九年级数学上册认识一元二次方程(2)
- 格式:doc
- 大小:736.50 KB
- 文档页数:7
一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。
3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
解一元二次方程课标解读一、课标要求包括配方法、公式法、因式分解法解一元二次方程.?义务教育数学课程标准〔 2022年版〕?对解一元二次方程一节相关内容提出的要求如下。
1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3.了解一元二次方程的根与系数的关系.二、课标解读1.学生已经学习一元一次方程的解法和实际应用,知道可以利用运算律、等式的根本性质,通过去括号、移项、合并同类项等求出它的解.学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元,将它们转化为一元一次方程.从数学知识的内部开展看,二元、三元一次方程组可以看成是对一元一次方程在“元〞上的推广.自然地,如果在次数上做推广,首先就是一元二次方程.类比二〔三〕元一次方程组的解法,可以想到:能否将一元二次方程转化为一元一次方程?如何转化?因此,利用什么方法将“二次〞降为“一次〞,这是本章学习的另一条主线.与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,可以根据方程的具体特点,选择相关的知识和方法,对方程进行求解.这是培养学生的思维品质,特别是思维的敏捷性、灵活性、深刻性的时机.根据?课程标准〔 2022年版〕?的规定,教科书着重介绍了配方法、公式法和因式分解法等一元二次方程的解法,而且限定解数字系数的一元二次方程.2.解一元二次方程的根本策略是降次,即通过配方、因式分解等,将一个一元二次方程转化为两个一元一次方程来解.具体地,根据平方根的意义,可得出方程和的解法;通过配方,可将一元二次方程转化为的形式再解;一元二次方程的求根公式,就是对方程配方后得出的.如能将分解为两个一次因式的乘积,那么可令每个因式为0来解.一元二次方程的三种解法——配方法、公式法和因式分解法各有特点.一般地,配方法是推导一元二次方程求根公式的工具.掌握了公式法,就可以直接用公式求一元二次方程的根了.当然,也要根据方程的具体特点,选择适当的解法,因式分解法就显示了这样的灵活性.配方法是一种重要的、应用广泛的数学方法,如后面研究二次函数时也要用到它.在推导求根公式的过程中,从到再到,是方程形式的不断推广,表达了从特殊到一般的过程;而求解方程的过程那么是将推广所得的方程转化为已经会解的方程,表达了化归思想.显然,这个过程对于培养学生的推理能力、运算能力等都是很有作用的.3.与?课程标准〔实验稿〕?相比,?课程标准〔 2022年版〕?重新强调了一元二次方程根的判别式和一元二次方程根与系数关系的重要性,要求“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等〞,“了解一元二次方程的根与系数的关系〞,这是需要注意的一个变化.这里不仅是为了一元二次方程理论的完整性,更重要的是为了解决初高中衔接问题.实际上,一元二次方程根的判别式、一元二次方程根与系数关系在高中数学中有着广泛的应用,是学习高中数学的必备根底.教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节中又给出两个实际问题,通过建立方程,并引导学生思考这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念.在这个过程中,通过归纳具体方程的共同特点,定义一元二次方程的概念,表达了研究代数学问题的一般方法;一般形式也是对具体方程从“元〞〔未知数的个数〕、“次数〞和“项数〞等角度进行归纳的结果;a ≠0的规定是由“二次〞所要求的,这实际上也是从不同侧面理解一元二次方程概念的契机.一元二次方程的解法,包括配方法、公式法和因式分解法等,是全章的重点内容之一.教科书在第二节中,首先通过实际问题,建立了一个最简单的一元二次方程,并利用平方根的意义,通过直接开平方法得到方程的解;然后将它一般化为,通过分类讨论得到其解的情况,从而完成解一元二次方程的奠基.接着,教科书安排“探究〞栏目,自然引出解并总结出“降次〞的策略,从而为用配方法解比拟复杂的一元二次方程做好铺垫,然后教科书重点讲解了配方的步骤,并归纳出通过配方将一元二次方程转化为后的解的情况.以配方法为根底,教科书安排了“探究〞栏目,引导学生自主地用配方法解一般形式的一元二次方程(a≠0),得到求根公式.最后,通过实际问题,获得一个显然可以用“提取公因式法〞而到达“降次〞目的的方程,从而引出因式分解法解一元二次方程,并在“归纳〞栏目中总结出几种解法的根本思路、各自特点和适用范围等.上述过程的思路自然,表达了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,并通过将一般性问题化归为特殊问题,获得这一类问题的解.这是具有普适性的数学思想方法.由于限定在实数范围,因此对求根公式,首先要关注判别式的讨论.这是使学生领悟分类讨论数学思想方法的契机.另一方面,求根公式不仅直接反映了方程的根由系数唯一确定〔系数a,b,c确定,方程就确定,其根自然就唯一确定〕,而且也反映了根与系数的联系.这里表达了一种多角度看问题的思想观点,而根与系数的联系表达非常简洁.教科书仍然采用从特殊到一般的方法,先讨论“将方程化为的形式,,与p,q之间的关系〞,在“+,〞的启发下,利用求根公式求和,进而得到根与系数的关系.让学生学习根与系数的关系,不仅能深化对一元二次方程的理解,提高用一元二次方程分析和解决问题的能力,而且也是培养学生发现和提出问题的能力的时机.根与系数的关系是求根公式的自然延伸,得出它的过程并不复杂,而其中蕴含的思想很重要.所以,对于根与系数的关系,教科书着重在其数学思想的启发和引导上,而对用根与系数的关系去解决问题,严格地控制了难度.。
