当前位置:文档之家› 绝对值练习题含答案

绝对值练习题含答案

绝对值练习题含答案
绝对值练习题含答案

b c a 1

0一、选择题

1.下列说法中正确的个数是()

(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)?两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身.

个个个个

2.若-│a │=,则a 是()

以上都不对

3.若│a │=8,│b │=5,且a+b>0,那么a-b 的值是()

或或或或-13

4.一个数的绝对值等于它的相反数的数一定是()

A.负数

B.正数

C.负数或零

D.正数或零 <0时,化简||3a a a

结果为() 23

二、填空题 6.绝对值小于5而不小于2的所有整数有_________.

7.绝对值和相反数都等于它本身的数是_________.

8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.

9.比较下列各对数的大小(用“)”或“〈”填空〉

(1)-35_______-23;(2)16;(3)-(-19)______-|-110

|. 10.有理数a,b,c 在数轴上的位置如图所示:

试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________.

三、解答题 11.计算 (1)││+│+│;(2)|-8

13|-|-323

|+|-20| 12.比较下列各组数的大小:(1)-112与-43(2)-13与; 13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.

14.如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-?cd 的值.

15.求|110-111|+|111-112|+…|149-150

|的值. 16.化简│1-a │+│2a+1│+│a │(a<-2).

17.若│a │=3,│b │=4,且a

18.已知-a”依次排列出来. 答案:

一、二、6.±4,±3,±三、11.(1);(2)32;12.(1)-

12<-43

(2)-13<; 13.∵│a-3│+│-b+5│+│c-?2│=0,

又│a-3│≥0,│-b+5│≥0,│c-2│≥0.

∴a-3=0,-b+5=0,c-2=0,

即a=3,b=?5,c=2,

∴2a+b+c=13

14.由条件可知:a+b=0,cd=1,x=±1,

则x2=1,

∴x2+(a+b)x-cd=0?

15.原式=

1

10

-

1

11

+

1

11

-

1

12

+…+

1

49

-

1

50

=

1

10

-

1

50

=

2

25

16.∵a<-2,

∴1-a>0,2a+1<0.

∴│1-a│+│2a+1│+│a│=1-a+(-2a-1)+(-a)=-4a 17.∵│a│=3,│b│=4

∴a=±3,b=±4

又a

则a=±3,b=4

>c>0>d>b

带字母绝对值运算

带字母绝对值运算 这类题目相对来说比较难,因为没有数字,纯字母运算,初中生来说目前还未适应,但这是数学的趋势,早晚要适应,若不能适应,高中数学肯定学不好。但是其实也不难,掌握了技巧就行,下面详细讲解带字母的绝对值运算题目的解题技巧。 首先看一下绝对值的运算: a ? =? ? a a>0 -a a<0 只要是绝对值的题目,就按照上面的定义来计算就是了。即正数的绝对值是其本身,负数是其相反数。 两个字母的绝对值运算: 一、两个数相加: 1、两个正数相加,直接去绝对值。 a b a b +=+; 2、两个负数相加,取相反数 b a0 () a b a b +=-+ 3、一正一负相加,正的绝对值大直接去绝对值,负的绝对值大取相反数。 (1)正的绝对值大直接去绝对值

b a 0 a b a b +=+ (2)负的绝对值大取相反数 b a 0 ()a b a b +=-+ 二、两个数相减: 大的减小的取正号,直接去绝对值符号; 小的减大的取负号,取相反数。 大小看在数轴的位置,右边的数大于左边的数。 b a 0 大的减小的: b a b a -=- 小的减大的:()a b a b -=-- 三、应用的小技巧 1、负号和减号是一样的,正号和加号是一样的 如:a b b a -+=- 2、绝对值内整体去负号不影响计算结果 如:()a b a b a b --=-+=+ 例题: 若用A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,如图所示,

