第二章 行列式作业活页
- 格式:docx
- 大小:142.61 KB
- 文档页数:6
线性代数(本)习题册行列式-习题详解(修改)(加批注)||班级:姓名:学号:成绩:批改日期: ||第 1 页共 18 页行列式的概念一、选择题1.下列选项中错误的是( ) (A)b a dcd c b a -= ; (B)ac bd d c b a =; (C)d c b a d c d b c a =++33; (D)dc b ad c b a -----=. 答案:D2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值().(A)保持不变;(B)可以变成任何值;(C)保持不为零;(D)保持相同的正负号.答案:C二、填空题1.ab ba log 11log = . 解析:0111log log log 11log =-=-=ab abb a ba . 2.6cos3sin6sin3cosππππ= . 解析:02cos 6sin 3sin 6cos 3cos 6 cos 3sin6sin3cos==-=πππππππππ3.函数x x xxx f 121312)(-=中,3x 的系数为; x x xx xx g 21112)(---=中,3x 的系数为 . 答案:-2;-2.||班级:姓名:学号:成绩:批改日期: ||第 2 页共 18 页4.n 阶行列式n D 中的n 最小值是 . 答案:1.5. 三阶行列式113420321-中第2行第1列元素的代数余子式等于 . 答案:5.6.若02182=x,则x = . 答案:2.7.在n 阶行列式ij a D =中,当i<="" =="" a="" i="" ij="" j="" l=",则D" p="" 时,),,2,1,(0n="" 答案:nn="">8.设a ,b 为实数,则当a = ,b = 时,010100=---a b b a . 解析:0)()1(1010022=+-=--=---b a ab ba a bba故0,0==b a .三、解答题1.用行列式的定义计算.(1)1100001001011010;解:原式=100010101)1(1010000011)1(14121++-?+-?||班级:姓名:学号:成绩:批改日期: || 第 3 页共 18 页110010100-=--=(2)000000h g f e d c b a . 原式=000000gf e d b hf e dc a - =00000g f bd hf df e c a +-=bdfg adfh -2. 设行列式λλλ01010101-=D , 3512321132=D ,若21D D =,求λ的值.解:由对角线法则,得()()0,11221=-+=D D λλ若21D D =,则()()0112=-+λλ于是1-=λ或1.四、证明题1.(略)行列式的性质一、选择题1.设行列式x x xD 0101011-=, 1133512322=D ,若21D D =,则x 的取值为 ( ).(A)2,-1; (B)1,-1; (C)0,2; (D)0,1.答案:B2.若3333231232221131211==a a a a a a a a a D ,||班级:姓名:学号:成绩:批改日期: ||第 4 页共 18 页则3332333123222321131213111525252a a a a a a a a a a a a D +++==(). (A)30; (B) -30; (C)6; (D)-6.答案:C二、填空题1.若三阶行列式D 的第一行元素分别是1,2,0,第三行元素的余子式分别是8,x ,19,则x = . 解析:1820190,4x x ?-+?==. 2.2016201420182016 = .解析:4202220162014222016201420182016===.3.行列式cb dc a bcb aD =,则312111A A A ++= . 解析:312111A A A ++0111==cb c acb .4.行列式xx x x x D 31213231232154-=的展开式中,4 x 的系数为;3x 的系数为 .解析:xx x xx x x x x x D 312131232321531213231232154--=-=xx x x 3121312512585103215---= 含4x ,3x 的项仅有主对角线上元素之积项,故4x ,3 x 的||班级:姓名:学号:成绩:批改日期: || 第 5 页共 18 页系数分别为15,-3.三、解答题1.计算下列行列式 .(1)3214214314324321;解:各行加到第一行,得原式=32142143143211111032142143143210101010= =160400004001210111110123012101210111110=---=------.(2)4444333322225432154321543215432111111;解:原式=(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.(3)49362516362516925169416941;原式=02222222297531694113119711975975316941==.||班级:姓名:学号:成绩:批改日期: || 第 6 页共 18 页(4)000000xy y x y x x y ;原式=xy x yx x xyy y xy 0000000-- =22222)(y x xyyx x x y y x y --=-. (5)xy z zx y yz x111;原式=)(0)(01x z y x z x y z x y yzx------ =))()((11))((x z z y y x yzx z x y ---=---.(6)200012000000130012000101--;原式=31012010140131201014200001301201012---=--=-- =2031124=---.(7)43211111111111111111x x x x ++++;||班级:姓名:学号:成绩:批改日期: || 第 7 页共 18 页解:原式=432111110010011x x x x x x x ---+ =43121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.2.设4322321143113151-=D ,计算44434241A A A A +++的值. 