实际问题与一元二次方程第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•x×100).则每件平均利润应是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例 1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页.三、巩固练习1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=2863 2.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6 750元.(2)y=(x-40)[500-10(x-50)]=-10x2+1 400x-40 000(3)由于水产品不超过10 000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.21.1 一元二次方程【学习目标】1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力.2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.【重点难点】重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.【自主先学】请观察一下,下列哪些是方程?⑴⑵2x+y=16⑶3x+y -1 ⑷3x-4=2x+6一元一次方程的概念:一元一次方程的一般形式:【课堂活动】一、请根据题目意思列出方程,并化简:1.要设计一座高2 m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,求雕像的下部应设计为高多少米?2.有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?二、这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的有什么共同点呢?不同点呢?对照一元一次方程,写出一元二次方程的概念:一元二次方程的一般式:练一练:1、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)4x(x+2) =25 (2)(3 x -2)(x +1)=x -3 (3)x(x-4)=02、(小组合作)已知关于x的方程(a2— 4)x 2— ax +2x+a —2=0⑴若此方程是一元一次方程,则a的取值范围是什么?⑵若此方程是一元二次方程,则a的取值范围是什么?三、下面哪些数能使方程x2–x– 6 = 0 成立?-3 , -2 ,-1 ,0 , 1, 2, 3一元二次方程的解 : 叫作一元二次方程的解(又叫做根).练一练:若x =2是方程 的一个根,你能求出a 的值吗?四、课堂小结:一元二次方程的概念,一元二次方程的一般式,一元二次方程的解. 2450ax x +-=。
新北师大版九年级上册第二章一元二次方程全章教案(总21页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章 一元二次方程 认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。
通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。
学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程什么是二元一次方程 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。
苗圃的长和宽各是多少?设未知数列方程。
你能将方程化成ax 2+bx+c=0的形式吗?阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式二次项及二次项系数、一次项及一次项系数、常数项2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。
2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。
如果设中间的一个数为x ,列 方程并化成一般形式。
3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。
如果设梯子底端滑动x m ,列 方程并化成一般形式。
2.知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.8一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练1、判断下列方程是不是一元二次方程,并说明理由。
编号: 79542258933684215856544447 学校: 课程胜市会五声镇田进小学* 教师: 诏证第* 班级: 滑行参班*
第二章 一元二次方程
2.1 认识一元二次方程(2)
第1题. 若方程2231kx x x +=+是一元二次方程,则k 的取值范围是
.