已知a <c <0,b >0, (1)a c b a c a -+--- (2)a b c b a c -+---+-+ (3)2c a b c b c a +++--- B O C A 解析: (1)a c b a c a -+--- 这道题全是相减的,这是最容易的。从图上可知a <c <b ,所以 ()a c a c -=-- b a b a -=- c a c a -=- 所以该题答案为 ()()()a c b a c a a c b a c a -+---=--+--- a c b a c a a b =-++--+=-+ (2)a b c b a c -+---+-+ 这道题有加有减,但需要变形 a b b a b a -+=-=- ()c b c b c b --=+=-+ a c c a c a -+=-=- 所以该题答案为 a b c b a c -+---+-+()()a b c b a c =-+---+-+ a b c b a c =-+++-+222a b c =-++

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

绝对值方程专项训练

绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程. 解绝对值方程的基本方法是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解,今天我们主要学习两种类型的绝对值方程:一种是绝对值外只有常数;一种是绝对值外还有未知数。对于前一种我们可以利用绝对值的意义直接去掉绝对值符号,转化为两个一元一次方程分别求解即可;对于后一种我们有两种方法:方法一是把绝对值外面的项当做一个整体视为非负数,直接去掉绝对值,转化为两个一元一次方程,求出两个解之后要检验去掉一个不符合的绝对值意义的解;方法二是直接转化为两个一元一次方程和一个不等式,分别求解这三个方程和不等式,把不满足不等式的解去掉。 一、典型例题 【例1】如果|x |=8,求x . 思路点拨 设法去掉绝对值符号,将原方程转化为一般的一元一次方程来求解(转化思想). 【例2】解方程:|2x -1|=3. 思路点拨 利用整体思想设法去掉绝对值符号,将原方程转化为一般的一元一次方程来求解. 【例3】解方程:方程. 5665-=+x x 思路点拨 形如的绝对值方程可变形为且。 d cx b ax +=+)(d cx b ax +±=+0≥+d cx 【例4】解方程:.1112x x -=-思路点拨 形如的绝对值方程可变形为且。d cx b ax +=+)(d cx b ax +±=+0≥+d cx 二、解方程专项训练:

1. 2. 15)1(3+=-x x 199519953990=+x 3. 4. 2+=x x 2000 2020002000?=+x 5. 6. 0223=++x 055=-+-x x 7. 8. 0121=--x 523x -=9. 10. 43234+=--x x 121 x x -=-+ 11. 12. 21513x --=x x -=-2008200813.152 x x --+=思考:形如该怎么解呢?()ax b cx d e e +++=是常数

与绝对值有关的运算

与绝对值有关的运算 教学目标: 1、明确掌握绝对值定义,灵活应用绝对值性质 2、体会数形结合思想在绝对值内容中的作用 3、体验绝对值与各知识点的融合,明了概念本源的重要性 教学重点: 1、绝对值的本源定义和性质 2、绝对值性质在各种知识点中的灵活应用 教学难点: 绝对值的定义和性质在各种知识点中的融合体现出来的灵活性 一、知识复习 1、绝对值定义 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a——七上课本P? 分析: ⑴绝对值的定义是用数轴来定义的,本身就体现了数形结合,所以数形结合思想在应用绝对值定义时 要充分重视 ⑵绝对值是距离,所以绝对值是一个非负数 2、绝对值性质 一个正数的绝对值是它本身 一个负数的绝对值是它的相反数 0的绝对值是0 分析: ⑴确定“它”。谁是“它”?这绝对值符号里面的所有式子,可能是单项式也可能是多项式还可能是 分式; ⑵判断“它”的正负。大—小=正,小—大=负。 ⑶根据性质去掉绝对值符号。当它为负时出来=它的相反数,书写时就是让“它”中的每一项都反。 二、呈现与绝对值有关的题型 1、在具体数据中化简绝对值 -= ⑴化简:5_______ ⑵计算:+- ⑶计算:12

2、与数轴结合化简绝对值 ⑴ ⑵ 3、解含绝对值的方程 ⑴2x = ⑵15x -= ⑶若20x +=,求2018()x y 的算术平方根. ⑷如果21250x y x y -++--=,求x y +的值. ⑸已知x =y 是3的平方根,且y x x y -=-,求x y +的值.