其中)4,3,2,1(4=j A j 是D 的代数余子式.解:44434241A A A A +++61111321143113151=-=. 3. 已知1142113110111253------=D ,求41312111M M M M +++.解:41312111M M M M +++=41312111)1(1)1(1M M M M --?+--?=1141113*********-------=0.4.计算下列n 阶行列式.||班级:姓名:学号:成绩:批改日期: ||第 8 页共 18 页(1)2111解:原式=211121111 +++n n n =2 11121111)1( +n=110010111)1(+=+n n .(2)xy yyy x y yy y x yy y y x;解:原式=[]xy y yy x y yy y x yy n x1111)1(-+ =[]yx y x y x y n x ----+ 00000001111)1(=[]1)()1(---+n y x y n x .(3)),,2,1,0(0100101111021n i x x x x i n=≠.||班级:姓名:学号:成绩:批改日期: || 第 9 页共 18 页解:原式=nni ix x x x00000011101211∑=- =)1(121∑=-ni in x x x x .四、证明题1.设a ,b ,c 是互异的实数,证明0111333=c b a c b a的充分必要条件是a+b+c=0.证明:33333333001111a c ab a ac a b a c b ac ba----= =3333a c ab ac ab ----=222211))((a ac c a ab b a c a b ++++--=))()((22ab ac b c a c a b -+--- =))()()((c b a b c a c a b ++---=0,由于a ,b ,c 是互异的实数,故要上式成立,当且仅当a+b+c=0.2.证明4+2324323631063a b c d a a b a b c a b c da a ab a bc a b cd a a b a b c a b c d +++++=++++++++++++ 证明:左边43322102320363a b c d r r a a b a b cr r a a b a b c r r a a b a b c-+++-+++-+++433210002003a b c d r r a a b a b ca ab r r a a b-++++-+4430002000a b c d a a b a b cr r a a a b a+++-=+||班级:姓名:学号:成绩:批改日期: ||第 10 页共 18 页=右边克莱姆法则一、选择题1.方程组=++=++=++1,1,1321321321x x x x x x x x x λλλ, 有唯一解,则( ).(A)1-≠λ且2-≠λ;(B) 1≠λ且2-≠λ;(C) 1≠λ且2≠λ; (D) 1-≠λ且2≠λ.解析:由克莱姆法则,当0)1)(2(1111112≠-+=λλλλλ,即1≠λ且2-≠λ,选B .2.当≠a ()时,方程组??=+-=++=+02,02,0z y ax z ax x z ax 只有零解. (A) -1 ;(B) 0 ;(C) -2 ;(D) 2. 解析:由克莱姆法则,当0)2(212012100121210≠-=--=-a a a a a a 即2≠a ,选D .三、解答题1.用克莱姆法则下列解方程组.(1)??=+-=+-=-+;32,322,22z y x z y x z y x解: 03112221121≠=---=D ,由克莱姆法则知,此方程组有唯一解,132231221=---=D ,||班级:姓名:学号:成绩:批改日期: ||第 11 页共 18 页61322311212=-=D ,93323312213==D ,因此方程组的解为11==D D x ,22==D Dy ,33==DD z .(2)..23342,223,3232,124321432143214321=-++=+++=+-+=-++x x x x x x x x x x x x x x x x 解:043 342123121321121≠=---=D由克莱姆法则知,此方程组有唯一解,833421232213311211=---=D , 233221221213211112-=---=D ,23241231233211213=--=D ,223422231313211214=-=D . 因此方程组的解为211==D D x ,2122-==D D x ,2133==D D x ,2 144==D D x . 2.判断线性方程组=-+=+-=-+0285,042,022321321321x x x x x x x x x 是否有非零解?解:因为系数行列式285122421285421122----=---=D||班级:姓名:学号:成绩:批改日期: || 第 12 页共 18 页=030596042122180960421≠-=--=----, 所以,方程组只有零解.3.已知齐次线性方程组=+-=++=-+02,0,0321321321x x x x x kx x kx x 有非零解,求k 的值.解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即32101101111211112k k k kk k --+--=-- =)21)(1()1(32k k k +++- =0)4)(1(=-+k k 解得,k =-1或k =4.4.当μ取何值时,齐次线性方程组=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解?解:由齐次线性方程组有非零解的条件可知,0111213142=------μμμ,解得3,2,0=μ.第一章综合练习一、判断题1. n 阶行列式n D 中的n 最小为2.( ╳ )2. 在n 阶行列式ij a D =中元素),2,1,(L =j i a ij 均为整数,则D 必为整数.( √ )||班级:姓名:学号:成绩:批改日期: ||第 13 页共 18 页3.413223144433221144413332232214110000000a a a a a a a a a a a a a a a a -=.( ╳ ) 二、选择题1.若11131--+=x x x D ,211122-+=x x D ,则1D 与2D 的大小关系是( ).