圆心角、弧、弦、弦心距之间的关系
- 格式:ppt
- 大小:1.12 MB
- 文档页数:33
圆心角、弧、弦、弦心距之间的关系圆心弧弦弦心距之间的关系[知识要点归纳]1. 圆不但是轴对称图形,而且也是中心对称图形,实际上圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
2. 圆心角:顶点在圆心的角叫做圆心角。
从圆心到弦的距离叫做弦心距。
3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
注意:要正确理解和使用圆心角定理及推论。
(1)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件虽然圆心角相等,但所对的弧、弦、弦心距不一定相等。
(2弦心距这四个概念与“所对”一词的含义,从而正确运用上述关系。
下面举四个错例:若⊙中,,则,O AC DB CE FD CEA DFB ⋂=⋂=∠=∠根据需要,选择有关部分,比如“等弧所对的圆心角相等”,在“同圆中,相等的弦所对的劣弧相等”等。
5. 1°的弧:因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把每一份这样的弧叫做1°的弧。
一般地,n °的圆心角对着n °的弧,n °的弧对着n °的圆心角,也就是说,圆心角的度数和它所对的弧的度数相等。
注意:这里说的相等是指角的度数与弧的度数相等。
而不是角与弧相等,在书写时要防止出现“∠=⋂AOB AB ”之类的错误。
因为角与弧是两个证明:(1)过O 点作OM ⊥AB 于M ,ON ⊥CD 于N∵PO 平分∠APC ∴OM =ON∴AB =CD (在同圆中,相等的弦心距所对的弦相等)此题还有几种变式图形,道理是一样的。
弦AB 、点重合。
若PO 弦AB 、 POAB =CD (2)在∠=∠∠=∠=⎧⎨⎪⎩⎪12OMP ONP OP OP∴≅∆∆POM PON AAS ()∴=PM PNAM AB CN CD AB CD ===1212,, ∴=AM CN∴+=+PM AM PN CN 即PA =PC()把作出来,变成一段弧,然后比较与的大小。
九年级上册数学圆的定理
九年级上册数学中有关圆的定理有很多,以下是其中一部分:
1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两
条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且
平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平
分弦所对的两条弧。
2.圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等
的圆心角所对的弧相等,所对的弦的弦心距相等。
推论:在同
圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的'
弦心距中有一组量相等,那么它们所对应的其余各组量都分别
相等。
3.过三点的圆:不在同一条直线上的三点确定一个圆。
三角形的
外接圆圆心(外心)是三边垂直平分线的交点。
以上信息仅供参考,建议查阅九年级上册数学教材或相关辅导资料,获取更全面和准确的信息。
教师姓名学生姓名学管师学科数学年级上课时间月日:00--- :00 课题弧,弦,圆心角,弦心距之间的关系教学目标定理的内容及其证明教学重难点定理的内容在证明中都是应用教学过程【学习准备】动手画一圆1)把⊙O沿着某一直径折叠,两旁部分互相重合观察得出:圆是对称图形;2)若把⊙O沿着圆心O旋转180°时,两旁部分互相重合,这时可以发现圆又是一个对称图形。
3)若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这是圆的不变性。
【解读教材】1、认识圆心角、弦心距、弧的度数1)圆心角的定义:。
2)弦心距的定义:。
3)弧的度数:①把顶点在圆心的周角等分成份时,每一份的圆心角是1°的角。
②因为在同圆中相等的圆心角所对的相等,所以整个圆也被等分成360份,这时,把每一份这样得到的叫做1°的弧。
③圆心角的度数和它们对的弧的相等。
2、圆心角、弧、弦、弦心距之间关系定理自制两个圆形纸片(要求半径相等),并且在两个圆中,画出两个相等的圆心角,探究:在⊙O中,当圆心角∠AOB=∠A′OB′时,它们所对的弧AB和A'B',弦AB和''BA,弦心距OM和''MO是否也相等呢?定理总结:在中,相等的圆心角所对的相等,所对的相等,所对弦的也相等。
ABM OA 'M 'B '3、命题的证明: 如图,已知:∠AOB=∠A ′OB ′,求证:弧AB 和A ′B ′,弦AB 和A ′B ′,弦心距OM 和OM ′相等。
问题:定理中去掉“在同圆或等圆中”这个前提,是否还有所对的弧、弦、弦心距相等这样的结论。
举出反例: 。
归纳推论:在 中,如果两个 、两条 、两条 或两条弦的 中有一组量相等,那么它们所对应的其余各组量都分别相等。
(简记:“知一推三”)【例题精析】 例题一:判断:1)圆心角相等,则圆心角所对的弧也相等; ( ) 2)在同圆或等圆中,弦的弦心距相等; ( ) 3)弦的弦心距相等,则弦相等; ( ) 4)相等的圆心角所对的弧相等。