4、解含绝对值的不等式 ⑴2x < ⑵3x > 总结:x a <情况和x a > (0)a ≥ ⑶解关于x 的不等式11ax ax ->- 三、练习: 1ππ- 2、实数a 、b 在数轴上所对应的点的位置如图所示: 化简:__________b a --=; 化简:2__________a a b -+= 3____________________ 4、解方程:23x += 5、若实数x 、y 满足21(2017)0x y ++-=,求y x -的值 6、解不等式:213x -≤

绝对值化简方法辅导

下面我们就人大附中初一学生的家庭作业进行讲解如何对绝对值进行化简 首先我们要知道绝对值化简公式: 例题1:化简代数式 |x-1| 可令x-1=0,得x=1 (1叫零点值) 根据x=1在数轴上的位置,发现x=1将数轴分为3个部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x=1时,x-1=0,则|x-1|=0 3)当x>1时,x-1>0,则|x-1|=x-1 另解,在化简分组过程中我们可以把零点值归到零点值右侧的部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x≥1时,x-1≥0,则|x-1|=x-1 例题2:化简代数式 |x+1|+|x-2| 解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值) 在数轴上找到-1和2的位置,发现-1和2将数轴分为5个部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=3 3)当-10,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 4)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=3 5)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1 另解,将零点值归到零点值右侧部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当-1≤x<2时,x+1≥0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 3)当x≥2时,x+1>0,x-2≥0,则|x+1|+|x-2|=x+1+x-2=2x-1 例题3:化简代数式 |x+11|+|x-12|+|x+13| 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 另解,将零点值归到零点值右侧部分 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当-13≤x<-11时,x+11<0,x-12<0,x+13≥0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 3)当-11≤x<12时,x+11≥0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 4)当x≥12时,x+11>0,x-12≥0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 例题4:化简代数式|x-1|+|x-2|+|x-3|+|x-4| 解:令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10

高三数学复习绝对值函数及函数与方程

1 精锐教育学科教师辅导讲义 学员编号: 年级:高三课时数:3 学员姓名:辅导科目:数学 学科教师:刘剑授课 类型 T (同步知识主题) C (专题方法主题) C (专题方法主题) 授课日 期时段教学内容 绝对值类型(2) 专题二:局部绝对值 例1:若不等式a +21 x x ≥2log 2x 在x ∈(12,2)上恒成立,则实数a 的取值范围为. 例2:关于x 的不等式x 2+9+|x 2-3x |≥kx 在[1,5]上恒成立,则实数k 的范围为________.例3:设实数1a ,使得不等式a a x x 23,对任意的实数2,1x 恒成立,则满足条件的实数a 的范围是 .

2 例4:设函数f(x)=x 2+|2x -a|(x ∈R ,a 为实数). (1)若f(x)为偶函数,求实数 a 的值;(2)a=2时,讨论函数)(x f 的单调性; (3)设a>2,求函数f(x)的最小值. 例习1:已知函数f(x)=|x -m|和函数g(x)=x|x -m|+m 2 -7m. (1)若方程f(x)=|m|在[4,+∞)上有两个不同的解,求实数m 的取值范围;[来源学#科#网Z#X#X#K](2)若对任意x 1∈(-∞,4],均存在x 2∈[3,+∞),使得f(x 1)>g(x 2)成立,求实数m 的取值范围.练习2:设 a 为实数,函数2()2()||f x x x a x a . (1)若 (0)1f ,求a 的取值范围;(2)求()f x 的最小值; (3)设函数 ()(),(,)h x f x x a ,求不等式()1h x 的解集.

3 专题三:整体绝对值 3 例1.已知函数f(x)=|x 2+2x -1|,若a <b <-1,且f(a)=f (b),则ab +a +b 的取值范围是. 例2.设函数d cx bx ax x f 23)(是奇函数,且当33x 时,)(x f 取得最小值932设函数)1,1()13()()(x x t x f x g ,求)(x g 的最大值)(t F 练习3:21 0x 时,21 |2|3x ax 恒成立,则实数a 的取值范围为. 练习4:设函数3221() 23(01,)3 f x x ax a x b a b R . (Ⅰ)求函数f x 的单调区间和极值;(Ⅱ)若对任意的 ],2,1[a a x 不等式f x a 成立,求a 的取值范围。

