沪科版八年级下学期知识点总结
- 格式:docx
- 大小:17.35 KB
- 文档页数:4
沪科版八年级数学下知识点总结-数学八
下概念总结
本文档旨在总结沪科版八年级数学下册的重要知识点和概念。
以下是该学期的主要内容:
单元一:二次根式的应用
- 介绍二次根式的定义和性质;
- 讲解如何化简二次根式;
- 探讨二次根式的乘法与除法;
- 演示如何在实际问题中应用二次根式。
单元二:函数与方程
- 引入函数与方程的概念;
- 介绍线性函数的特性及图像;
- 讨论一次函数和常数函数的特点;
- 研究函数关系与方程的求解方法。
单元三:平面图形的认识
- 认识平面图形的基本概念,如点、线、角;
- 探索多边形的性质和分类;
- 分析圆的特点及相关定理;
- 研究解决与平面图形相关的问题。
单元四:统计与概率
- 理解统计学的基本概念和方法;
- 研究如何制表、绘图和分析统计数据;- 探讨概率及其在实际问题中的应用;- 进行概率计算和问题求解。
单元五:实数和代数式
- 研究实数的性质、分类与运算法则;- 探索含有实数的方程和不等式;
- 研究常用代数式的展开与因式分解;- 进行实数和代数式相关问题的解答。
单元六:三角学初步
- 理解角的概念和弧度制;
- 研究三角比的概念和性质;
- 探索三角函数的运算和应用;
- 解决与三角学相关的实际问题。
以上是沪科版八年级数学下册的知识点总结,希望本文档对您的学习有所帮助。
第二十章一次函数一、一次函数的概念(1)一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2)一次函数y kx b =+的定义域是一切实数;(3)当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠)这时,y 是x的正比例函数,所以正比例函数是一次函数的特例;(4)一般地,我们把函数y c =(c 为常数)叫做常值函数.它的自变量由所讨论的问题确定.二、一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线.三、一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .四、一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”)五、直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.六、一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质:当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升;当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降.七、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得)当0k >,且0b >时,直线y kx b =+经过一、二、三象限;当0k >,且0b <时,直线y kx b =+经过一、三、四象限;当0k <,且0b >时,直线y kx b =+经过一、二、四象限;当0k <,且0b <时,直线y kx b =+经过二、三、四象限.八、一元一次方程与一次函数(1)对于一次函数y kx b =+,由它的函数值0y =就得到关于x 的一元一次方程0kx b +=,解这个方程得b x k=-,于是可以知道一次函数y kx b =+的图像与x 轴的交点坐标为(0)b k-,.(2)若已知一次函数y kx b =+的图像与x 轴的交点坐标,也可以知道这个交点的横坐标b x k=-,其就是一元一次方程0kx b +=的根.九、一元一次不等式与一次函数(1)由一次函数y kx b =+的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式0kx b +>(或0kx b +<)的解集.(2)在一次函数m 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式0kx b +>(或0kx b +<)的解集.第二十一章代数方程一、二项方程如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程,关于x 的一元n 次二项方程的一般形式为:0(00n ax b a b n +=≠≠,,是正整数).n 为奇数时,方程有且只有一个实数根;n 为偶数时,若0ab <,方程有两个实数根,且这两个根互为相反数;若0ab >,那么方程没有实数根.二、双二次方程(1)一般地,只含有偶数次项的一元四次方程,叫做双二次方程.关于x 的双二次方程的一般形式为420ax bx c ++=(0a ≠,0b ≠,0c ≠).(2)了解关于x 的双二次方程420ax bx c ++=(0a ≠,0b ≠,0c ≠),可以用新未知数y 代替方程中的2x ,同时用2y 代替4x ,将这个方程转化为关于y 的一元二次方程.20ay by c ++=这种解方程的方法是换元法.(3)整式方程和分式方程统称为有理方程.三、无理方程1、方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.