(A)21D D <; (B)21D D >;(C)21D D =;(D)随x 值变化而变化. 答案:C2.行列式{})2,1,1,,,(-∈d c b a dc ba 的所有可能值中,最大的是( ).(A) 0; (B)2; (C)4; (D)6. 答案:D三、填空题1.?40cos 20sin 40sin 20cos = .解析:-??=?40sin 20sin 40cos 20cos 40cos 20sin 40sin 20cos2160cos ==. 2.若y y x x y x -=-1122,则x+y = . 解析:由y y x x y x -=-1122,得xy y x 222-=+ 即0)(2=+y x ,从而x+y =0. 3.已知111,0112==yx x ,则y = . 解析:由111,0112==yx x ,得x =2,x -y =1,从而y =1||班级:姓名:学号:成绩:批改日期: ||第 14 页共 18 页4. 若222222222642531C c B b A a c b a ++=,则2C 化简后的结果等于 . 解析:242312=-=C . 5.设xx x x x x f 111123111212)(-=,则4x 的系数为;3系数为 .解析:当f (x )的主对角线的4个元素相乘才能得出4x ,系数为2;含3x 的项只能是44332112,,,a a a a 的乘积,系数为-1. 答案:2,-1.6.设0123411222641232211154321=D ,则(1)333231A A A ++= ;(2)3534A A + ;(3)5554535251A A A A A ++++ . 解析:0)(23534333231=++++A A A A A 0)()(23534333231=++++A A A A A 于是0333231=++A A A ,03534=+A A .5554535251A A A A A ++++1111111222641232211154321=||班级:姓名:学号:成绩:批改日期: ||第 15 页共 18 页01111133333641232211154321==. 即0555*******=++++A A A A A .四、解答题1.计算下列行列式.(1)4434433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++;解:原式=14131214141312131413121214131211y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x ---+---+---+---+=000000000014131214131211=------+x x x x x x y y y y y y y x .(2)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++. ||班级:姓名:学号:成绩:批改日期: ||第 16 页共 18 页(3)2007000002006000200500020001000.解:原式=!2006)1(2007220052006?-?=!2007-2.已知123452221127312451112243150D ==, 求(1)434241A A A ++;(2)4544A A +. 解:27)(21114544434241=++?+?+?A A A A A0)()(24544434241=++++A A A A A得9434241-=++A A A ,184544=+A A . 3.计算下列n 阶行列式.(1)nn n n n n n D222333222111=;解:(利用范德蒙行列式计算)1122133321111!--==n n n Tn n n n n D D[])1()2()24)(23)(1()13)(12(!--------=n n n n n !2)!2()!1(! --=n n n .||班级:姓名:学号:成绩:批改日期: ||第 17 页共 18 页(2)211121112 ;解:原式=211121111 +++n n n =2121111)1( +n=110010111)1(+=+n n .(3)mx x x x m x x x x mx D n n n n ---=212121解:将第2列,L ,第n 列分别加到第一列,并提取第一列的公因子,得mx x mx x x x m x m x x x x x m x x x D n n n n n n n --+++--+++-+++=221221221mx x x m x x x m x x x n n n n ---+++=22221111(mm m x x x n ---+++= 0101001)(21121))((---+++=n n m m x x x||班级:姓名:学号:成绩:批改日期: || 第 18 页共 18 页(4)nn n n n a a a a a a b b b b b D 1322113210000000-----=(其中n i a i ,,2,1,0 =≠)解: 122110000000)1(-+----=n nnn a a a a b D122211221000000------+n n n n n a a a a a b b b b a 121-+?=n n nnn D a a b a a a==∑=n i i in a b a a a 121 . 三、证明题1.试证:如果n 次多项式n n x a x a a x f +++= 10)(对n+1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数作业第二章行列式答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式中,含且带负号的项为_____.3.设则4.行列式的展开式中, 的系数是_____. 2二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ()√2. 设=则=()×3. 设= 则()×4. ( ) √5. ()×6. ()√7. 如果行列式D的元素都是整数,则D的值也是整数。
()√8. 如果行列D的元素都是自然数,则D的值也是自然数。
