ARMA模型
- 格式:ppt
- 大小:527.00 KB
- 文档页数:29
ARMA模型AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),AR模型-模型简介所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。
ARMA模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础"混合"构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。
作为预测对象Yt受到自身变化的影响,其规律可由下式体现,模型原理误差项在不同时期具有依存关系,由下式表示,模型原理图由此,获得ARMA模型表达式模型原理图模型原理总图模型预测模型-常见预测模型预测是对未来作出的估计和推断,为了达到这一目的,往往要对现实世界(或称研究对象)进行模仿或抽象,这一过程称之为建模;用建模手段获得现实世界(对象)的一种表示和体现就称为模型。
一切客观存在的事物及其运动形态我们统称为现实;现实和未来是不一样的,但是通过对于现实的研究可以预见未来,这就是预测。
从信息运动的角度看,现实之中包含着未来,孕育着未来。
因此,一个"好"的模型不仅能表达现实而且应该能准确的反映现实的发展规律。
时至今日,预测模型已多达一百余种,常用的也有二三十种。
任何预测模型都有它自身的优缺点;至今,还没有一种既有极高的预测精度,又适用于任何现实问题(研究对象)的预测模型。
arma模型的数学表达式摘要:一、arma模型的简介- 自回归滑动平均模型(ARMA)的概念- ARMA模型在时间序列分析中的应用二、arma模型的数学表达式- ARMA模型的数学定义- 典型ARMA模型的数学表达式三、arma模型的性质与特点- ARMA模型的稳定性- ARMA模型的自相关函数和偏自相关函数四、arma模型的参数估计与预测- 矩估计方法- 极大似然估计方法- ARMA模型的预测方法正文:一、ARMA模型的简介自回归滑动平均模型,简称ARMA模型,是一种常用的时间序列分析模型。
它由自回归模型(AR)和滑动平均模型(MA)组合而成,能够同时考虑时间序列的自相关性和滑动平均性。
ARMA模型广泛应用于经济学、金融学、气象学等领域,用于预测和分析具有线性趋势的时间序列数据。
二、ARMA模型的数学表达式ARMA模型的数学定义如下:Y_t = c + Φ1Y_(t-1) + Φ2Y_(t-2) + ...+ Φpy_(t-p) + θ1X_(t-1) +θ2X_(t-2) + ...+ θqx_(t-q) + ε_t其中,Y_t表示需要分析的时间序列数据,c为常数项,Φi和θj为自回归和滑动平均系数,p和q分别为自回归和滑动平均的阶数,X_t为解释变量,ε_t为误差项。
典型的ARMA模型有:- AR(p)模型:当q=0时,ARMA模型退化为自回归模型。
- MA(q)模型:当p=0时,ARMA模型退化为滑动平均模型。
- ARMA(p,q)模型:当p≠0且q≠0时,为一般ARMA模型。
三、ARMA模型的性质与特点ARMA模型的稳定性主要取决于其系数Φ和θ的取值。
当|Φ(1+jω)|<1和|θ(1+jω)|<1时,ARMA模型是稳定的。
此外,ARMA模型的自相关函数(ACF)和偏自相关函数(PACF)可以用来分析时间序列的序列相关性和平均相关性。
四、ARMA模型的参数估计与预测ARMA模型的参数估计方法有矩估计和极大似然估计。
arma的特征方程一、介绍ARMA模型(Autoregressive Moving Average Model)是一种常用的时间序列分析方法,它将自回归模型(AR)和移动平均模型(MA)结合起来,能够较好地描述时间序列数据中的相关关系和随机波动。
ARMA模型的特征方程是其重要的数学表达式之一,本文将对ARMA模型及其特征方程进行详细介绍。
二、ARMA模型1. AR模型自回归模型是指时间序列数据中当前时刻的值与其过去若干个时刻的值之间存在线性相关关系。
具体地,假设$y_t$表示时间为$t$时刻的观测值,则AR(p)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t$$其中$\phi_1,\phi_2,\cdots,\phi_p$是待估计的系数,$\epsilon_t$是噪声项。
2. MA模型移动平均模型是指时间序列数据中当前时刻的值与其过去若干个噪声项之间存在线性相关关系。
具体地,假设$y_t$表示时间为$t$时刻的观测值,则MA(q)模型可以表示为:$$y_t=\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。
3. ARMA模型ARMA模型将自回归模型和移动平均模型结合起来,可以描述时间序列数据中的相关关系和随机波动。