含绝对值符号的一元一次方程习题附答案

6.2.5含绝对值符号的一元一次方程 完成时间:40min 一.选择题(共30小题) 1.已知|2﹣x|=4,则x的值是() A.﹣3 B.9 C.﹣3或9 D.以上结论都不对 2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是() A.2a B.2b C.2c D.0 3.方程|3x|+|x﹣2|=4的解的个数是() A.0B.1C.2D.3 4.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为() A.B.2C.D.3 5.方程|2x﹣6|=0的解是() A.3B.﹣3 C.±3 D. 6.若|x﹣1|=3,则x=() A.4B.﹣2 C.±4 D.4或﹣2 7.方程|2x﹣1|=4x+5的解是() A. x=﹣3或x=﹣B. x=3或x= C. x=﹣ D.x=﹣3 8.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣1 9.方程|x﹣3|+|x+3|=6的解的个数是() A.2B.3C.4D.无数个 10.若|x﹣2|=3,则x的值是() A.1B.﹣1 C.﹣1或5 D.以上都不对 11.方程|3x|=18的解的情况是() A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解 12.如果|x﹣1|+x﹣1=0,那么x的取值范围是() A.x>1 B.x<1 C.x≥1 D.x≤1 13.若|2000x+2000|=20×2000,则x等于()

14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣1 15.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有() A.2B.4C.8D.16 16.若|x|=3x+1,则(4x+2)2005=() A.﹣1 B.0C.0或1 D.1 17.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D. <a<1 18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是() A. ±B. ± C.±7 D.±1 19.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个. A.0B.1C.2D.大于2的自然数 20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数 21.方程|2007x﹣2007|=2007的解是() A.0B.2C.1或2 D.2或0 22.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是() A.0B. ±C.D. ± 23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3 24.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.4 25.方程|x﹣19|+|x﹣93|=74的有理数解() A.至少有3个B.恰好有2个C.恰有1个D.不存在 26.方程2|x|+3=5的解是() A.1B.﹣1 C.1和﹣1 D.无解 27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.0 28.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是C.0,2,4不全是D.0,2,4之外没

绝对值计算题

(1)绝对值 1.______7.3=-;______0=;______75.0=+-. 2. ______31=+;______45=--;______32=-+. 3.______510=-+-;______5.55.6=---. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数. 5.一个数的绝对值是3 2,那么这个数为______. 6.绝对值等于4的数是______. 7、比较大小; 0.3 —564;— 37 —25 8.绝对值等于其相反数的数一定是…………………………………( ) A .负数 B .正数 C .负数或零 D .正数或零 9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两 个数绝对值不相等;④绝对值相等的两数一定相等. 其中正确的有…………………………………………………( ) A .0个 B .1个 C .2个 D .3个 (2)有理数加法 1、问题:1)一支球队在某场比赛中,上半场进了两个球,下半场进了3了个球,那么它的净胜球是 个, 列出的算式应该是 2)、若这支球队在某场比赛中,上半场失了两个球,下半场又失了3个球,那么它的净胜球是 个,列 出的算式应该是 3)、若这支球队在某场比赛中,上半场进了两个球,下半场又失了3个球,那么它的净胜球是 个,列 出的算式应该是 4)、若这支球队在某场比赛中,上半场没有进球也没有失球,下半场失了3个球,那么它的净胜球是 个, 列出的算式应该是 2. 1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这 个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两 次共向西走多少米?很明显,两次共向西走了 米. 这个问题用算式表示就是: 如图所示: 3)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人 从起点向东(或向西)运动了 米。写成算式就是