第2题. 下列方程中,不是整式方程的是(
)
A.
2
1523
x x += 3
720x +-= C.221
3x x
+=
D.1725
x -
=
第3题. 下列各方程中一定是关于x 的一元二次方程的是( )
A.234x x m =+ B.280ax -= C.2
0x y +=
D.560xy x -+=
第4题. 若方程2
(1)1m x -=是关于x 的一元二次方程,则m 的取值范围是(
)
A.1m ≠ B.m ≥0 C.0m ≥且1m ≠ D.m 为任意实数
第5题. 把下列方程整理成一般形式,然后写出其二次项系数,一次项系数及常数项. (1)232232
m x mx m x nx px q +=+++
(2)2
)(3)x x x =-
第6题. 设33100a x x -+-=和34680b x x -++=都是一元二次方程,求
20042002()()a b a b -+的值.
第7题. 关于x 的方程1
(1)10k k x kx -+++=是一元二次方程,求k 的值.
第8题. 方程2
14y y --=-化为一般形式后,二次项系数是 ,一次项系数是
,常数项是
.
第9题. 若2950ax x -+=是一元二次方程,则不等式360a +>的解集是 .
第10题. 下列方程中,不是整式方程的是(
)
A.2
1523
x x += B.3
2720x x +-= C.221
3x x
+=
D.1725
x -
=
第11题. 若方程2
(1)1m x mx -+=是关于x 的一元二次方程,则m 的取值范围是(
)
A.1m ≠
B.m ≥0
C.0m ≥且1m ≠
D.m 为任意实数
第12题. 求关于x 的一元二次方程22
2(31)(1)m mx m x m x -+-=+的二次项系数、一次项系数及常数项.
第13题. 下列各方程中属于一元二次方程的是( ) (1)
214y y -= (2)22t = (3)21
3x
= (420x x -= (5)32
5x x -= (6)2
2
(1)20x x ++-=
A.(1)(2)(3). B.(2)(3)(4). C.(1)(2)(6). D.(1)(2).
第14题. 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项:
(1)22469154x x x x +=-+; (2)2
(31)(2)51x x x x -+=-++ (3)2
2(23)2(5)41t t +--=-.
第15题. 不解方程,估计方程2410x x --=的根的大小(精确到0.1)
第16题. 下列方程中属于一元二次方程的是( ) A.2
2(3)4x x
-=-+
. B.0ax b +=. C.2
25x x -=. D.121x x -=+.
第17题. 关于x 的一元二次方程2
2
(32)0x m x n n ---=中,二次项系数、一次项系数、常数项分别是( )
A.1,3mn ,22mn n -. B.1,3m -,22mn n -. C.1,m -,2n -. D.1,3m ,22mn n -.
第18题. 在下列方程中一定是关于x 的一元二次方程的是( ) A.29ax bx c ++=. B.3560k x k ++=.
C.
23320342
x x --=. D.2(3)230m x x -+-=.
一元二次方程
一般形式
二次项系数
一次项系数
常数项
224x x -= 2250y y -=
24x = 2(3)x x x =-
第20题. 若方程210ax bx c ++-=是一元二次方程,则必须满足条件 . 若此方程是一元一次方程,则必须满足条件 .
第21题. 当k 时,方程2223kx x x -=-是关于x 的一元二次方程.
第22题. 关于x 的一元二次方程(3)(3)2(2)4x x a x a -+-+=,化成一般形式是 .二次项系数是 ,一次项系数是 ,常数项是 .
第23题. 解方程2214133x x x x -+=-时,设21
x
y x =-,则原方程化成关于y 的整式方程是 .
.