具体地,假设$y_t$表示时间为$t$时刻的观测值,则ARMA(p,q)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\phi_1,\phi_2,\cdots,\phi_p$和$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。
自回归滑动平均模型(ARMA 模型,Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
定义ARMA模型(auto regressive moving average model)自回归滑动平均模型,模型参量法高分辨率谱分析方法之一。
这种方法是研究平稳随机过程有理谱的典型方法,适用于很大一类实际问题。
它比AR模型法与MA模型法有较精确的谱估计及较优良的谱分辨率性能,但其参数估算比较繁琐。
ARMA模型参数估计的方法很多:如果模型的输入序列{u(n)}与输出序列{a(n)}均能被测量时,则可以用最小二乘法估计其模型参数,这种估计是线性估计,模型参数能以足够的精度估计出来;许多谱估计中,仅能得到模型的输出序列{x(n)},这时,参数估计是非线性的,难以求得ARMA 模型参数的准确估值。
从理论上推出了一些ARMA模型参数的最佳估计方法,但它们存在计算量大和不能保证收敛的缺点。
因此工程上提出次最佳方法,即分别估计AR和MA参数,而不像最佳参数估计中那样同时估计AR和MA参数,从而使计算量大大减少。
基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,Z为误差。
作为预测对象Yt受到自身变化的影响,其规律可由下式体现,误差项在不同时期具有依存关系,由下式表示,由此,获得ARMA模型表达式:基本形式ARMA模型分为以下三种:自回归模型(AR:Auto-regressive)如果时间序列满足其中是独立同分布的随机变量序列,且满足:以及E() = 0则称时间序列为服从p阶的自回归模型。
ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。
ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。
具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。
在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。
AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。
对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。
在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。
MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。
对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。
yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。
通过将模型与已有数据进行拟合,可以得到模型的参数估计值。
然后,利用这些参数估计值,可以预测未来的观测值。
ARMA模型适用于没有明显趋势和季节性的时间序列数据。
自回归移动平均模型公式
自回归移动平均模型(ARMA)是一种经济时间序列分析方法,用于预测未来的观测值。
它结合了自回归模型(AR)和移动平均模型(MA)的特点,具有很好的预测性能。
ARMA模型的数学表达式为:
y_t = c + φ₁*y_(t-1) + φ₂*y_(t-2) + ... + φ_p*y_(t-p) + ε_t + θ₁*ε_(t-1) +
θ₂*ε_(t-2) + ... + θ_q*ε_(t-q)
其中,y_t 是时间 t 的观测值,c 是常数项,φ₁, φ₂, ..., φ_p 是自回归系数,表示 t-1, t-2, ..., t-p 时刻 y 值对 t 时刻 y 值的线性影响;ε_t 是时间 t 的误差项,θ₁, θ₂, ..., θ_q 是移动平均系数,表示 t-1, t-2, ..., t-q 时刻的误差对 t 时刻 y 值的影响。
ARMA模型的参数估计可以利用最大似然估计或最小二乘法等方法进行。
根据观测数据的特征,选择合适的 AR 和 MA 阶数是模型建立的关键。
ARMA模型的预测能力在实际应用中被广泛认可。
通过估计模型参数,可以利用过去的观测值来预测未来的观测值。
预测结果可以帮助决策者制定相应的策略和措施。
需要注意的是,ARMA模型在实际应用中可能面临一些限制。
例如,如果数据存在非平稳性或季节性等特征,需要对数据进行预处理或使用其他模型进行分析。
总之,自回归移动平均模型是一种常用的时间序列分析工具,通过结合自回归和移动平均的特点,提供了对未来观测值的预测能力。
在实际应用中,应根据数据特征选择合适的阶数,并结合其他方法进行验证和优化,以达到更好的预测效果。