有理方程和无理方程统称为初等代数方程,简称代数方程.2、解无理方程的一般步骤是去根号,方法是两边同时平方,注意要检验增根的情况.检验方程的增根从两方面出发:(1)根号有意义的条件;(2)方程左右是否相等.四、二元二次方程组1、仅含有两个未知数,各方程是整式方程,并且含有未知数的项的最高次数为2,像这样的方程组叫做二元二次方程组.2、能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.3、方程组中所含各方程的公共解叫做这个方程组的解.第二十二章四边形一、多边形的概念1、由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形.2、组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点.3、多边形相邻两边所在的射线组成的角叫做多边形的内角.4、联结多边形的两个不相邻顶点的线段,叫做多边形的对角线.5、对于一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形.6、多边形内角和定理:n边形的内角和等于(2)180n-⋅︒.7、由多边形的一个内角的一边和另一边的反向延长线组成的角,叫做多边形的外角.8、对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有外角的和,叫做多边形的外角和.9、多边形的外角和等于360°.二、平行四边形1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形.平行四边形用符号“ ”表示,如: ABCD.2、平行四边形性质定理:①如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等.简述为:平行四边形的对边相等.②如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等.简述为:平行四边形的对角相等.③如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分.简述为:平行四边形的两条对角线互相平分.④平行四边形是中心对称图形,对称中心是两条对角线的交点.⑤推论:夹在两条平行线间的平行线段相等.3、平行四边形判定定理:①如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形.简述为:两组对边分别相等的四边形是平行四边形.②如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.简述为:一组对边平行且相等的四边形是平行四边形.③如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形.简述为:对角线互相平分的四边形是平行四边形.④如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形.简述为:两组对角分别相等的四边形是平行四边形.三、矩形1.定义:有一个内角是直角的平行四边形叫做矩形.注意:矩形的定义既是矩形的基本性质,也是判定矩形的基本方法.2.矩形的性质:矩形除具有平行四边形的一切性质外,还有一些特殊性质.(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过对称中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别是通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).3.矩形的判定:矩形的判定定理1:有三个内角是直角的四边形是矩形.矩形的判定定理2:对角线相等的平行四边形是矩形.四、菱形1.定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形除具有平行四边形的一切性质外,还有一些特殊性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.注意:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分;(2)菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心;(3)菱形的面积有两种计算方法:一种是平行四边形的面积公式:=S 底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.3.菱形的判定:菱形的判定定理1:四条边都相等的四边形是菱形.菱形的判定定理2:对角线互相垂直的平行四边形是菱形.五、正方形1.定义:有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.2.正方形与矩形、菱形的关系:矩形邻边相等正方形菱形一个角是直角正方形3.正方形的性质定理:正方形即是矩形又是菱形,因而它具备两者所有的性质.性质定理1:正方形的四个角都是直角;正方形的四条边都相等.性质定理2:正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角.4.正方形的判定定理:判定定理1:有一组邻边相等的矩形是正方形.判定定理2:有一个内角是直角的菱形是正方形.