时间序列中的ARMA模型共40页
- 格式:ppt
- 大小:1.94 MB
- 文档页数:40
第五讲(续)平稳时间序列的ARMA模型1 平稳性有一类描述时间序列的重要随机模型受到了人们的广泛关注,这就是所谓的平稳模型。
这类模型假设随机过程在一个不变的均值附近保持平衡。
其统计规律不会随着时间的推移发生变化。
平稳的定义分为严平稳和宽平稳。
定义1(严平稳)设{},t x t T ∈是一个随机过程,t x 是在不同的时刻t 的随机变量,在不同的时刻t 是不同的随机变量,任取n 个值1,,n t t K 和任意的实数h ,则1,,n x x K 分布函数满足关系式1111(,,;,)(,,;,)n n n n n n F x x t t F x x t h t h =++L L L L则称{},t x t T ∈为严平稳过程。
在实际中,这几乎是不可能的。
由此考虑到是否可以把条件放宽,仅仅要求其数字特征(数学期望和协方差)相等。
定义2(宽平稳)若随机变量{},t x t T ∈的均值(一阶矩)和协方差(二阶矩)存在,且满足:(1)任取t T ∈,有()t E x c =; (2)任取t T ∈,t T τ+∈,有[(())(())]()E X t a X t a R ττ-+-=协方差是时间间隔的函数。
则称{},t x t T ∈ 为宽平稳过程,其中()R τ为协方差函数。
2 各种随机时间序列的表现形式白噪声过程(white noise ,如图1)。
属于平稳过程。
y t = u t , u t ~ IID(0, σ2)图1 白噪声序列(σ2=1)随机游走过程(random walk,如图11)。
属于非平稳过程。
y t = y t-1 + u t, u t~ IID(0, σ2)图2 随机游走序列(σ2=1)图3 日元兑美元差分序列图4股票综合指数图5随机趋势非平稳序列(μ= 0.1)图6 随机趋势非平稳序列(μ= -0.1)图7 对数的中国国民收入序列图8 中国人口序列3 延迟算子延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻,记B 为延迟算子,有,1p t p t x B x p -=∀≥。
ARMA模型及分析本次试验主要是通过等时间间隔,连续读取70个某次化学反应的过程数据,构成一个时间序列。
试对该时间序列进行ARMA模型拟合以及模型的优化,最后进行预测。
以下本次试验的数据:表1 连续读取70个化学反应数据47 64 23 71 38 64 55 41 59 48 71 35 57 4058 44 80 55 37 74 51 57 50 60 45 57 50 4525 59 50 71 56 74 50 58 45 54 36 54 48 5545 57 50 62 44 64 43 52 38 59 55 41 53 4934 35 54 45 68 38 50 60 39 59 40 57 54 23 资料来源:O’Donovan, Consec. Readings Batch Chemical Proces, ler et al.下面的分析及检验、预测均是基于上述数据进行的,本次试验是在Eviews 6.0上完成的。
一、序列预处理由于只有对平稳的时间序列才能建立ARMA模型,因此在建立模型之前,有必要对序列进行预处理,主要包括了平稳性检验和纯随机检验。
图1 化学反应过程时序图序列时序图显示此化学反应过程无明显趋势或周期,波动稳定。
见图1。
图2 化学反应过程相关图和Q统计量从图2的序列的相关分析结果:1. 可以看出自相关系数始终在0周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值在滞后2、3、4期是都为0,所以拒接原假设,即序列是非纯随机序列,即非白噪声序列(因为序列值之间彼此之间存在关联,所以说过去的行为对将来的发展有一定的影响,因此为非纯随机序列,即非白噪声序列)。
二、模型识别由于检验出时间序列是平稳的,且是非白噪声序列,因此可以建立模型,在建立模型之前需要识别模型阶数即确定阶数。