旋混匀至完全溶解,作为对照品溶液(1);取对照品溶液(1)1.2ml,加2%硫酸皮肤素对照品0.15ml与2%多硫酸软骨素对照品0.15ml,作为对照品溶液(2);取对照品溶液(2)0.1ml,加水稀释至1ml,作为对照品溶液(3);取对照品溶液(1)0.4ml,加水0.1ml,混匀,加1 mol/L盐酸溶液0.25ml和25%亚硝酸钠溶液0.05ml,振摇混匀,反应40分钟,加1mol/L氢氧化钠溶液0.2ml终止反应,作为对照品溶液(4);取对照品溶液(2)0.5ml,加1 mol/L盐酸溶液0.25ml和25%亚硝酸钠溶液0.05ml,振摇混匀,反应40分钟,加1mol/L氢氧化钠溶液0.2ml终止反应,作为对照品溶液(5)。
¹本文为国家自然科学基金资助项目(No.30471649)、江苏省/六大人才高峰0基金(No.20050203)作者简介:王相栋(1980年-),男,硕士研究生,技师,主要从事脂蛋白与动脉粥样硬化发病机制关系的研究,E -mail:southern -lake@;通讯作者及指导教师:张春妮(1963年-),女,博士,主任技师,硕士生导师,主要从事脂蛋白与动脉粥样硬化发病机制关系的研究,E -mail:zchunni27@ 。
#免疫学技术与方法#自制肝素亲和柱分离纯化载脂蛋白H 及其抗体制备与鉴定¹王相栋 张春妮 汪俊军 田 迎(南京大学医学院临床学院南京军区南京总医院检验科,南京210002)中国图书分类号 R392-33 文献标识码 A 文章编号 1000-484X (2008)10-0931-05[摘 要] 目的:自制肝素-琼脂糖6B 亲和柱提纯人血清载脂蛋白H (apoH),免疫制备多克隆抗体,为大量制备与进一步研究做准备。
方法:利用间接还原胺化法制备亲和层析柱,并优化反应条件。
运用高氯酸沉淀、离子交换及亲和层析从人血清中纯化抗原,制备兔源多克隆抗体。
结果:自制亲和柱肝素结合量约5mg/g (介质体积)。
纯化的抗原经SDS -PAGE 鉴定分子量约50kD,无杂带;16种氨基酸组成分析结果与报道一致。
多克隆抗体与购置的国外抗体一样,在进行E LISA 与do-t E LISA 时与小牛血清白蛋白有交叉反应;但在变性且还原的条件下,Western blot 结果显示无交叉反应。
结论:自制亲和柱成本低、亲和性好、肝素结合稳定,用之分离纯化得到了高纯度apoH;兔多克隆抗体用于检测血清中载脂蛋白H 含量时需进一步纯化。
[关键词] 亲和层析;肝素;载脂蛋白H;抗体;纯化与鉴定Isolation and purification of apolipoprotein H with heparin affinity column and preparation and identification of ant-i ApoHWANG Xiang -Dong,Z HANG Chun -Ni,WANG Jun -Jun,TIAN Ying.Department o f Clinic Laboratory ,Jinling Hos pital,Clinical School o f Medicine,Nanjing University ,Nanjing 210002,China[Abstract] Objective:To puri fy apolipoprotein H (apoH)from fresh human serum with heparin affinity column sel-f p repared and to prepare polyclonal antibody ant-i ApoH.Methods:Affinity colu mn was made by reaction of indirect reductive amination and operating conditions were op timized and thei r effects were investigated.T he apolipoprotein H antigen was purified from human serum by methods of perchloric acid precipitati on,ion ex change and affini ty chromatography.The polyclonal an tiseru m against the antigen was obtained by immuning rabbi ts.Re -sults:The amount of heparin i mmobilized on the synthesized gel was 5mg/ml (medium).Molecular weight of the purified anti gen was about 50kD by SDS -PAGE and no other bands were seen,the percentages of 16amino acids were consis ten t with that reported previously.In ELISA and do-t ELISA,the polyclonal antibody displayed a cross reaction with bovine seru m albumi n,while no such reaction was observed in result of West -ern blot under reduced and denatured condition.C onclusion:The sel-f prepared affinity colu mn costs very low,but has excellen t affini ty perfor -mance and stable heparin linking,and high purified apoH can be obtained by using the reagent.Polyclonal antibody needs to be further purified before detectin g serum apolipoprotei n H.[Key w ords] Affini ty chromatography;Heparin;Apolipoprotein H;Antibody;Purification and identi fication载脂蛋白H (apolipoprotein H,apo H )又称B 2-糖蛋白Ñ(B 2-glycoprotein I,B 2-GP I),是一种由肝脏合成的血浆糖蛋白,分子量50kD,由326个氨基酸残基组成。
肝素钠与其类似物杂质的高效分析由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。