第24题. 已知a ,b ,c 均为有理数,判定关于x 的方程22
3521ax x x x c b --++=-是不是一元二次方程?如果是,请写出二次项系数、一次项系数及常数项.如果不是,请说明理由.
第25题. m 为何值时,关于x 的方程2
(2)31m
m x mx m +--=是一元二次方程?写出
这个一元二次方程的一般形式.
第26题. 下列各式哪个不是二次三项式( ) A.2
(0)ax bx c a ++≠,a ,b ,c 为实数
B.22
285x xy y +-
C.21
32
x x -- D.2
1
32x x --
第27题. 将方程2
352x x x +=-化成一般形式是 .
第28题. 用一块长宽分别为8cm ,6cm 的矩形薄铁片,在四个角处裁去四个相同的小正方形,再折叠成一个无盖且底面积为15cm 2
的长方体盒子,据上述题意,可得方
程: .
第29题. 若1x =-是2
0(0)ax bx c a ++=≠的一个解,你能求出b a c --的值吗?
第30题. k 时,关于x 的方程2
2
(1)(1)10k x k x ---+=是一元二次方程.
第31题. 某种洗衣机的包装箱外形是长方体,其高为1.2米,体积 为1.2立方米,底面是正方形,则该包装箱的底面边长为 米.
1.答案:3k ≠
2.答案:C
3.答案:A
4.答案:(1)2
()0m n x px q ---=,二次项系数为:m n -,一次项系数p -,常数项为q -.
(2)22630x x --=,二次项系数为2,一次项系数为6-,常数项为3-. 5.答案:C 6.答案:32342a b -=⎧⎨
-=⎩1
2a b =⎧⎨
=⎩
∴ 2004200222002220022
2002
(()())()]()()(12)(12)322
a b a b a b a b a b a b a b +==-=-=-
7.答案:1231
31.10k k k k k k ⎧-===-⎧⎪=⎨
⎨≠-+≠⎪⎩⎩
或,,∴∴
8.答案:1,4-,1 9.答案:2a >-且0a ≠
10.答案:C 11.答案:C
12.答案:解:将方程2
2
2(31)(1)m mx m x m x -+-=+化为一般式:
223(31)0mx m x m m -++-=.
∵已知该方程是一元二次方程,所以0m ≠.
此方程的二次项系数为3m ,一次项系数为(31)m -+,常数项为2m m -. 13.答案:D 题号 一般形式
二次项系数
一次项系数
常数项 (1) 252140x x -+= 5 21-
4
(2) 2430x -= 4 0 3-
(3)
2160t t +=
1
16
15.答案:解:分别取与时,
有:2
(0.3)4(0.3)10.09 1.210.290--⨯--=+-=>,
2(0.2)4(0.2)10.160----=<.于是,方程2410x x --=必有一根在0.3-与0.2-之间.
分别取 4.2x =与 4.3x =时,有:24.24 4.210.160-⨯-=-<,
24.34 4.310.290-⨯-=>
因此,方程2410x x --=必有一根在4.2与4.3之间.
16.答案:C 17.答案:B 18.答案:C 19.答案: 一元二次方程
二次项系数
一次项系数
常数项
224x x -= 2 1- 4-
2250y y -=
5 2-
24x = 1 0
4-
2(3)x x x =-
1
32--
20答案:0a ≠;0a =,0b ≠ 21.答案:3k ≠-
22.答案:一般形式是22890x ax a ++-=;二次项系数是1,一次项系数是2a ,常数项是
89a -.
23.答案:2
3410y y -+=
24.答案:是一元二次方程,二次项系数为2a +,一次项系数为35--,常数项为
1c b -+.
25.答案:2m =,一般形式为22232210x x ---=
26.答案:D
27.答案:2
5(21)30x x -=
28.答案:(82)(62)15x x --= 29.答案:1 30.答案:1≠±
31.答案:0,将1x =-代入2
0ax bx c ++=,得0a b c -+=,从而0b c a --=。