六、梯形及梯形的有关概念(1)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.底:平行的两边叫做底,其中较长的是下底,较短的叫上底.腰:不平行的两边叫做腰.高:梯形两底之间的距离叫做高.(2)特殊梯形:⎩⎨⎧梯形叫做等腰梯形.等腰梯形:两腰.底的梯形叫做直角梯形直角梯形:一腰垂直于特殊梯形相等的思考讨论:若上面两个条件同时成立是否是梯形?交流:如果同时具备直角梯形和等腰梯形的特征,那么该图形是矩形.(3)等腰梯形性质等腰梯形性质定理1:等腰梯形在同一底上的两个内角相等.等腰梯形性质定理2:等腰梯形的两条对角线相等.另外:等腰梯形是轴对称图形;(4)等腰梯形判定等腰梯形判定定理1:在同一底边上的两个内角相等的梯形是等腰梯形.等腰梯形判定定理2:对角线相等的梯形是等腰梯形.(5)解决梯形问题常用的方法:①作高法:使两腰在两个直角三角形中;②移腰法:使两腰在同一个三角形中,梯形两个下底角是互余的,那么一般会用到这种添辅助线的方式,构造直角三角形;③延腰法:构造具有公共角的两个等腰三角形;④等积变形法:联结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形;⑤移对角线法:平移对角线,构造特殊的图形,如平行四边形,如果是对角线互相垂直的等腰梯形,那么在平移的过程中,还可构造等腰直角三角形,结合三线合一,求梯形的高等.七、梯形及三角形中位线1.三角形的中位线定义:联结三角形两边中点的线段,(强调它与三角形的中线不同);2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.3.梯形中位线定理:梯形的中位线平行于底边,并且等于两底和的一半.【要点点拨】经过三角形的一边中点作另一边的平行线,也可以证明得到的平行线段为中位线.同样地,从梯形的一腰中点作底的平行线,可以证明得到的平行线段为中位线.如果把三角形看成是一个上底长度是一个上底长度为零的特殊的梯形的话,那么三角形中位线定理就成为梯形中位线定理的特例了.八、平面向量的概念1、规定了有方向又有长度的线段叫做有向线段.2、向量:既有大小又有方向的量叫做向量.向量的大小也叫做向量的长度.(或向量的模)3、向量的表示:(1)向量可以用有向线段直观表示:①有向线段的长度表示向量的长度;②有向线段的方向表示向量的方向.(2)常见的表示方法:①向量AB ,长度记为AB ;②向量a 、b 、c ,长度记为a 、b 、c .4、相等的向量:方向相同且长度相等的两个向量叫做相等的向量.5、相反的向量:方向相反且长度相等的两个向量叫做互为相反的向量.6、平行向量:方向相同或相反的两个向量叫做平行向量.十、平面向量的加法1、向量的加法:求两个向量的和向量的运算叫做向量的加法.2、零向量:长度为零的向量叫做零向量,记作0 .规定0 的方向可以是任意的(或者说不确定);00= .因此,两个相反向量的和向量是零向量,即:()0a a +-= .对于任意向量,都有0a a += ,0a a += .3、向量的加法满足交换律:a b b a +=+ .4、向量的加法满足结合律:()()a b c a b c ++=++ .5、向量加法的三角形法则求不平行的两个向量的和向量时,只要把第二个向量与第一个向量首尾相接,那么以第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量.6、向量加法的多边形法则几个向量相加,可把这几个向量首尾顺次相接,那么以第一个向量的起点为起点、最后一个向量的终点为终点的向量,就是这几个向量的和向量.十一、平面向量的减法1、向量的减法已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法.减去一个向量等于加上这个向量的相反向量,即:()a b a b -=+- .2、向量减法的三角形法则在平面内取一点,以这个点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点,被减向量的终点为终点的向量.3、向量加法的平行四边形法则如果a ,b 是两个不平行的向量,那么求它们的和向量时,可以在平面内任取一点为公共起点作两个向量与a ,b 相等,以这两个向量为邻边作平行四边形,然后以所取的公共起点为起点,作这个平行四边形的对角线向量,则这一对角线向量就是a ,b 的和向量,这个法则叫做向量加法的平行四边形法则.4、另外一个对角线向量,即是a ,b 的差向量,这个差向量与被减向量共终点.第二十三章概率初步一、事件的分类1、事件分为确定事件和随机事件2、其中确定事件包括必然事件和不可能事件(1)必然事件:在一定条件下,必定出现的现象叫做必然事件.例如,在标准大气压下,水加热到100℃就要沸腾是必然事件.(2)不可能事件:在一定条件下,必定不出现的现象叫做不可能事件.例如,同性电互相吸引就是不可能事件.必然事件的反面是不可能事件.必然事件和不可能事件统称为确定事件.(3)随机事件:在一定条件下,可能出现也可能不出现的现象叫做随机事件,也称为不确定事件.例如,“掷一枚硬币出现正面”,“某人射击一次中靶”,“检查某件产品合格”等都是随机事件.一个事件中描述的现象“出现”,就说这个事件“发生”.一个确定事件是发生还是不发生,答案是确定的;而一个随机事件是发生还是不发生,具有不确定性.3、区分必然事件、不可能事件、随机事件的要点:“必定”发生——每次一定发生,不可能不发生.