而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。
为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。
然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。
赛分科技近日开发了一种离子交换色谱柱——Glycomix™ SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。
图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix™ SAX上的分离色谱图色谱条件Column: Glycomix™ SAX, 4.6 x 250 mmGuard column: Glycomix, 4.6 x 50 mmMobile phase:A: 0.04% NaH2PO4, pH 3.0B: 0.04% NaH2PO4+14% NaClO4, pH 3.0Flow rate: 0.22 mL/minGradient: 20% - 90% B in 60 minutesWavelength: 202 nmColumn temp: 25 ℃Injection volume: 10 mLPressures: 9.5 barSample: 20 mg/mL Heparin sodium1 mg/mL Dermatan sulfate (DS)1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O在Glycomix™ SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。
HPLC法测定肝素钠原料中EDTA―2Na的残留肝素钠是从猪小肠黏膜中提取精制的含有硫酸氨基葡聚糖的钠盐,属于不均一的多糖分子,通常分子量在3000~30000道尔顿,临床常作为注射剂使用。
肝素钠本身带负电荷,能干扰血凝过程的许多环节,其作用机制比较复杂,主要通过与抗凝血酶Ⅲ(AT-Ⅲ)结合,而增强后者对活化的Ⅱ、Ⅸ、Ⅹ、Ⅺ和Ⅻ凝血因子的抑制作用。
具体涉及阻止血小板凝集和破坏,妨碍凝血激活酶的形成;阻止凝血酶原变为凝血酶;抑制凝血酶,从而妨碍纤维蛋白原变成纤维蛋白。
肝素钠作为原料药,中国药典中明确规定了其重金属限度的检测,但由于其来源于动物组织提取,实际生产工艺中均要增加去除重金属的工艺。
目前多采用添加EDTA-2Na来螯合重金属,形成水溶物后,经分级沉淀步骤去除螯合物。
EDTA-2Na收载于FDA《非活性组分指南》,可用于非注射和注射给药制剂,会与人体内的钙离子形成螯合物,引起低血钙等症状。
由于肝素钠生产过程中使用EDTA-2Na去除重金属,所以在终产品中可能残留EDTA-2Na,对其进行检测有重要的意义。
1仪器与材料11仪器TG332A型分析天平(湘仪天平仪器设备有限公司);LC-15C 型高效液相色谱仪(日本岛津);LC-20AD型紫外检测器(日本岛津);1.2材料硫酸铜(分析纯,天津市永大化学试剂有限公司);EDTA-2Na (分析纯,天津市科密欧化学试剂有限公司);肝素钠(注射级,批号:HM120401、HM120402、HM120403,石家庄市协和药业有限公司)。
水为自制纯化水(二级反渗透法)。
2方法与结果2.1色谱条件色谱柱:十八烷基硅烷键合硅胶填料WondaSilC18(200mm×46mm×5μm);流动相:0025mol/l硫酸铜溶液(用稀硫酸调节pH至30);检测波长:254nm;流速:10ml/min;检测温度:室温;进样量:20μl。
2.2溶液的制备2.2.1空白溶液的制备精密量取004mol/l硫酸铜溶液10ml,置50ml 量瓶中,加水稀释至刻度,摇匀,即得。
体积排阻色谱(sec)柱用的仪器概述说明以及解释1. 引言1.1 概述体积排阻色谱(Size Exclusion Chromatography,SEC)是一种常用的分离和测定高聚物、生物大分子以及纳米材料的方法。
它基于溶剂流动时样品在柱填充物中的渗透性,通过这种渗透性差异来实现对不同大小分子的分离。
SEC在生命科学、化工、材料科学等领域具有广泛的应用前景。
本文旨在对体积排阻色谱所使用的仪器进行概述说明,并解释其工作原理和关键组件。
同时,我们将介绍体积排阻色谱柱的结构、选择和优化方法,以及对样品准备、流动相选择和优化、参数设置和调整等方面给出操作注意事项。
1.2 文章结构本文包括引言、体积排阻色谱(SEC)柱介绍、体积排阻色谱仪器装置及关键组件说明、体积排阻色谱分析方法和操作注意事项以及结论部分。
在引言中,我们将对文章内容进行概述说明,并明确文章结构。
接下来,我们将详细介绍SEC柱的原理、结构以及选择和优化方法。
然后,我们将对体积排阻色谱仪器装置中的压力控制系统、流速控制系统和柱温控制系统进行说明。
在接下来的部分,我们将介绍体积排阻色谱分析方法所涉及的样品准备与预处理要点、流动相选择和优化方法以及参数设置和调整技巧。
最后,我们通过结论对整篇文章进行总结。
1.3 目的本文的目标是全面介绍体积排阻色谱所使用的仪器,帮助读者了解仪器的工作原理和关键组件,并提供一些操作须知。
通过阅读本文,读者将对体积排阻色谱有更深入的了解,并能够在实验中正确选择和使用相关设备,从而更好地开展SEC 柱分析工作。
2. 体积排阻色谱(SEC)柱介绍:2.1 SEC柱原理:体积排阻色谱(Size Exclusion Chromatography,简称SEC)是一种基于分子尺寸差异的色谱技术。
该技术利用特殊设计的SEC柱实现对溶液中分子的分离和纯化。
其原理是根据样品中溶质分子在柱填料孔隙中的扩散速度而进行分离。
大尺寸分子由于无法进入较小的孔隙而沿柱床快速流过,而小尺寸的分子则能进入较小孔隙并在其中被滞留更长时间,因此产生了不同尺寸分子之间的强迫排阻现象。
AuthorsXiaomi XuYuna LiAiyan CuiHaiying ChenSepax Technologies, Inc.5 Innovation Way Newark, DE 19711 USA High Resolution Analysis of Heparin and Heparin-like Impurities on Glycomix TM–an Anion Exchange ColumnGlycan SeparationAbstractAnalysis of heparin is challenging due to its heterogeneity, both in its size distribution and charge variance. Moreover, its impurities usually have properties that resemble heparin which makes it difficult to distinguish heparin and its