()×9. ()× 10. =n!()×三、选择题1.行列式的充分必要条件是 ( ) D(A)(B)(C)(D)或 32.方程根的个数是( )C(A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)(B)(C)(D)4. n阶行列式的展开式中,取“–”号的项有()项 A(A)(B)(C)(D)5.若是五阶行列式的一项,则的值及该项的符号为( )B(A),符号为正;(B),符号为负;(C),符号为正;(D),符号为负6.如果,则 = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M7.如果,,则 ( )C(A)8 (B)(C)(D)24四、计算题1.计算解:=1602. 计算.解:===高等代数第五次作业第二章行列式§5—§7一、填空题1. 设分别是行列式D中元素的余子式,代数余子式,则 02. 中元素3的代数余子式是 .3. 设行列式,设分布是元素的余子式和代数余子式,则 = ,= .4. 若方程组仅有零解,则 .5. 含有个变量,个方程的齐次线性方程组,当系数行列式D 时仅有零解.二、判断题1. 若级行列试D中等于零的元素的个数大于,则D=0 ()√2. ()√3. ()√4. ()√5. ()√6. ()×7. ()√三、选择题1. 行列式的代数余子式的值是( )D(A)3 (B)(C)1 (D)2.下列n(n >2)阶行列式的值必为零的是 ( )D(A)行列式主对角线上的元素全为零(B)行列式主对角线上有一个元素为零(C)行列式零元素的个数多于n个(D)行列式非零元素的个数小于n个3.若,则中x的一次项系数是( )D(A)1 (B)(C)(D)4.4阶行列式的值等于( )D(A)(B)(C)(D)5.如果,则方程组的解是( )B(A),(B),(C),(D),6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3四、计算题1. 计算D=解:方法1:==方法2:将行列式按第一行展开,有:===2. 计算解:3. 计算解:4. 计算解:5. 解方程:=0.解:=====五、证明题1.证明:证明:2.设,求证:,其中为将中第列元素换成后所得的新行列式。
一、填空题1.3<m <5是方程+=1表示的图形为双曲线的________条件x 2m -5y 2m 2-m -6.解析:当3<m <5时,m -5<0,m 2-m -6=(m +2)·(m -3)>0,∴该方程表示的图形为双曲线.当方程表示的图形为双曲线时,则(m -5)(m 2-m -6)<0,即(m -5)(m +2)(m -3)<0,解得m <-2或3<m <5.∴3<m <5是方程+=1表示的图形为双曲线的充分不必要条件x 2m -5y 2m 2-m -6.答案:充分不必要2.双曲线ky 2-8kx 2+8=0的一个焦点为(0,3),则k =________.解析:将ky 2-8kx 2+8=0化为标准方程kx 2-y 2=1.∵一个焦点为(0,3),∴焦k 8点在y 轴上,即方程可化为-=1,∴a 2=-,b 2=-,又∵c =3,y 2-8k x 2-1k 8k 1k ∴--=9,∴k =-1.8k 1k 答案:-13.已知双曲线-=1的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1x 26y 23到直线F 2M 的距离为________.解析:F 1(-3,0),设M (-3,y 0),代入双曲线方程求出|y 0|=,即MF 1=,6262又F 1F 2=6,利用直角三角形性质及数形结合得F 1到直线F 2M 的距离d ===.MF 1·F 1F 2MF 21+F 1F 262×664+3665答案:654.F 1、F 2为双曲线-y 2=-1的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°x 24,则△F 1PF 2的面积是________.解析:∵|PF 1-PF 2|=2,∴PF +PF -2PF 1·PF 2=4,即F 1F -2PF 1·PF 2=4,2122∴20-4=2PF 1·PF 2,∴PF 1·PF 2=8.∴S △F 1PF 2=PF 1·PF 2=4.12答案:45.已知双曲线的焦点在y 轴上,且a +c =9,b =3,则双曲线的标准方程是________.解析:∵b =3,∴c 2=a 2+9,又∵a +c =9,∴c =5,a =4,∴双曲线的标准方程是-=1.y 216x 29答案:-=1y 216x 296.椭圆+=1与双曲线-=1有相同的焦点,则a 的值是________.x 24y 2a 2x 2a y 22解析:∵双曲线的方程为-=1,∴a >0,∴焦点在x 轴上.又∵椭圆的方程x 2a y 22为+=1,∴a 2<4.∵a +2=4-a 2,即a 2+a -2=0,∴a 1=-2(舍去),a 2=1,故a x 24y 2a 2=1.答案:17.F 1、F 2是双曲线-=1的两个焦点,P 在双曲线上且满足PF 1·PF 2=32,x 29y 216则∠F 1PF 2=________.解析:设∠F 1PF 2=α,PF 1=r 1,PF 2=r 2.在△F 1PF 2中,由余弦定理得(2c )2=r +r -2r 1r 2cos α.212∴cos α===0.(r 1-r 2)2+2r 1r 2-4c 22r 1r 236+64-10064∴α=90°.答案:90°8.椭圆+=1(m >n >0)与双曲线-=1(a >0,b >0)有相同的焦点F 1、F 2x 2m y 2n x 2a y 2b ,P 是两条曲线的一个交点,则PF 1·PF 2的值为________.解析:如图,根据椭圆的定义,知PF 1+PF 2=2,∴(PF 1+PF 2)2=4m .①m 根据双曲线的定义,得|PF 1-PF 2|=2,a ∴(PF 1-PF 2)2=4a .②由①-②,得PF 1·PF 2=m -a .答案:m -a9.与双曲线-=1有公共焦点,且过点(3,2)的双曲线的标准方程是__x 216y 242______.解析:法一:设双曲线的标准方程为-=1,x 2a 2y 2b 2∵双曲线过点(3,2),∴-=1.①2(32)2a 222b 2∵c =2,∴a 2+b 2=(2)2.②55由①②得Error!故所求双曲线的标准方程为-=1.x 212y 28法二:设双曲线方程为-=1(-4<k <16),将点(3,2)代入,得x 216-k y 24+k 2-=1,解得k =4或k =-14(舍去),所以双曲线的标准方程为-=(32)216-k 224+k x 212y 281.