“必定”不发生——每次都完全没有机会发生.“可能”发生——有时会发生,有时不会发生.注意:①随机事件发生的可能性有大小差别,我们可以根据事件发生的条件或有关经验、资料等,对事件发生的可能性大小作出大致的判断,并进行定性的描述.②各种事件发生的可能性大小有不同,可以根据我们的经验来判断一些随机事件发生的可能性的大小并排出大小顺序.一般,我们常用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性大小.二、事件的概率概率是概率论中最基本的概念.在大量重复地进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记做()P A.它可以看作是频率在理论上的期望值.不同的随机事件发生的可能性大小是不相同的,概率是用来表示随机事件发生的可能性大小的一个量.等可能事件的概率一般可以通过大量重复试验求得其近似值.随机事件在一次试验中是否发生虽然不能事先确定,但在大量重复试验的情况下,它的发生却能呈现出一定的规律性.-11-但对于某些随机事件,也可以不通过重复试验,只通过一次试验中可能出现的结果的分析来计算其概率.对于某些随机试验来说,每次试验后可能产生若干不同的试验结果,而出现所有这些不同结果的可能性是相等的.一般说来,如果一次试验中共有n 种等可能出现的结果,其中事件A 包含的结果有k 种,那么事件A 的概率()=k P A n=事件A包含的可能结果数所有的可能结果总数.用来表示某事件发生的可能性大小的数叫做这个事件的概率.用符号P 来表示.概率从数量上刻画了一个随机事件发生的可能性的大小.不可能事件必定不发生,规定用“0”作为不可能事件的概率;而必然事件必定发生,就规定用“1”作为必然事件的概率.这样随机事件的概率,就是大于0且小于1的一个数,通常可以写成纯小数、百分数或真分数.由于任何事件A 发生的次数k 总不能大于试验的次数n ,因此随机事件的概率()P A 满足0()1P A ≤≤.概率越大,表明事件发生的可能性越大;概率越小,表明事件发生的可能性越小.人们通常对随机事件进行大量的反复试验来研究概率,一般地,次数大的试验,事件发生的频率才接近概率.。
沪科版8下数学知识点总结一、代数1. 多项式的加减乘除多项式是由一个或多个项相加或相减得到的代数式。
多项式的加减需要将同类项合并,即合并它们的系数。
对于多项式的乘法,可以使用分配律来进行计算;对于多项式的除法,可以使用长除法来进行计算。
2. 方程与不等式方程是含有未知数的等式,在解方程时需要根据方程的类型选择适当的方法解题,如一元一次方程可以使用逆运算法和等式两边消元的方式来解。
不等式则是含有不等关系的式子,在解不等式时需要考虑不等关系的性质,如同乘同除不等式两边不能反号。
3. 一次函数一次函数是指幂为1的函数,它的图像是一条直线。
一次函数的一般形式为y=ax+b,其中a称为斜率,b称为截距。
斜率决定了直线的倾斜程度,而截距则决定了直线与y轴的交点位置。
4. 二次函数二次函数的一般形式为y=ax^2+bx+c,其中a不等于0。
二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。
二次函数的最值可以通过求导数来求得,也可以通过平移法来求得。
二、空间与图形1. 三角形三角形是指具有三条边和三个内角的多边形。
根据三角形的角度和边长可以将三角形分为不同类型,如根据角度可以分为锐角三角形、直角三角形和钝角三角形;根据边长可以分为等边三角形、等腰三角形和普通三角形。
2. 相似图形相似图形是指形状相同但大小不同的图形,它们的对应边长成比例。
在计算相似图形时,可以利用两个相似三角形之间的对应边长的比例来求解。
3. 空间图形的体积与表面积常见的空间图形包括立方体、长方体、圆柱体、球体等,它们的体积和表面积的计算公式需要根据不同的图形进行选择。
常见的体积和表面积计算公式有:立方体的体积为V=a^3,表面积为S=6a^2;圆柱体的体积为V=πr^2h,表面积为S=2πr^2+2πrh;球体的体积为V=4/3πr^3,表面积为S=4πr^2。
三、概率1. 随机事件与概率随机事件是指在一定条件下可能发生也可能不发生的事件,其发生的概率可以用数字来表示。
八年级沪科版下册知识点八年级是初中阶段的重要节点,下册的知识点涵盖了多个学科,是学生们最后一个学习该阶段的机会。
本文将从各个学科入手,总结下册相关的知识点,帮助学生们更好地复习和备考。
1. 数学知识点1.1 函数函数可以理解成一种特殊的关系,能够将一个自变量映射到唯一的一个因变量上。
常见的函数类型有一次函数、二次函数、指数函数、对数函数等等。
在学习函数时,不仅需要掌握函数的定义和性质,还需要学会函数的图像和解题方法。
1.2 空间几何空间几何是数学中的一个分支,与平面几何不同,其研究的对象是空间中的点、线、面、体等。
在下册中,学生需要学习球、圆锥、圆柱、棱锥、棱柱等几何体的性质、图像以及计算方法。
1.3 统计与概率统计学是一种科学的研究方法,用于处理大量数据并对结果进行分析。
概率则是与统计紧密相关的一种数学概念,用于描述事件发生的可能性大小。
在下册中,学生需要掌握统计图表的制作和解读方法,同时也需要学会概率计算、抽样调查等方法。
2. 物理知识点2.1 运动学在物理学中,运动学是研究物体运动的学科,包括质点运动和刚体运动。
在下册中,学生需要学习速度、加速度、位移等概念,还需要了解牛顿运动定律、万有引力定律等基本概念。