impurities using analytical methods. To effectively separate heparin from its impurities, including naturally occurring impurities during manufacturing process (e.g., dermatan sulfate DS) and non-native contaminant from adulteration (e.g., oversulfated chondroitin sulfate OSCS), U.S. Pharmacopeia (USP) published a chromatographic method to identify heparin and heparin-like impurities using ion-exchange liquid chromatography. However, current commercially available ion-exchange column barely meets USP separation resolution criteria; the situation calls for a new stationary phase which can improve the resolution. Sepax has recently developed an ion-exchange column – Glycomix TM SAX. It grafts charged and a certain level of hydrophilic functional groups to polymer-based resin. Here we present the high efficiency separation of highly chargedglycans.IntroductionHeparin has been widely used as ananticoagulant or anti-thrombotic agent. It is a complex mixture of sulfated glycosaminoglycans (GAGs), which are highly negatively charged. During its extraction process from mammalian tissue (such as pig intestine), other polyanionic GAGs can co-purify with heparin since they share heparin-like properties [1]. Onerepresentative example of such impurities is dermatan sulfate (chondroitin sulfate B). Oversulfated chondroitin sulfate (OSCS) was identified as a non-native contaminant, which can induce severe side effects even death. The most recent heparin sodium monographpublished by U.S. Pharmacopeia [2] details the analytical method that heparin manufacturers must follow to ensure the quality of their heparin products. This application note reports the separation of heparin, DS and OSCS using Glycomix TM SAX with USP recommended method. The performance of Glycomix SAX is also discussed in comparison to competitor D’s column separation efficiency.ExperimentalHPLC systemAgilent 1200 HPLC with binary pumpIon-exchange columnsGlycomix TM -SAX (4.6 x 250 mm, P/N 901665-4625)Glycomix TM -SAX guard column (4.6 x 50 mm, P/N 901665-4605)Chemicals and ReagentsHeparin sodium salt and Dermatan sulfate (DS or chondroitin sulfate B) were purchased from Sigma-Aldrich. Oversulfated chondroitin sulfate (part no. 1133580) was purchased from U.S. Pharmacopeia. Monobasic sodium phosphate and sodium perchlorate were purchased from EMD. All solutions were made with Milli-Q water.LC MethodMobile phase:A: 0.04% NaH 2PO 4, pH3.0;B: 0.04% NaH 2PO 4+ 14% NaClO 4, pH3.0Gradient: 20% B to 90% B in 60 minFlow rate: 0.22 mL/min Column temperature: 25 °C Detection: UV 202 nm Injection volume: 10 μL Pressure: 10 barResultsFollowing the conditions listed on USP heparin sodium monograph, Figure. 