答案:-=1x 212y 28二、解答题10.设双曲线与椭圆+=1有相同的焦点,且与椭圆相交,一个交点A 的x 227y 236纵坐标为4,求此双曲线的方程.解:设双曲线的方程为-=1(a >0,b >0),由题意知c 2=36-27=9,所以y 2a 2x 2b 2c =3.又点A 的纵坐标为4,则横坐标为,于是有15Error!解得Error!所以所求双曲线的标准方程为-=1.y 24x 2511.如图所示,在△ABC 中,已知AB =4,且内角A ,B ,C 满足2sin A +sin C =2sin 2B ,建立适当的平面直角坐标系,求顶点C 的轨迹方程.解:如图所示,以边AB 所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-2,0),B (2,0).设△ABC 三内角A ,B ,C 所对边长分22别为a ′,b ′,c ′.由正弦定理===2R 及2sin A +sin C =2sin B 得2a ′+c ′=2b ′a ′sin A b ′sin B c ′sin C ,即b ′-a ′=.c ′2∴CA -CB =AB =2<AB .122由双曲线的定义知点C 的轨迹为双曲线的右支.∵a =,c =2,∴b 2=c 2-a 2=6.22∴顶点C 的轨迹方程为-=1(x >).x 22y 26212.设点P 到点M (-1,0),N (1,0)的距离之差为2|m |,到x 轴、y 轴的距离之比为2,求m 的取值范围.解:设点P 的坐标为(x ,y ),依题意,得=2,即y =±2x (x ≠0) |y ||x |①.因此,点P (x ,y ),M (-1,0),N (1,0)三点不共线且PM ≠PN ,则|PM -PN |<MN =2.因为|PM -PN |=2|m |>0,所以0<|m |<1.因此,点P 在以M ,N 为焦点的双曲线上(除去与x 轴的两个交点),故-=1(y ≠0) x 2m 2y 21-m 2②.将①代入②,得x 2(1-m 2)-4m 2x 2=m 2(1-m 2),解得x 2=.因为1-m 2(1-m 2)1-5m 2m 2>0,所以1-5m 2>0,解得0<|m |<,即m 的取值范围为∪.55(-55,0)(0,55)。
第二章行列式习题解答1. 决定以下9级排列的逆序数,从而决定它们的奇偶性:1) 134782695;解•吒13478269为=0 + 4 +0 + 0+ 4 +2 + 0 + 0 = 10 偶排列.2) 217986354;解:吃179 眈54)二1+0 + 4+5+4+3+0+1 = 18 ,偶排列;3) 987654321;解:璋876別艾1) =8 + 7+&+5 + 4+F+2 + 1 = 26 ,偶排歹【」.2. 选择'与上使1)1274巧陆9成偶排列;解:•与上一个为3,另一个为8,而咲1刀43两9) = 2+1+1+1 = 5 是奇排列,由对换的性质因此有H;2 )庇荻4斬成奇排列.解:与七一个为3,另一个为6,而^32564897) = 1 + 2 + 2 = 5是奇排列,因此有心工宀6.3. 写出把排列1羽孑5变成排列25341的那些对换.解:124站卩* )214笳(也)25431 仲)比鈔414. 决定排列巾-—心的逆序数,并讨论它的奇偶性.解:1与其他数构成卫个逆序,2与其他数构成汽_2个逆序,…山-2与其他数构成2个逆序,芒一1与兀构成1个逆序,故巩対住_1)…21)二3_1)十@_2) +…+2+1二^当"毗或"滋+ 1(上为正整数)时,排列为偶排列;当"处+2或n-Ak^3为正整数)时,排列为奇排列.5. 如果排列 w’j 二的逆序数为:,排列厂二的逆序数是多解: 中任意两个数码=:与丁必在而且仅在两个排列°:二'"■或**-1…中之一构成逆序,月个数码中任取两个的不同取法有”2个,因此两个排列的逆序总数为戈,所以排列…F 的陨"1)_总逆序数为Z6.在6级行列式中,心円三j 汽这两项应带有什么符号?严小吟心皿)-(_[严",因此项计吻恥%带正号.7.写出四级行列式中所有带有负号并且包含因子一心的项.解:因为:匚上-',因此所求的项为解:1)该行列式含有的非零项只有m/JAi …叫七%1,带的符号为CU 2 ,值为57』,因此原行列式等于(T 」3创.1)0 0 *-0 1・-2III 11 1 1 1« 11 1 1 fe ■ 0 卫一 1 •… 0 0n 0 ■■* 0 0; 2)010... 0 0 0 2 ...0 ...丹-1n Q 0 ...73)0 …0 0 -200 ■ a «•■即i a « i » i i fe■M -1・■- 0 0 0 0・■- 0 0 «_^1+^23^31^42 -8.按定义计算行列式:少?,因此项 旳尹引龟护屏张务厶带正号;-£l 11LJ 23«32a 44?七护34 迎小2)该行列式含有的非零项只有①曲曲心小卅池,带的符号为值为「2,因此原行列式等于df.3)该行列式含有的非零项只有%”宀"叫%,带的符号为(7丄,值为,因此原行列式等于卜1)2创.9. 由行列式定义证明:证明:行列式的一般项为I = = 二,列指标•「S 1只能在1,2,3,4,5中取不同值,故*「】中至少有一个要取3,4,5中之一,而' 厂恥宀从而每一项中至少包含一个零因子,故每一项的值均为零,因此行列式的值为零.10. 由行列式定义计算2A1 21 x 1 -13 2工11 1 1 工中/与/的系数,并说明理由.解:行列式元素中出现兀的次数都是1次的,因此含屏项每一行都要取含齐的,因此含/项仅有%如宀,其系数为2,符号为正,h的系数为2.类似的含尸项仅有知灼金%,其系数为1,符号为负,代的系数为-1 .11. 由1 ・-• 11 1 ■■■ 1.. .=Q■♦V1 1 ・• 1证明:奇偶排列各半证明:行列式每一项的绝对值为 1行列式的值为零,说明带正号项的个数 等于带负号项的个数•由定义,当项的行指标按自然顺序排列时,项的符号由列1)由行列式定义,说明'「是一个卞―〔次多项式;2)由行列式性质,求'的根.解:1在行列式’〔中只有第一行含有T ,出现T 最高次数为次,由为互不相同的数可得其系数不为零,因此'•是一个・】次多项式2)用■,,,r^--分别代*,均出现了两行相同,因此行列式为 0.即宀为—的全部根13.计算下面的行列式: 246 427 327 10W543 443 八-342 721 621小、1) ; 2)3 11112 3 413 112 3 4 1113 13 4 123) 1113;4) 4 12 39指标排列的奇偶性所确定, 奇排列时带负号,偶排列带正号•因此奇偶排列各半1…x"11N-1 …闻円>)二1s-l…%■ ■ ■!1+ ■ ■« I »■ * II I ■■…a n-l其中•心m.i 为互不相同的数.12.