2.2 电学电学是研究电现象和电动力学的学科,包括直流电路、交流电路、电磁场等内容。
在下册中,学生需要学习电路的基本组成部分、电流、电压、电阻等基本概念,还需要学习欧姆定律、基尔霍夫定律、磁场等基本定律。
3. 化学知识点3.1 物质分类在化学学科中,物质的分类是一个非常重要的概念,涉及元素、化合物、混合物等概念。
在下册中,学生需要学习元素周期表,了解元素的性质和周期规律,同时还需要学会化学方程式的写法、化学反应的平衡等内容。
3.2 酸碱中和酸碱中和是化学学科的一个重要概念,指的是酸性溶液和碱性溶液混合后,生成中性溶液的过程。
学生需要学习酸碱的概念、PH值、酸碱指示剂等基本知识,还需要学习酸碱反应的计算方法。
初中物理八年级下册知识点总结第六章力和运动知识归纳1.牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。
(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。
2.惯性:物体保持运动状态不变的性质叫惯性。
牛顿第一定律也叫做惯性定律。
3.物体平衡状态:物体受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力平衡。
当物体在两个力的作用下处于平衡状态时,就叫做二力平衡。
4.二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零。
5.物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。
第七章密度与浮力知识归纳1.质量(m):物体中含有物质的多少叫质量。
2.质量国际单位是:千克。
其他有:吨,克,毫克,1吨=103千克=106克=109毫克(进率是千进)3.物体的质量不随形状,状态,位置和温度而改变。
4.质量测量工具:实验室常用天平测质量。
常用的天平有托盘天平和物理天平。
5.天平的正确使用:(1)把天平放在水平台上,把游码放在标尺左端的零刻线处;(2)调节平衡螺母,使指针指在分度盘的中线处,这时天平平衡;(3)把物体放在左盘里,用镊子向右盘加减砝码并调节游码在标尺上的位置,直到横梁恢复平衡;(4)这时物体的质量等于右盘中砝码总质量加上游码所对的刻度值。
6.使用天平应注意:(1)不能超过最大称量;(2)加减砝码要用镊子,且动作要轻;(3)不要把潮湿的物体和化学药品直接放在托盘上。
7. 密度:某种物质单位体积的质量叫做这种物质的密度。
计算公式:ρ=m/vρ表示密度,m表示质量,V表示体积,密度单位是千克/米3,(还有:克/厘米3),1克/厘米3=1000千克/米3;质量m的单位是:千克;体积V的单位是米3。
8.密度是物质的一种特性,不同种类的物质密度一般不同。
沪科版8下数学知识点总结1. 数的性质与运算1.1 自然数与整数自然数是从1开始的正整数,整数包括自然数、0和负整数。
1.2 有理数有理数包括整数和分数,可以用分数表示,并且可以进行加、减、乘、除的运算。
1.3 实数实数包括有理数和无理数,无理数是不能化为分数形式的数,如π和√2。
1.4 运算律加法和乘法满足交换律、结合律和分配律,而除法没有交换律和分配律。
2. 代数式与方程式2.1 代数式代数式是由数、字母和运算符号组成的式子,可以进行加、减、乘、除等运算。
2.2 方程式方程式是含有未知数的等式,可以通过变换和运算得到解。
2.3 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。
2.4 二元一次方程二元一次方程是指含有两个未知数,并且未知数的最高次数为1的方程。
3. 平面图形与空间图形3.1 平面图形平面图形包括点、直线、线段、射线、角、三角形、四边形、多边形等。
3.2 空间图形空间图形包括球、圆柱、圆锥、棱柱、棱锥、正交、斜视等。
3.3 相似与全等相似是指两个图形的形状相似,但大小可以不同;全等是指两个图形的形状和大小都相同。
3.4 图形的性质不同的图形有不同的性质,如三角形的内角和为180度,平行四边形的对角线相等等。
4. 数据的统计与分析4.1 数据的收集与整理统计数据需要先收集数据,并进行整理和分类,以便后续的分析。
4.2 中心位置的度量中心位置的度量包括平均数、中位数和众数,用来表示数据的集中程度。
4.3 离散程度的度量离散程度的度量包括极差、方差和标准差,用来表示数据的离散程度。
4.4 数据的图表表示数据可以通过图表来进行可视化展示,如条形图、折线图、饼图等。
5. 几何变换5.1 平移平移是指图形在平面上沿着某个方向移动一定的距离。
5.2 旋转旋转是指图形围绕某个点旋转一定的角度。
5.3 对称对称是指图形以某个轴线为对称轴,两侧的形状完全相同。
5.4 拓展拓展是指图形按照一定的比例进行扩大或缩小。