23绝对值教学文档

市一中数学科课时教学设计格式 执教时间:10年9月21日第4周星期二执教班级:初一(5)(6)班执教人:曾海容

学法探求自主发现法,启发引导法,采用小组交流合作和“想——做——想”数学思想相结合的方法。 教具学具准备教具:多媒体课件,三角板;学具:铅笔、三角尺。 教学过程设计 教 学 环 节 教学内容教师活动学生活动设计意图 导入新课第一环节情境引入,激发兴趣 1、让学生观察图画,并回答问题,“大 象和两只小狗分别距离原点多远?”利用 图画将学生引入一定的问题情境,学生积 极思考问题,解决问题,进入主题的重要 环节。 2、引入课题:绝对值 引导学生积 极思考回答 问题。 板书课题。 感知和欣赏生 活中的图形, 并思考教师提 出的问题。 利用动画 展示,让学 生在有趣 的问题情 境中获取 对绝对值 概念的感 性认识.并 激发学生 学习的积 极性与主 动性。 讲授新课 第二环节合作交流,解读探究 1、引入绝对值概念 一个数在数轴上对应的点与原点的 距离叫做这个数的绝对值,用符号“| |” 表示。 [板演] 例1 求下列各数的绝 对值:21 -, 4 9 +,0,7.8 -. 解:|21 -|=21; | 4 9 +|= 4 9 ; |0|=0; |7.8 -|=7.8. [口答] 说出下列各数的绝对值 7-, 2.05 -,0,0.25,1000. [板书:绝 对值的概 念] 经历探索、发 现、思考用数 轴表示数和绝 对值的性质的 联系与区别。 引导学生进 入发现的过 程,让学生对 研究对象的 意义、内容和 解决方法产 生兴趣做好 探索解决问 题的精神准 备。

函数的性质与带有绝对值的函数(教师)

函数的性质与带有绝对值的函数 一、复习要点 基本初等函数性质主要包含了函数的定义域、值域、奇偶性、单调性及周期性等,另外最值问题、含参问题、范围问题等是重点复习的内容,特别是含有绝对值的函数问题难度都比较大,当涉及到最值问题时,分类讨论与数形结合是常用方法. 二、基础训练 1.(1)若f (x )是R 上的奇函数,且当x >0时,f (x )=1+3 x ,则f (x ) = . (2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则f (x )<0的x 的取值范围是 . 【答案】(1)?????-1+3x ,x <0 0, x =0 1+3 x , x >0 ;(2)(-2,2). 2.已知函数()log 1(01)a f x x a a =+>≠且,若当(0,1)x ∈时恒有()0f x <,则函数 23 ()log () 2a g x x ax =-+ 的递减区间是 . 【答案】(0,)3 a . 3.(1)若函数y =log 2(x +2)的图象与y =f (x )的图象关于x =1对称,则f (x )= . (2)已知f (x )=log 2|ax +3|关于x =1对称,则实数a = . 【答案】(1)log 2(4-x );(2)-3或0. 4.已知函数()lg f x x =,若0a b <<且()()f a f b =,则2a b +的取值范围是 . 【答案】()3,+∞. 5.()||f x x a =-在()2+∞, 上为增函数,则实数a 的取值范围是 . 【答案】2a ≤. 6.关于x 的方程()(0)x a x a a a --=≠的实数解的个数为 . 【答案】1个. 7.2 3x m b --=有4个根,则实数b 的取值范围是 . 【答案】02b <<. 8.若不等式a +21x x -≥2log 2x 在x ∈(12,2)上恒成立,则实数a 的取值范围为 . 【答案】1a ≥. (2)若函数()x f 满足条件(1),且对任意[]10,30∈x ,总有()[]10,30∈x f ,求c 的取值范围; (3)若0b =,函数()x f 是奇函数,()01=f ,()2 3 2-=-f ,且对任意[)+∞∈,1x 时,

绝对值方程详解及答案.doc

第九讲绝对值与一元一次方程 绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程. 解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧. 解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法. 例题 【例 1】方程5x 6 6x 5 的解是. (重庆市竞赛题) 思路点拨没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解. 【例 2】适合2a7 2a 1 8 的整数a的值的个数有(). A.5B.4C. 3D. 2 ( “希望杯;邀请赛试题) 思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径. 注:形如 ax b cx d 的绝对值方程可变形为ax b(cx d ) 且cx d0 , 才是原方程的根,否则必须舍去,故解绝对值时应检验. 【例 3】解方程:x 3x 1 4 ; 思路点拨从内向外,根据绝对值定义性质简化方程. (天津市竞赛题 ) 【例 4】解下列方程: (1) x 3 x 1 x 1 (北京市“迎春杯”竞赛题) (2) x 1 x 5 4 .(“祖冲之杯”邀请赛试题) 思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何 意义迅速求解. 【例 5】已知关于 x 的方程x 2 x 3 a ,研究a存在的条件,对这个方程的解进行讨论. 思路点拨方程解的情况取决于 a 的情况, a 与方程中常数2、 3 有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴 是探求这种关系的重要方法与工具,读者可从两个思路去解. 注本例给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘题目提供的各种信息,进行全面研究.