设1+A 1 1 1 (a+2)2(a+3a11-工 1 1 4+1)2 0 +卯@+卯1 11+》 1 W+1尸(亡+卯(心9+1尸(八疔5) 1 11I ; 6)解:1该行列式中每行元素的和为1000的倍数,第2列与第三列相差100,23136)246 427 3271000 427 327 6 71000 100 327 1014 543 4432000 543 44孑 -—2000 100 443 -342721 €211000 721 6211000 100 621327116 二-294x12 2945)显然当二=■'或」时均有两行元素相同,因此行列式为 0.当' 时1H - x 1 11 If1 c 4 - x~\ 'i0 01] -x11七 、厂5〕■-X0 ]c 4 +z 1< i 0 --X0 0 3y11 g 1 P = 123( ) 0 y1 5 -严 :3 00 y11 1i-卅肿y 1-7y Ay -y【口十 3十2尸 ⑺十浙十 1 牝十4 6口十夕(*+D a 辿+2尸 叶卯*22) + 1 4b+4 6b + 9(T尸 (小尸L 32^+14亡+ 4 &+9d 2 3+1尸3 +計 &+卯茲十1 4d +4 阳+9= 10" y工十丁1 yx + y=2(孟+刃 1 Z -F JJ盂xy1 x y1 尹二 2(盂+尹)0 xo —y-y = 2(X +/)[-X :+X X -7)]= ~2(^3 1116 11111111111 13 116 3 11卜13 11 厂宀J 0 2 0 0 113 1J= 2,3,4 6 13 1113 1 i = 2,3,4' 0 0 2 011136 11311130 0 0 22 3 412 3 43 4 113 4 1=104 1 2 14 121 2 3112^ 12 3 41 23<411-30 11-3=10p 2 ・2 -20 0-44|o -1 -1 -10 0 0-41 1 3272 1 4431 1 6211 0 0 1-1 0 y丸+屏处十龙2(x+y)310 1+(710 0 0 = 160i+cc^aa +b2(a 十B 十u )c+a戊+BA.+勺= 2(d| +坷+5)码+歼证明: 為+勺如+S2(角+务+勺)勺+码+ i + cc+a=2口]+妬 + 匕1 百[+(3]巧十毎十勺勺+包15.算出下列行列式的全部代数余子式:12 140-1211 -1 20 0 2 13 21poos; 2)1 4b+亡 c + txa +ba b e右L +百1 号+% 如4玄 =2 旬玄巧-14.证明: 鸟+勺耳+勺巴十坊也®巾加+1 266 _6 -6-1 2 10 2 10 -1 14i = 0 2 1=-6;血=- 0 2 1 =0 ;J 4O = 0 0 1 =00 0 30 0 30 031 42 1=6;0 -1 24+ =- 00 2 =0 ;4J ! =-0 0解: 1)2 0 0 1 4 2 1 0 31 =-12;爲立=0 n-4B == °; ■41 = 1》4盘=-^3 = —5-^34 = Q 斗].=乙 &2 = Q' A B = L ;&4 = 741 =2)= 3^ = --1 21 4a +b的+Nb ca 6 c妬C L =2 a Y 如 5%巾宓5%加十1 2 2^+1 22^+1 2 a 十打+疋=2^} +妬+巧 k +如+巾111 11 卩 02 1 1 -*厂©* 0 1 2 2 5 1 0 43 2 1 | |斗 11112 2-5=1.42) 31213 4 1 3171丄1 5 4 6 4 1 2J2110 n 1 — 2 — — 2 — — —2 -3221 -1 | 4-1 0-111|31 17 11 -132 16 10 13 121° 1 2 -1 41 2 -1 41 2 一]4 2 a 1 2 :2 0 1 2 12-6 1 2 1 一 3 5]2 二一 1 3 51 2 二 -16 5 1 2 33 1 2: 1 3 00 00 0 0 0 2 1 n 3521 0 3 52-5 035-1 1 02 0 -5 1 2 0 -90 3-5237 -11 2-9 -3 =一 0 0 -3 =-483.3 555 -12 5= -36 -3 -5511 2n -1 11 12 -123 2 1 0 二 1-1 0 1 21兀21 3 02 0 -1 0 12 3-1 1 32131 10 14 16 18-7-10 3-16 = 114-1918 0 -7-W17.计算下列乜级行列式:J. 221 2 -2-12 2 13 71 10-1 1 2 16-16 = -12 -19 8 180 -1-10 0 12176 133)&心1 22 22 2223» ■ i• II222112 3 -■垃一1溶ClCI-12o …-24)■ ■ ■I■■ 42 2a■»a■ IIw « ■+ I *Ji75)+ 1■I I *4- i I C I +0 …bl*-11- ra解1)按第一列展开得x F 0t)0X... 00 y00 (00)0 龙y000X... 00 X y0 (00)■ I -K■ * I ■ 4 I»■I- 4 I »■I I 4-冥■ 41» II-■11+I ■ 4■ -K I十(-1严》■ * II- fiE ■ I-■ I «I »■ 4■ 40 0 0* ■ ■■X y00… x y仃00 …y0y0 0¥«l>0X10… o工L-i y00y 也可以按定义计算,非零项只有两项及'—…「八值分别为"和厂,符号分别为+和「,因此原行列式1?,T2)解:当阅i时,行列式等于问■対;当"2时当吃二三时,从第二列起,每一列减去第一列得:1)X y I〕 (00)Q y… o00 0c… K yy ri c 0■ ■■原行列式a】—J】-打口1 —血g —^2cjj tij 0勺一外旳-每a2~\幻一还=S1 - 也)01—爲)1也■■■ 耳]乃… G1心一烧 ■■■ X”'j-m …(S 為一=(壬再-i-L■ 4 B * ■■ 4 I« ■ I-■ * II I- 4# I II 3- I]八• 耳-附0 …-W3=(备-觀)(-计工 1_的冷 …G抵 … 召 1 ■ V亏_朋 …兀■ » 1 1 « ■« ■ »—S x iH■ _枕 1 七—枕 …丹H ■ n ■ ■ ■■ ■ ■… 召一翩鬥一懣勺 …码一规d-1从第二列起,每一列都加到第一列然后提取因子得3)解: 1 2 2 …2122 (2)10 0 ... 