2024年沪科版八年级数学知识点总结一、整数及其运算1. 正整数、零、负整数的概念和表示方法2. 整数的加法、减法、乘法、除法及混合运算3. 绝对值的概念及计算4. 整数的乘方和乘方根5. 有理数的加法、减法、乘法、除法运算6. 数轴的绘制和利用二、分数与运算1. 分数的概念、表示方法和分类2. 分数的大小比较3. 分数的加法、减法、乘法及混合运算4. 分数的化简和约分5. 分数的乘方和乘方根6. 分数除法的意义及计算7. 有理数与分数的关系三、代数式1. 代数式的基本概念2. 代数式的运算法则3. 代数式的实际问题应用4. 代数式的和差化积公式四、方程与不等式1. 一元一次方程的概念及解法2. 一元一次方程的实际应用3. 一元一次不等式及其解集4. 一元一次不等式的实际应用5. 一元一次方程组的概念及解法五、比例与比例应用1. 比例的概念及比例的性质2. 比例的扩大和缩小3. 速度、密度和浓度的问题4. 长、面、体积比的应用六、图形的认识1. 平面图形及其特征2. 正方形、长方形、菱形、正三角形、等边三角形的特征和性质3. 四边形的分类4. 圆、圆周、圆心、直径、半径的概念及关系5. 用黄金分割原理进行建筑设计七、三角形与全等三角形1. 直角三角形及其性质2. 直角三角形的应用3. 全等三角形的概念及判定4. 全等三角形的性质和应用八、数系的扩展1. 无理数的概念和表示2. 实数集和数轴3. 平方根和立方根的计算4. 同底数幂的运算5. 科学计数法九、数据与统计1. 统计图形的概念和制作2. 平均数、中位数和众数的计算和应用3. 数据的收集和处理4. 事件的概率及其计算方法以上是____年沪科版八年级数学的主要知识点总结,总结涵盖了整数及其运算、分数与运算、代数式、方程与不等式、比例与比例应用、图形的认识、三角形与全等三角形、数系的扩展、数据与统计等方面的内容。
希望对你有所帮助!。
沪科版八年级数学知识点下册学习从来无捷径,循序渐进登高峰。
假如说学习确定有捷径,那只能是勤奋,因为努力永久不会骗人。
学习需要勤奋,做任何事情都需要勤奋。
下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。
初二数学学问点抽样调查(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。
而不是用随便选择的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并把握在允许范围以内,调查结果的精确程度较高。
课后练习1.抽样成数是一个(A)A.结构相对数B.比例相对数C.比较相对数D.强度相对数2.成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A.全面调查B.非全面调查C.一次性调查D.经常性调查4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)A.40%B.4.13%C.9.18%D.8.26%5.根据5%抽样资料说明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A.甲产品大B.乙产品大C.相等D.无法推断初二数学学问点归纳四边形性质探究定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形:两组对边分别平行的四边形.。
海口市西湖实验学校2017-2018学年度第二学期八年级物理知识点总结一、力与运动1、牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止或匀速直线运动状态。
2、惯性:一切物体都有保持静止状态或匀速直线运动的性质。
物体惯性的大小只与物体的质量有关。
3、如果一个力产生的效果与几个力产生的效果相同,那么这个力叫那几个力的合力。
求几个力的合力叫力的合成。
4、同一直线上方向相同的两个力的合力,大小等于这两个力之和,方向与两个力的方向相同。
公式:21F F F +=。
同一直线上方向相反的两个力的合力,大小等于这两个力之差,方向与较大的力的方向相同。
公式:)(2121F F F F F >-=.5、平衡状态:物体受到力的作用时,如果能保持静止或匀速直线运动状态。
6、物体只受两个力作用而平衡时叫二力平衡。
7、二力平衡的条件是:等大、反向、共线、同物。
二、压强1、垂直作用在物体受压表面上的力叫压力。
2、受压面积是指两物体共接触面积的大小。
当物体水平放置时,压力的大小等于物重;当物体在斜面上时,压力小于物重.当物体在竖直面上时,重力与压力无关。
3、压力作用效果不仅与压力大小有关,还与受力面积大小有关。
当受力面积相同时,压力越大,则压力作用效果越明显。
当压力相同时,受力面积越小,压力作用效果越明显。
4、物体所受的压力与受力面积的比叫压强,用字母P 表示。
压强是表示压力作用效果的物理学量。
5、 压强公式:SF P =,F 表示压力;S 表示受力面积,单位是2m 。
变形公式:F=PS 或P F S =。
6、压强的国际单位是帕斯卡符号Pa ,其单位的换算关系是:1N/m 2=1Pa7、液体压强的特点:液体内部向各个方向都有压强,液体内部同一深度向各个方向的压强 相等 ,液体内部的压强随深度增加而增大.液体压强还与液体密度有关,且随它增大而增大。
8、液体由于受到重力作用对容器底有压强,且具有流动性而对容器侧壁有压强。
沪科版八年级数学下册知识点归纳总结Summary of One-Variable XXX in Shanghai Science and Technology n Grade 8 XXX1.General form of one-variable quadratic n: Whena≠0.ax2+bx+c=0 is called the general form of one-variable XXX。
XXX into the general form to determine a。
b。
and c in the general form。