初一数学绝对值计算题及答案过程

初一数学绝对值计算题及答案过程例1求下列各数的绝对值: (1)-38; (2)0.15; (3)a(a<0); (4)3b(b>0); (5)a-2(a<2); (6)a-b. 例2判断下列各式是否正确(正确入“T”,错误入“F”): (1)|-a|=|a|; ( ) (2)-|a|=|-a|; ( ) (4)若|a|=|b|,则a=b; ( ) (5)若a=b,则|a|=|b|; ( ) (6)若|a|>|b|,则a>b; ( ) (7)若a>b,则|a|>|b|; ( ) (8)若a>b,则|b-a|=a-b. ( ) 例3判断对错.(对的入“T”,错的入“F”) (1)如果一个数的相反数是它本身,那么这个数是0. ( ) (2)如果一个数的倒数是它本身,那么这个数是1和0. ( ) (3)如果一个数的绝对值是它本身,那么这个数是0或1. ( ) (4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )

(5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( ) 例4 已知(a-1)2+|b+3|=0,求a、b. 例5填空: (1)若|a|=6,则a=______; (2)若|-b|=0.87,则b=______; (4)若x+|x|=0,则x是______数. 例6 判断对错:(对的入“T”,错的入“F”) (1)没有最大的自然数. ( ) (2)有最小的偶数0. ( ) (3)没有最小的正有理数. ( ) (4)没有最小的正整数. ( ) (5)有最大的负有理数. ( ) (6)有最大的负整数-1. ( ) (7)没有最小的有理数. ( ) (8)有绝对值最小的有理数. ( ) 例7 比较下列每组数的大小,在横线上填上适当的关系符号 (“<”“=”“>”) (1)|-0.01|______-|100|; (2)-(-3)______-|-3|; (3)-[-(-90)]_______0; (4)当a<3时,a-3______0;|3-a|______a-3.

2绝对值

第二讲绝对值 【数学小故事】: 动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 一、回顾与预习 (一)知识回顾 1、具有、、的叫做数轴。 2、3到原点的距离是,-5到原点的距离是,到原点的距离是6的数有,到原点距离是1的数有。 3、2的相反数是,-3的相反数是,a的相反数是, -a b的相反数是。 (二)探究新知 问题1、两位同学在书店O处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A处,乙车向西行驶了10公里到达B处。若规定向东为正,则A处记做,B处记做。 、的位置; (1)请同学们画出数轴,并在数轴上标出A B 、两点又有什(2)这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A B 么特征?

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

初一数学绝对值计算题及答案过程

初一数学绝对值计算题及答案过程 例1求下列各数的绝对值: (1)-38; (2)0.15; (3)a(a<0); (4)3b(b>0); (5)a-2(a<2); (6)a-b. 例2判断下列各式是否正确(正确入“T”,错误入“F”): (1)|-a|=|a|; ( ) (2)-|a|=|-a|; ( ) (4)若|a|=|b|,则a=b; ( ) (5)若a=b,则|a|=|b|; ( ) (6)若|a|>|b|,则a>b; ( ) (7)若a>b,则|a|>|b|; ( ) (8)若a>b,则|b-a|=a-b. ( ) 例3判断对错.(对的入“T”,错的入“F”) (1)如果一个数的相反数是它本身,那么这个数是0. ( ) (2)如果一个数的倒数是它本身,那么这个数是1和0. ( ) (3)如果一个数的绝对值是它本身,那么这个数是0或1. ( ) (4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( ) (5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( ) 例4 已知(a-1)2+|b+3|=0,求a、b. 例5填空: (1)若|a|=6,则a=______; (2)若|-b|=0.87,则b=______; (4)若x+|x|=0,则x是______数.

