平面与直线及两平面的相对位置关系
- 格式:ppt
- 大小:757.00 KB
- 文档页数:20
本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行;2)相交关系:直线与平面相交,两平面相交;3)垂直关系:直线与平面垂直,两一般位置直线垂直和两平面垂直。
§1 平行关系1.1 直线与平面平行直线与平面平行的几何条件是:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面。
由于EF∥BD,且BD 是ABC 平面上的一直线,所以,直线EF平行于ABC 平面。
[例1]试过K点作一水平线,使之平行于△ABC。
先在△ABC上作一水平线AD;再过点K,作kl∥ad,k′l′∥a′d′,则直线KL为所求。
[例2]试过K 点作一正平线,使之平行于P 平面。
因P V 是P 平面上特殊的正平线,所以过点K 作KL ∥P V ,即作k ′l ′∥PV ,kl ∥X 轴,则直线KL 为所求。
[例3]试过K 点作一铅垂面P (用迹线表示),使之平行于AB 直线。
由于铅垂面的H 投影为一直线,故若作铅垂面平行于AB 直线,则P H必平行于ab 。
因此,过k 作P H ∥ab ;过P X 作P V ⊥X 轴,则P 平面为所求。
1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
两平行平面和第三个平面相交,其交线一定互相平行。
因此,两平行平面的同面迹线一定平行。
如果两平面的两对同面迹线分别互相平行,则不能肯定两平面是互相平行的。
如果平面的两条迹线是平行直线时,则一般要看第三个投影才能确定。
P 平面平行于Q 平面P 平面不平行于Q 平面[例1]过点K 作一平面,使之与AB、CD两平行直线表示的平面平行1:在AB、CD 平面上,作一条和AB、CD 不平行的辅助线,如AC ;2:过K 作KL∥AB ;3:过K 作KM∥AC ,则平面LKM即为所求。
[例2]过K 点作Q 平面(用迹线表示),使之平行于P 平面。
直线、平面的相对位置本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行。
2)相交关系:直线与平面相交,两平面相交。
§1 平行关系1.1 直线与平面平行定理:若一直线平行于平面上的某一直线,则该直线与此平面必相互平行。
以,直线EF平行于ABC平面。
[例1]过已知点k ,作一条水平线平行于△ABC 平面。
步骤:1)在ABC 平面内作一水平线AD ; 2)过点K 作 KL ∥AD ; 3)直线KL即为所求。
d′d l′lk′k a′a b′e′bc X[例2]试判断:已知直线AB是否平行于四棱锥的侧表面SCF。
作图步骤:1)作c'm'∥a'b';2)根据CM在平面SCF内,作出cm;3)由于cm不平行于ab,即在该平面内作不出与AB平行的直线,所以,直线AB不平行于四棱锥侧表面SCF。
1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
所以:平面ABC 和平面DEF 相平行。
[例3]过点K作一平面,是其与平面ABC平行。
解:只要过K点作两条相交直线分别平行于△ABC的两条边,则这两条相交直线所确定的平面就是所求平面。
作图步骤:2)作KD∥AC(k'd'∥a'c',kd∥ac);a'cac'bb'k'kl'ld'dX1)作KL∥BC(k'l'∥b'c', kl∥bc); 3)平面KDL即为所求。
2.1 直线与平面相交2.1.1 利用积聚性求交点当平面或直线的投影有积聚性时,交点的两个投影中有一个可直接确定,另一个投影可用在直线上或平面上取点的方法求出。
⑴平面为特殊位置[例]求直线MN与平面ABC的交点K并判别可见性。
空间及投影分析平面ABC 是一正垂面,其V 投影积聚成一条直线,该直线与m'n'的交点即为K点的V 投影。