a。
b。
and c may be specific numbers or XXX.2.n methods of one-variable quadratic n: The four n methodsof one-variable XXX used。
Although direct square root method is simple。
its n range is small。
Although formula method has awide range of ns。
it XXX method has a large n range and simple n。
and is the XXX the square method is less commonly used.3.Discriminant of one-XXX: When ax2+bx+c=0 (a≠0)。
Δ=b2-4ac is called the discriminant of one-XXX。
Please note the following XXX: Δ>0.there are two unequal real roots。
Δ=0.thereare two equal real roots。
第七章力和运动知识归纳
1.牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。
(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。
2.惯性:物体保持运动状态不变的性质叫惯性。
牛顿第一定律也叫做惯性定律。
3.物体平衡状态:物体受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力平衡。
当物体在两个力的作用下处于平衡状态时,就叫做二力平衡。
4.二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零。
5.物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。
第八章压强知识归纳
1.压力:垂直作用在物体表面上的力叫压力。
2.压强:物体单位面积上受到的压力叫压强。
3.压强公式:P=F/S ,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F单位是:牛;受力面积S单位是:米2
4.增大压强方法:(1)S不变,F↑;(2)F不变,S↓(3) 同时把F↑,S↓。
而减小压强方法则相反。
5.液体压强产生的原因:是由于液体受到重力。
6.液体压强特点:(1)液体对容器底和壁都有压强,(2)液体内部向各个方向都有压强;(3)液体的压强随深度增加而增大,在同一深度,液体向各个方向的压强相等;(4)不同液体的压强还跟密度有关系。
7.* 液体压强计算公式:,(ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。
)
8.根据液体压强公式:可得,液体的压强与液体的密度和深度有关,而与液体的体积和质量无关。
9.证明大气压强存在的实验是马德堡半球实验。
10.大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。
11.测定大气压强值的实验是:托里拆利实验。
12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计(金属盒气压计)。
13.标准大气压:把等于760毫米水银柱的大气压。
1标准大气压=760毫米汞柱=1.013×105帕=10.34米水柱。
14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时升高。
15. 流体压强大小与流速关系:在流体中流速越大地方,压强越小;流速越小的地方,压强越大。
第九章浮力知识归纳
1.浮力:一切浸入液体的物体,都受到液体对它竖直向上的力,这个力叫浮力。
浮力方向总是竖直向上的。
(物体在空气中也受到浮力)2.物体沉浮条件:(开始是浸没在液体中)
方法一:(比浮力与物体重力大小)
(1)F浮< G ,下沉;(2)F浮> G ,上浮(3)F浮=
G ,悬浮或漂浮
方法二:(比物体与液体的密度大小)
(1) F浮< G,下沉;(2) F浮> G ,上浮(3) F浮=
G,悬浮。
(不会漂浮)
3.浮力产生的原因:浸在液体中的物体受到液体对它的向上和向下的压力差。
4.阿基米德原理:浸入液体里的物体受到向上的浮力,浮力大小等于它排开的液体受到的重力。
(浸没在气体里的物体受到的浮力大小等于它排开气体受到的重力)
5.阿基米德原理公式:
6.计算浮力方法有:
(1)称量法:F浮= G —F ,(G是物体受到重力,F 是物
体浸入液体中弹簧秤的读数)
(2)压力差法:F浮=F向上-F向下
(3)阿基米德原理:
(4)平衡法:F浮=G物(适合漂浮、悬浮)
7.浮力利用
(1)轮船:用密度大于水的材料做成空心,使它能排开更多的水。
这就是制成轮船的道理。
(2)潜水艇:通过改变自身的重力来实现沉浮。
(3)气球和飞艇:充入密度小于空气的气体。
第十章简单机械和功知识归纳
1.杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。
2.什么是支点、动力、阻力、动力臂、阻力臂?