1 demonstrates the separation of heparin from its impurities, dermatan sulfate (DS) and oversulfatedchondroitin sulfate (OSCS). The three peaks, according to elution order, are identified as DS, heparin sodium salt and OSCS, the concentration of which are 0.2 mg/mL, 20 mg/mL and 0.2 mg/mL, respectively. The resolutions are 3.8 between DS and heparin and 5.8 between heparin and OSCS; both are well beyond the USP resolution requirements, which are 1.0 and 1.5, respectively. Glycomix TM column shows the separation resolution much higher than that of Competitor D column, which is 1.1 and 1.8[3]. It was also stated in competitor D’s literature [3] that dermatan sulfate may be unresolved from heparin at >20 mg/mL concentrations as the heparin peak starts eluting from the column within 2 min after the dermatan peak. Heparin loading is not a concern on Glycomix TM column.The high resolution between heparin and dermatan sulfate also enables identification of any unknown impurities that elutes between heparin and dermatan sulfate. As shown in Figure. 2, there is an impurity peak eluted after dermatan sulfate, which is marked by an arrow on the graph. Comparing it with each single standard, it is found that this unknown impurity peak, which may be chondroitin sulfate, is also present on heparin sodium salt (Sigma-Aldrich) sample. Figure 3 is another example of a real heparin injection product analysis, which shows the presence of OSCS.Glycomix ™ can be used i n the quantitative analysis of heparin and its impurities. Figure 4 shows the calibration curve with differentheparin and impurity loadings over concentration range from 0.5 mg/ml to 10 mg/ml for heparin and from 0.25 mg/ml to 4 mg/ml for OSCS. The R 2 values exceed 0.99 for both analytes (R 2heparin =0.9997; R 2OSCS =0.9972).Figure 1. Elution profile of standard solution, containing 0.2 mg/mL dermatan sulfate (DS), 20 mg/mL heparin sodium and 0.2 mg/mL oversulfated chondroitin sulfate (OSCS).Figure 2. Comparison of standard solution (1 mg/mL DS, 20 mg/mL heparin and 1 mg/mL OSCS) and one heparin injection product provided by an undisclosed drug company.Figure 3. Comparison of standard solution (0.2 mg/mL DS, 20 mg/mL heparin and 0.2 mg/mL OSCS) and another heparin injection product provided by an undisclosed drug company, a different source than that on Figure 2.Figure 4. Heparin calibration curve over the concentration range from 0.5 mg/ml to 10 mg/ml, OSCS from 0.25 mg/ml to 4 mg/ml.ConclusionIt has been demonstrated that with careful control of surface chemistry, high resolution separation of heparin and its impurities is successfully achieved on Sepax Glycomix TM column. Glycomix TM column is well suitable for quality control for heparin products, as well as quantitative analysis due to its high sensitivity.Reference1.Advances in the separation, sensitive detection, and characterization of heparin and heparinsulfate. Anal Bioanal Chem (2009) 393: 155-1692.Heparin Sodium, Pharmacopeia Forum2009, 35 (5), 1-4.3.Determination of oversulfated chondroitin sulfate and dermatan sulfate in heparin sodium usinganion-exchange chromatography with UV detection. Dionex Application Note 235. Ordering InformationFor more information on Glycomix TM products, please visit Sepax website: or contact us at 1-877-SEPAX-US。