0 2 2 2 (2)1 00 0122 (2)223 -2 二 10 1 0二—1 0■ ■ ■• ■ V ■■ ■■ 4 ■ » ■ V ■ ■■ » ■ ■ ■'■ ■■ '■■ * ■« ■ » » ■ ■ 2 22 … •吃]…丹一210 0 (2)两行后化为三角形得: 然后交换解: 4)1,2 从第二行起每一行减去第一行, 123•… 用- 1V-423 …73-11 -1 0 ■- 0.5—1 -10 …0 0 0 2 -2・・・0 =2-2…0 …用—11—料« ■ |>0 ■> 1 10 ■ 1 V■> 1 10 … 1 « ■ N-1■ i V1一冷2列起每一列都加到第 然后按第一列展开得到:列, 1 也可以除第 12 -122行外,3 0 -2「行都减去第2行,然后化为三角形计算.崔一 10 05)解:从第» 1二&連2…吐(附一龙―);j-1康------ (]二 2,3"■,聊 +1)证明:从第2列起,每一列的-倍加到第一列即可得:二 1 用_壬_% 11 (1)11 -1j>l 葩1的 0 ■ 0 01 ■1 巾0 B ■1・・・ 0 二 0 0 禺 ■ ■■ 0 1 0 0・・■|> 0■ 0• ■0 1■-叫 证明:当“°时结论显然成立,当疋八时,第一行的工加到第二行,然后第\_行的工加到第三行,依次类推可得:18. -1 2 0-2耳一 1证明:-1 0■0 X -1甲0…0・・・X ・■-0 0 0a2 ■r0 0 (X)2. 00 ■■--1=F 4-df H _J x a_1+-- +(j 1A + a 0;小+"学…笋+禺)"+%严i w+飾证法二:按最后一列展开即可得.证法三:按第一行展开再结合数学归纳法证明•证法四:从最后一行起,每一行乘以X 加到上一行,然后按第一行展开可得:X0… 0 %A0 0-1 X 0 …hX0 …盘]a -1 X …-1 X 0■ ■ ■ ■ ■二・■ ■* ■1- ■■* * ■« H■ ■ ■ ■■ 1 1 ■ ■■a 0 0 *■'0 0 0 '•*a0 0 …「1Q0 0 …-1兀+J1IJ0 0 … 0 孟"+|2”]乳"1+■■・+(3]工+口0 -1 00 … 0 茂 +务+…的 0 -1 0 … 0 9 —□»—3X ++ …眄H ■ ■ 11 « ■ - *B■ ■ ■■0 D 0 0■■ 9 V ]X0 0 …-10… ■ || -1 ■ b■ ■a 0 0 …0 0 0…叫■ ■ ■>3x 00…0丸 00 -1乳…4H■0 0 0 0 00…T x 十氐」A 0=(—l)w+l(X™ +込_]才】+…+ fif[北+引) -1) 二(-1严*0 + )(-1) "_1 = 十…+硯丸+% 就+ $ afi 0 … 0 0 1 ar+ ap … 0 00 1 口十0… 0 0 ar —Q"■ ■ 1 ■ ■ ■ ■ Hl H ■ ■ ■ in H ■ ■ a- Q ' 0 0 0 … C£-\- jS3) C1 0 0 … 1 少+ fl0 解:原行列式按第一行展开得:'.「+广―-一―’丁,一•因此有 即J是以 ■ 宀-为首项,以二为公比的等比数列.因此有 & _类似有必%二才.当“0时,解得H a-^ . 证法二:按第一行展开找到递推关系,再结合数学归纳法加以证明 1 2cos C& 1 cos a 10 4) 证明:对行列式的级数用第二数学归纳法证明 _ cos a 1 1 2cosa *2 =2 cos 4 一 1 = 2d ,因此结论成立. 假设当级数小于T 时结论成立,对咛级行列式匚按最后一行展开得: D K = 2cos^r - D S _2 = 2 cos a - cos(^-l)a-匕加山 一2)口=2 cosc<>s[(?;- l)dU-iT]=-l)a- sin asinfw- l)dr = cos na由数学归纳法,结论成立• 注意:因为主对角线上第一个元素为 曲口,其它主对角线上元素为 2l:<:;-,本行列式按第一行展开得到的低级数行列式与原行列式形式不同,无 法得到与 *兀 之间的递推关系,而按最后一行可得到递推关系 1 1 -I-心1a 1二甸孔…碍门+卫—)■ i-ia. 证明:从第二行起,再三角化 1 +盘]1 1 …11 + 位1 11 (1)1 1亠①1 …1_口] 叫 0 … 0 1H 1- 1 1 ]+也… 1 ■#1 ■ ■ = _筍 0 ■ ■ ■ … 0 II '■ i11• # I■ 15一口1 00 ■… 仇行减去第一行先化为爪形行列式, 11+&1+ E 竺 z a 2 0=0+^1 + S —)^3-^ "曲他…耳(1十艾丄)2-1 [7^19.用克拉默法则解下列线性方程组:z! J L j —x、十3兀m 2工4 二b” 3ij 一3叼+ 3x?+ 2工斗二5 , 3x{-x2—x5+ 2X4-3t 予冋_花+3也一筍=4;巧 + 2 貫2 + 3xj —2 珥—6,2& -J?3 - 2也一窃=&3%! + J L5-A S+二4,2町-3工2 +2兀§ +筍=_&扎+ 2心-2屁十4兀-x. = -1,2xj- +3X3一4旺 + 2^ = 8 彳弓站+阳-电+ 2^4一心=3,4x:十3x立+4延十2耳十2心=-2f 兀一两一阿+2A4-弓召=-3,解:1)系数行列式= -29 一1 0 =-70,3 1 -1出二弓24同二3纽£ =64&厶二■艾4£= ・6J&322-1 3 2 F3 2 3-33 2 3-1 20 2 ■40 ~ 03 -1 3 -1 3 -1P-1-32-11-311 2-3 21 -1故方程组的解为:5开i + 6勺=1Xj + 5% 4 陆=0© + 5衍-F6A4=也+ 5X4十&屯=0& +%5 - 1 2.优质文档颅=虫 =L 呵=佥 =2,旳=佥 =-1曲=—--2故方程组的解为:d d d &3)d=2A, 口二込 禺=■弓苑 £ =-迥 £ = 1私 ^ = 312?故方程组的解为:& = 4再= -14內=7耳=7f x_5 = 13.2 -二艰-2D 3)二 9(厶-二 27(2 - 2耳)=243r爲=-1145f ^3 =703^4= -395, & = 212?