(1)支点:杠杆绕着转动的点(o)
(2)动力:使杠杆转动的力(F1)
(3)阻力:阻碍杠杆转动的力(F2)
(4)动力臂:从支点到动力的作用线的距离(L1)。
(5)阻力臂:从支点到阻力作用线的距离(L2)
3.杠杆平衡的条件:动力×动力臂=阻力×阻力臂.或写作:F1L1=F2L2这个平衡条件也就是阿基米德发现的杠杆原理。
4.三种杠杆:
(1)省力杠杆:L1>L2,平衡时F1<F2。
特点是省力,但费距离。
(如
剪铁剪刀,铡刀,起子)
(2)费力杠杆:L1<L2,平衡时F1>F2。
特点是费力,但省距离。
(如
钓鱼杠,理发剪刀等)
(3)等臂杠杆:L1=L2,平衡时F1=F2。
特点是既不省力,也不费力。
(如:天平)
5.定滑轮特点:不省力,但能改变动力的方向。
(实质是个等臂杠杆)
6.动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆)
7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。
1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。
2.功的计算:功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。
(功=力×距离)
3. 功的公式:W=Fs;单位:W→焦;F→牛顿;s→米。
(1焦=1牛·米). 4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。
5.斜面:FL=Gh 斜面长是斜面高的几倍,推力就是物重的几分之一。
(螺丝、盘山公路也是斜面)
6.机械效率:有用功跟总功的比值叫机械效率。
计算公式:P有/W=η
7.功率(P):单位时间(t)里完成的功(W),叫功率。
计算公式:。
单位:P→瓦特;W→焦;t→秒。
(1瓦=1焦/秒。
1千瓦=1000瓦)
1.一个物体能够做功,这个物体就具有能(能量)。
2.动能:物体由于运动而具有的能叫动能。
3.运动物体的速度越大,质量越大,动能就越大。
4.势能分为重力势能和弹性势能。
5.重力势能:物体由于被举高而具有的能。
6.物体质量越大,被举得越高,重力势能就越大。
7.弹性势能:物体由于发生弹性形变而具的能。
8.物体的弹性形变越大,它的弹性势能就越大。
9.机械能:动能和势能的统称。
(机械能=动能+势能)单位是:焦耳10. 动能和势能之间可以互相转化的
方式有:动能重力势能;动能弹性势能。
11.自然界中可供人类大量利用的机械能有风能和水能。
第十一章小粒子大宇宙
1.分子动理论的内容是:(1)物质由分子组成的,分子间有空隙;(2)一切物体的分子都永不停息地做无规则运动;(3)分子间存在相互作用的引力和斥力。
2.扩散:不同物质相互接触,彼此进入对方现象。
3.固体、液体压缩时分子间表现为斥力大于引力。
固体很难拉长是分子间表现为引力大于斥力。
4. 分子是原子组成的,原子是由原子核和核外电子
组成的,原子核是由质子和中子组成的。
5. 英国科学家道尔顿证明原子的存在。
汤姆孙发现电子(1897年);
卢瑟福提出原子核式结构模型;
6. 加速器是探索微小粒子的有力武器。
7. 银河系是由群星和弥漫物质集会而成的一个庞大天体系统,太阳
只是其中一颗普通恒星。
8. 宇宙是一个有层次的天体结构系统,大多数科学家都认定:宇宙诞生于距今150亿年的一次大爆炸,这种爆炸是整体的,涉及宇宙全部物质及时间、空间,爆炸导致宇宙空间处处膨胀,温度则相应下降。
9. (一个天文单位)是指地球到太阳的距离。
10. (光年)是指光在真空中行进一年所经过的距离。