例6 判断对错:(对的入“T”,错的入“F”) (1)没有最大的自然数. ( ) (2)有最小的偶数0. ( ) (3)没有最小的正有理数. ( ) (4)没有最小的正整数. ( ) (5)有最大的负有理数. ( ) (6)有最大的负整数-1. ( ) (7)没有最小的有理数. ( ) (8)有绝对值最小的有理数. ( ) 例7 比较下列每组数的大小,在横线上填上适当的关系符号 (“<”“=”“>”) (1)|-0.01|______-|100|; (2)-(-3)______-|-3|; (3)-[-(-90)]_______0; (4)当a<3时,a-3______0;|3-a|______a-3. 例8在数轴上画出下列各题中x的范围: (1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不大于2的整数; (2)已知x是整数,且2.5<|x|<7,求x. 例10解方程: (1) 已知|14-x|=6,求x; *(2)已知|x+1|+4=2x,求x.

分段函数与绝对值函数练习

分段函数与绝对值函数练习 一、双基题目练练手 1.设函数f (x )=?????≥--<+, 114,1)1(2x x x x 则使得f (x )≥1的x 的取值范围为 ( ) A.(-∞,-2]∪[0,10] B.(-∞,-2]∪[0,1] C.(-∞,-2]∪[1,10] D.[-2,0]∪[1,10] 2.(2006安徽)函数2 2,0 ,0x x y x x ≥?=?-

7. 已知函数13 2 (0)()(01)log (1)x x f x x x x ?<=≤≤>??,当a <0时,f {f [f (a )]}= 8.函数221(0)()(0)x x f x x x ?+≥?=?-≤n n 求f (2002). 解:∵2002>2000, ∴f (2002)=f [f (2002-18)]=f [f (1984)]=f [1984+13]=f (1997)=1997+13=2010. 感悟方法 求值时代入哪个解析式,一定要看清自变量的取值在哪一段上. 【例2】判断函数22(1)(0)()(1)(0)x x x f x x x x ?-≥?=?-+0时,-x<0, f(-x)= -(-x)2(-x+1)=x 2(x -1)=f(x); 当x=0时,f(-0)=f(0)=0;当x<0时,f(-x)=( -x)2(-x -1)= -x 2(x+1)=f(x)。因此,对任意x ∈R 都有f(-x)=f(x),所以函数f(x)为偶函数。

分段函数与绝对值函数

2.11分段函数与绝对值函数 ——随着高考命题思维量的加大,分段函数成了新的热点和亮点,单设专题,以明析强化之 一、明确复习目标 了解分段函数的有关概念;掌握分段函数问题的处理方法 二.建构知识网络 1.分段函数:定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的. 分段函数是一个函数,定义域、值域都是各段的并集。 2.绝对值函数去掉绝对符号后就是分段函数. 3.分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 4.分段函数的处理方法:分段函数分段研究. 三、双基题目练练手 1.设函数f (x )=???? ?≥--<+, 11 4,1) 1(2 x x x x 则使得f (x )≥1的x 的取值范围为 ( ) A.(-∞,-2]∪[0,10] B.(-∞,-2]∪[0,1] C.(-∞,-2]∪[1,10] D.[-2,0]∪[1,10] 2.(2006安徽)函数2 2,0 ,0x x y x x ≥?=? -

4.(2006全国Ⅱ)函数19 1 ()n f x x n == -∑的最小值为 ( ) (A )190 (B )171 (C )90 (D )45 5.(2005北京市西城模拟)已知函数f (x )=?? ?<-≥-), 2(2 ), 2(2 x x x 则f (lg30-lg3) =___________;不等式xf (x -1)<10的解集是_______________. 6. (2006浙江)对R b a ∈,,记则{}? ??≥=b a b b a a b a <,,,max 则函数 (){}()R x x x x f ∈-+=2,1max 的最小值是 . 7. 已知函数1 3 2 (0)()(01)log (1) x x f x x x x ?<=≤≤>??,当a <0时,f {f [f (a )]}= 8.函数2 21(0) ()(0) x x f x x x ?+≥?=?-

相关主题
文本预览
相关文档 最新文档