定的数,用克拉默法则证明:存在唯一数域 卩上的多项式/W =护Z 十应丘月+…+q_i使炖)二虬2 1,2严皿j6 0 06 0 0 01 5 6 05 6 0 0] 1 5 61 5 6 00 1 50 1 5 62二3畑,2><艾二血0 0C i = 1507,5 65证明:设畑二占+占+・十“,由/(%)=鸟得4)51ij 00 65 1 00 0 0 6 5口 - 2D* = 243?D - 3D 二 32,W57 . 1145 229 70379 6劭宀—^65 一 133P*1320.设丄宀…: 是数域』 '中互不相同的数,665中任一组给洛鶯…也是数域两二212& =10 100 =20 4001000 18000 =6x1出1系数行列式- 0 03100-0.05400-0.0890030 9Q01 12A =12xl0\391000 -3 1 1sooo= ltf-5 2 4= -5000,27000-8 3 9^ = 1800, £=70 +勺』丹+…+町龙-+叼皿:=b n.把它看成关于''m ■"' --r::的线性方程组,其系数行列式为一范德蒙德行列式, 由互不相同可得系数行列式不为0,由克拉默法则,方程组解唯一,即满足…]的多项式唯一.21.设水银密度;与温度厂的关系式为h二口©十厘]t +僅/2 +殍*由实验测定得以下数据:t0n C icru 20" C30" Ch13.6013.5713.5513.52求'_ ' 1 ' 1时水银密度(准确到小数2位).解:将实验数据代入关系式■■+」得:「%=13.60,術+10^ +100^2 +1000^3 = 13.57,砌 + 20d| + 400码+ 8000^ —13 55a a+ 30<a1+900a2 +27000 碍=13.52整理后得一'以z满足的方程组为:10^+100^+1000^ = -0 03, ;20^jj+400tZj + 8000lOj =—0.05,30^ + 900d2+ 27000^ = -0 08.故陽=1.5x10^,^ 二一3.3x10』2700013.6-4.2x10-^+ 1.5xW"l i;l-3.3xl0V.当心1兀,"1艮阪当“轲c时,"门乖健康文档放心下载放心阅读。
第二章行列式
第一节 二阶与三阶行列式
一、填空题 1.2315-=- _______;2
2a a b b = ______. 2.124031142--= _______;a b c
b c a c a b
=_____.
二、解答题
1.用对角线法则计算下列行列式
(1)cos sin sin cos αα
αα-=
(2)201
141183
--=-
2.解方程111
12 1.16
x x =
解:
第二节 n 阶行列式的定义及性质 & 第三节
行列式的计算
一、填空题
1.243324=--_____;1
24
031142
--=__.
2.若,a b 均为整数,而=_____;=_______0
00,10001
a b b a a b -=- .
3.设A 为3阶方阵,若||3A =,则|2|A =____.
4.123
456789
的代数余子式21A 应表示为____. 5.ij 1
23456784A 2348
6789
若阶行列式为;为其代数余子式,13233343210412_______A A A A +++= . 二、解答题
1.利用行列式的性质,计算下列行列式:
(1)3215332053
7228472184.
解:
(2)1111
1111
11111111
---
解:
.
(3)1324
2131
32142101
解:
.
2.利用行列式展开定理,计算下列行列式:
(1)1214
0121
10130131
-.
解:原式
.
(2)5
48723547
2856
393--------.
解:原式
.
,
(例讲)3. 设2
14211253
1335111
D =-,试求14243444A +A +A +A 和11121314M +M M M ++. 解:;
.
第四节 克拉默法则
一、填空题
1. 若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003332321
31323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为____. 2. 已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩
仅有零解,则参数λ满足.
3. 当时,02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩
仅有零解。
二、解答题
1.用克拉默法则求解下列线性方程组.
(1)1231231
232431,5229,310.x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩
解:
2.试问λ取何值时,齐次线性方程组123123123230,
3470,20
x x x x x x x x x λ-+=⎧⎪-+=⎨⎪-++=⎩有非零解.
解:
4. 试问λ、μ取何值时,齐次线性方程组1231231230,
0,20
x x x
x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解.
解:
6.λ取何值时,非齐次线性方程组
⎪⎩⎪⎨⎧=-+=+-=-+1
610522
321321321x x x x x x x x x λλ有惟一解;
解:
第五节 逆矩阵公式
一、填空题
1.设1234A -⎛⎫
= ⎪-⎝⎭
,则A 的逆矩阵是.
2.已知⎪⎪⎪⎭
⎫
⎝⎛
-=200012021B ,则=-1B __________________ .
3.若A 为3阶方阵,且2A =,*A 为A 的伴随矩阵,则2A -=__,1A -=__,*A =___.
4. 设三阶方阵A 的行列式det()3A =,则A 的伴随矩阵*A 的行列式*det()A =_____.
5. 若,A B 都是方阵,且2,1A B ==-,则1A B -=_____.
二、解答题
1.已知3421A ⎛⎫= ⎪⎝⎭
,求1A -.
解:
2.已知121342541A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
,求1A -. 解:
3.设A 是三阶方阵,且1,27A =求1(3)18)A A -*-.
解
6.设矩阵300141203A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,已知2AB A B =+,利用逆矩阵求B . 解:。