材料的变形
- 格式:pptx
- 大小:1.07 MB
- 文档页数:89
高分子材料的变形行为高分子材料是一种由长链分子组成的材料,具有许多独特的物理和化学性质。
它们广泛应用于各个领域,如塑料制品、纺织品、医疗器械等。
在使用过程中,高分子材料的变形行为对其性能和应用起着至关重要的作用。
一、弹性变形高分子材料在受到外力作用时具有一定的弹性变形能力。
当外力作用消失后,材料会恢复初始形状。
这种弹性变形主要是由于高分子材料内部的分子链的弹性回弹作用引起的。
高分子材料的分子链通常由相互之间的化学键连接,分子间的键长和键角可以通过变形来适应外力作用。
这种弹性变形可以使高分子材料具有良好的回弹性和柔韧性。
二、塑性变形高分子材料在受到较大的外力作用时,会发生塑性变形。
与弹性变形不同,塑性变形是指材料在外力作用下无法完全恢复其初始形状。
这是因为分子链在受到外力作用时会发生断裂或重新排列,使材料的内部结构发生改变。
塑性变形可以使材料产生更大的变形量,但也会降低材料的强度和刚度。
三、蠕变蠕变是高分子材料长期受到静态外力作用时发生的一种缓慢的变形现象。
这种变形主要是由于分子链的滑移和分子之间的长程运动引起的。
在高温和高应力的条件下,分子链会相互穿越和滑移,导致材料发生形变。
蠕变会导致高分子材料的尺寸和形状发生改变,影响其应用效果。
四、破坏行为高分子材料在受到较大外力作用时会发生破坏。
这种破坏行为可以分为脆性破坏和韧性破坏两种。
脆性破坏是指材料在受到外力作用后,突然发生断裂或破碎。
这种破坏主要是由于高分子材料内部的缺陷、孔隙或分子链的断裂引起的。
韧性破坏则是指材料在受力作用下逐渐发生塑性变形,并最终发生断裂。
不同材料的破坏行为取决于其分子结构、晶体结构和外力作用方式等因素。
五、变形行为的调控为了提高高分子材料的性能和延长其使用寿命,可以通过调控材料的变形行为来实现。
例如,可以通过添加增韧剂来提高材料的抗拉强度和韧性,减少塑性变形的发生。
也可以通过控制材料的分子链长度和分子间交联程度来改变材料的弹性行为。
名词解释(1)加工硬化(变形强化):当金属外加应力超过屈服强度后,随着变形程度的增加,变形的抗力也增加,要继续变形,必须增加外力,这种现象就叫加工硬化。
(2)颈缩:当应力达到抗拉强度时,试样不在均匀伸长,而是试样局部地方截面开始变细。
(3)位错宽度:(4)孪晶变形:晶体在切应力作用下沿着一定的晶面和晶向,在一个区域内发生连续顺序的切变,变形导致这部分的晶体取向改变了。
(5)多滑移:在多个滑移系上同时或交替进行的滑移。
(6)交滑移:晶体在两个或者多个滑移面上沿同一滑移方向进行的滑移。
(7)发生多系滑移时,在两个相交滑移面上运动的位错必然会互相交截,原来一直线位错经过交截后就会出现弯折部分,如果弯折部分仍在滑移面上,就叫扭折,若弯折部分不再滑移面上,就叫割阶。
(8)派纳力:在理想晶体中位错在点阵周期场中运动时所需克服的阻力(9)纤维组织:金属经过冷变形后,等轴状晶粒沿受力方向拉长,其中的夹杂物或者第二相也随之拉长。
(10)形变织构:金属在形变时,晶体的滑移面会移动,使滑移层逐渐转向与拉力轴平行。
原来的各个晶粒是任意取向的,现在由于晶粒的转动使各个晶粒的取向趋于一致,这就形成了晶体的择优取向。
(11)回复:在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶体某些变化。
(12)再结晶:冷变形金属由拉长的变形晶粒生成无畸变的新的等轴晶粒的过程。
(13)二次再结晶:(14)热变形:金属在再结晶温度以上的加工变形。
(15)蠕变:材料在高温下的变形不仅与应力有关,而且和应力作用的时间有关。
(16)应变时效:低碳钢经过少量预变形后,如果去载后立即再行加载则不会出现明显的屈服平台;若在室温下放置一较长的时间或在低温下经过短时加热后在进行拉伸试验,则屈服点又复出现,且屈服应力提高。
(17)第二相强化:当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。
(18)固溶强化:合金在形成单向固溶体后,变形时的临界切应力都高于纯金属,这叫做固溶强化。
金属材料强度及变形性能分析简介:金属材料的强度和变形性能是决定材料使用和应用范围的重要性能指标。
强度指材料抵抗外力破坏的能力,而变形性能则表征材料在外力作用下的形变特性。
本文将重点分析金属材料的强度和变形性能,并对其影响因素进行深入探讨。
一、金属材料的强度分析:1. 抗拉强度:金属材料的抗拉强度是指材料在拉伸力作用下抵抗破坏的能力。
抗拉强度取决于材料的原子结构、晶粒尺寸、晶体缺陷等因素。
常见的金属材料如钢、铝、铜等具有不同的抗拉强度。
2. 屈服强度:屈服强度是金属材料在拉伸过程中,从线性弹性阶段到非线性弹性阶段的临界点。
屈服强度是材料首次发生可见塑性变形的应力水平。
屈服强度反映了金属材料在外力作用下的抗变形能力。
3. 延伸率和断裂伸长率:延伸率和断裂伸长率是反映材料延展性能的重要参数。
延伸率指的是材料在断裂前的拉伸程度,断裂伸长率是指材料在断裂时相对于原始长度的变化程度。
较高的延伸率和断裂伸长率意味着材料具有良好的可塑性和变形能力。
二、金属材料的变形性能分析:1. 弹性变形:弹性变形是指金属材料在外力作用下具有恢复性的形变。
弹性变形区域内,材料的形状通过去除外力而恢复到初始状态。
弹性变形的特点是应变与应力呈线性关系,且应力和应变之间的关系服从胡克定律。
2. 塑性变形:塑性变形是指金属材料在外力作用下发生的不可逆形变,形变后无法完全恢复到初始状态。
金属材料的塑性变形可以通过冷加工、热加工等方式实现。
塑性变形主要由材料内部的晶格滑移、位错等现象引起。
3. 硬化和回弹:硬化是指金属材料在塑性变形过程中变得更加坚硬和脆性的现象。
在连续塑性变形中,材料会经历晶格被位错锁定的过程,导致材料的硬度增加。
回弹是指金属材料在去除外力后,部分形变恢复到原始状态的现象。
三、影响金属材料强度和变形性能的因素:1. 材料的组成和制备工艺:不同元素的添加和不同的制备工艺会对金属材料的强度和变形性能产生重要影响。
2. 晶体结构和晶粒尺寸:晶体结构的不同会导致材料的强度和塑性发生变化,较大的晶粒尺寸能够提高材料的强度,但会降低塑性。