奋飞教育---您值得信赖的一对一个性化辅导学校咨询:3651785627.2 圆心角、弧、弦、弦心距之间的关系【学习目标】1.通过观察实验,使学生了解圆心角的概念.2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.【主要概念】【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.【定理拓展】1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分○别相等2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分○别相等综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【解析】根据弧、弦、圆心角的关系知:等弦所对的弧不一定相等,圆心角相等,所对的弦相等缺少等圆或同圆的条件,所以也不对;弦相等所对的圆心角相等 1奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856缺少等圆或同圆的条件,弦所对的弧也不一定是同弧,所以不正确;等弧所对的弦相等是成立的.【答案】B【例2】如图2,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )图2A.3∶2B.∶2C.∶2D.5∶4【解析】作OE⊥CD于E,则CE=DE=1,AE=BE=2,OE=1.在Rt△ODE中,OD=2+12=2.在Rt△OEB中,OB=BE2+OE2=4+1=.∴OB∶OD=∶2.【答案】C【例3】半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE∶OF等于( )A.2∶1B.3∶2C.2∶3D.0【解析】∵AB为直径,∴OE=0.∴OE∶OF=0.【答案】D【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】1×360°=90°,∴弦所对的圆心角为90°. 4【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD⊥AB,OD=DB=AD.设OD=x,则AD=DB=x.在Rt△ODB中,∵OD=DB,OD⊥AB,奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=OD2+DB2+x2+x2=2 x.∴AB∶BC=1∶2=2∶2. ∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.图6(1)求证:AC=DB;(2)如果AB=6 cm,CD=4 cm,求圆环的面积.【分析】求圆环的面积不用求出OA、OC,应用等量代换的方法.事实上,OA、OC的长也求不出来.(1)证明:作OE⊥AB于E,∴EA=EB,EC=ED.∴EA-EC=EB-ED,即AC=BD.(2)解:连结OA、OC.∵AB=6 cm,CD=4 cm,∴AE=11AB=3 cm.CE=CD=2 cm. 22∴S环=π·OA2-π·OC2=π(OA2-OC2)=π[(AE2+OE2)-(CE2+OE2)]=π(AE2-CE2)=π(32-22)=5π( cm2).【例7】如图7所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA、OB.∵OA=OB,∴∠A=∠B.又∵AC=BD,∴△AOC≌△BOD.∴OC=OD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856证法二:如图(2),过点O作OE⊥AB于E,∴AE=BE.∵AC=BD,∴CE=DE.∴OC=OD. (1) (2)【例8】如图8,⊙O的直径AB和弦CD相交于点E,已知AE=6 cm,EB=2 cm,∠CEA=30°,求CD的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF,构造直角三角形,问题就容易解决.【解】过O作OF⊥CD于F,连结CO.∵AE=6 cm,EB=2 cm,∴AB=8 cm.∴OA=在Rt△OEF中,∵∠CEA=30°,∴OF=1OE=1(cm). 21AB=4(cm),OE=AE-AO=2(cm). 2 在Rt△CFO中,OF=1 cm,OC=OA=4(cm),∴CF=OC2 OF2=(cm). 又∵OF⊥CD,∴DF=CF.∴CD=2CF=2( cm).【例9】如图9,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB时,情况又怎样?奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856图9【分析】考查垂径定理及三角形、梯形相关知识.可适当添加辅助线.【解】当EF交AB于P时,过O作OM⊥CD于M,则CM=DM.通过三角形,梯形知识或构造矩形可证明AM=MF,∴EC=DF.当EF∥AB时,同理作OM⊥CD于M,可证四边形AEFB为矩形.所以EF=AB.且EM=MF,又由垂径定理有CM=MD,∴EC=DF.【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧AC=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等. 【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856【例13】为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的方案由圆和三角形组成(圆和三角形个数不限),并且使整个图案成对称图形,请你画出你的设计方案图(至少两种).【解析】设计的基本思路是等分圆心角,或等分圆周,取得轴(或中心)对称的对应点,适当画圆或连线,设计出一些适合要求的图案.【答案】根据题意画出如下方案供选用,如图,本题答案不唯一,只要符合条件即可.【例14】如图14,已知在⊙O中,AD是⊙O的直径,BC是弦,AD⊥BC,E为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程,只写出6条以上的结论)图14【解析】因AD⊥BC,且AD为直径,所以可以利用垂径定理得到一些结论,同时可证得AD垂直平分BC,据此又能得到许多结论.本题是2000年新疆建设兵团的模拟题,是一个开放性试题,开放到可以不写步骤,但它比书写证明一个结论步骤的题考查面更广,因为写出六个结论考生需要证明六个题.本题是一个考查考生发散思维能力和创新意识的好题.【答案】(1)BE=CE;(2)弧BD=弧CD;(3)弧AB=弧AC(4)AB=AC;(5)BD=DC;(6)∠ABC=∠ACB;(7)∠DBC=∠DCB;(8)∠ABD=∠ACD;(9)AD是BC的中垂线;奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856(10)△ABD≌△ACD;(11)O为△ABC的外心等等.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OCA和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC,∴CP=AB-PA-BC=1,AC=5.∴OA2-52=52-1.∴OA=7,即⊙O的半径为7 cm.【例16】⊙O的直径为50 cm,弦AB∥CD,且AB=40 cm,CD=48 cm,求弦AB和CD之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB和CD在圆心同侧时,如图(1),作OG⊥AB于G,交CD于E,连结OB、OD.∵AB∥CD,OG⊥AB,∴OE⊥CD.∴EG即为AB、CD之间的距离.∵OE⊥CD,OG⊥AB,∴BG=11AB=×40=20(cm), 22奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856DE=11CD=×48=24(cm). 22在Rt△DEO中,OE=OD2-DE2=252-242=7(cm).在Rt△BGO中,OG=OB2-BG2=252-202=15(cm).∴EG=OG-OE=15-7=8(cm).(2)(2)当AB、CD在圆心两侧时,如图(2),同理可以求出OG=15 cm,OE=7 cm,∴GE=OG+OE=15+7=22(cm).综上所述,弦AB和CD间的距离为22 cm或7 cm.【1】已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?【2】如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
圆心角、弧、弦、弦心距之间的关系(二)1. 弧在前文中我们已经介绍了圆心角和弧之间的关系。
在这篇文章中,我们将进一步探讨弦和弦心距与圆心角、弧之间的关系。
首先,我们先来了解一下什么是弧。
在一个圆上,两个点之间的曲线部分叫做弧。
弧的长度可以通过圆心角来计算,即弧长等于圆心角的大小乘以半径。
假设圆的半径为r,圆心角为θ,那么弧长L可以表示为:L = r * θ2. 弦接下来,我们来介绍一下弦。
弦是连接圆上的两个点的线段。
弦的长度可以通过圆心角来计算,通过以下公式计算:S = 2 * r * sin(θ/2)其中S表示弦的长度。
3. 弦心距弦心距是指从圆的中心点到弦的距离。
弦心距可以通过以下公式计算:D = 2 * r * cos(θ/2)其中D表示弦心距。
4. 圆心角与弦、弦心距的关系圆心角与弦和弦心距之间有一定的关系。
当圆心角的大小固定时,弦和弦心距的大小也是固定的。
具体可以通过以下公式进行计算:•弦长S与圆心角θ之间的关系:S = 2 * r * sin(θ/2)•弦心距D与圆心角θ之间的关系:D = 2 * r * cos(θ/2)可以看出,当圆心角θ固定时,弦长和弦心距都与半径r成正比。
也就是说,如果增加半径r的大小,弦长和弦心距也会增加;减小半径r的大小,弦长和弦心距也会减小。
另外,当圆心角θ固定时,弦长和弦心距之间也有一定的关系。
根据三角函数的性质,可以得到以下关系:S^2 + D^2 = (2r)^2该关系也被称为勾股定理。
5. 总结综上所述,圆心角、弧、弦和弦心距之间存在一定的关系。
圆心角决定了弧的长度,可以通过半径和圆心角的关系进行计算;弦的长度和弦心距都与圆心角成正比,可以通过圆心角和半径的关系进行计算。
另外,弦和弦心距之间也满足勾股定理。
通过理解和掌握这些关系,我们可以在解决相关问题时更加灵活和准确。
实际应用中,这些关系经常用于计算圆中的各个要素,对于解决与圆相关的问题非常有帮助。
弧弦圆心角之间的关系
圆心角、弧、弦之间的关系如下:
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
连接圆上任意两点的线段叫做弦(chord),在同一个圆内最长的弦是直径。
顶点在圆心上的角叫做圆心角。
圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。
相关计算公式:(R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长)
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R 为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。