超临界流体萃取原理及其特点
- 格式:doc
- 大小:147.50 KB
- 文档页数:12
超临界萃取原理超临界萃取是一种高效的分离和提取技术,广泛应用于化工、制药、食品等领域。
其原理是利用流体在超临界状态下的特性,通过调控温度和压力,使溶剂既具有气体的扩散性,又具有液体的溶解性,从而实现对物质的高效分离和提取。
超临界萃取的原理可以简单描述为,当溶剂的压力和温度高于其临界点时,溶剂的密度和介电常数会急剧减小,使其具有较高的扩散性和溶解性。
在这种状态下,溶剂能够快速渗透到被提取物质的内部,将目标成分高效地溶解出来。
随后,通过降低温度和压力,使溶剂恢复到常规状态,被提取物质则会以较高纯度的形式析出,完成分离和提取过程。
超临界萃取的原理具有以下几个特点:1. 高效性,超临界溶剂具有较高的扩散性和溶解性,能够快速且彻底地溶解目标成分,从而实现高效分离和提取。
2. 温和性,超临界萃取过程中无需添加化学试剂,避免了对被提取物质的破坏,保证了提取产物的纯度和活性。
3. 环保性,超临界萃取不产生有害化学废物,溶剂可以循环利用,符合绿色化工的发展理念。
4. 广泛适用性,超临界萃取可以适用于多种物质的提取,包括天然产物、药物、色素、香料等,具有较高的适用性和灵活性。
超临界萃取技术在化工、制药、食品等领域有着广泛的应用。
例如,在天然产物提取方面,超临界萃取可以高效地提取植物精油、天然色素等,保留了原料的天然香味和色泽。
在制药领域,超临界萃取可以用于药物的提取和纯化,保证了药物的纯度和活性。
在食品工业中,超临界萃取可以用于咖啡因、香料等物质的提取,保证了食品的品质和安全。
总之,超临界萃取是一种高效、温和、环保且具有广泛适用性的分离和提取技术,将在未来得到更广泛的应用和发展。
超临界流体萃取法名词解释一、什么是超临界流体萃取法1、超临界流体萃取法(superconductiv):利用具有临界压力和温度的液态或气态物质作为萃取剂,使其在临界压力下进行萃取。
超临界萃取可使一些难溶于有机溶剂的物质如萜类、生物碱等以萃取相析出而达到分离提纯的目的,也可以从矿物质中萃取有用元素,如萃取铅、锌、金等。
2、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
二、超临界流体萃取的原理1、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
三、超临界流体萃取的装置简介2、超临界流体萃取机理:分散在液体中的固体颗粒与水接触,将溶解度极低的溶质微粒子吸附在固体颗粒表面上形成吸附层,再经分离回收其他产品。
一般认为超临界状态下溶质微粒间的相互作用主要是静电作用。
由于超临界流体具有独特的物理化学性质,所以在萃取过程中一般情况下,溶质被包容在固体颗粒周围,形成类似于海绵状结构,超临界流体中的溶质粒子就象海绵吸水一样吸附了水分子,使溶质以自由流动的形式移动到萃取相。
四、超临界流体萃取技术应用:通过萃取精油,合成高纯度单方或复方精油;从天然植物中提取维生素、氨基酸等营养保健品;萃取香料中有用成分,制备具有特殊香气的精油;从海洋生物中提取活性物质,制取生物药物等。
超临界流体萃取法原理
超临界流体萃取 (Supercritical Fluid Extraction, SFE) 是一种分离提取化合物的方法,它利用超临界流体的特性可以同时具有气相和液相的特性,可以有效地溶解物质,并实现快速、高效的提取过程。
超临界流体是指在临界点以上的温度和压力条件下处于气-液两相临界状态的流体。
超临界流体具有高扩散性、低黏度、低表面张力等特点,可与溶质发生快速的质量传递,提高提取速度和效率。
超临界流体萃取法的原理是利用超临界流体在超临界状态下的溶解度随温度和压力的变化而变化的特性。
首先,选择适当的溶剂作为超临界流体,常用的超临界流体有二氧化碳和丙烷。
溶解度的调控可以通过控制温度和压力来实现。
在超临界流体萃取过程中,溶液中的溶质被溶解在超临界流体中,形成溶液。
然后,通过改变温度和压力,使超临界流体发生相变,转化为气相,从而实现溶质的分离提取。
提取后的溶质可以通过降温和减压将其回收。
超临界流体萃取法广泛应用于天然产物、食品、药物、环境等领域的提取分离过程中。
其优点包括操作简便、提取速度快、无需使用有机溶剂、对萃取物的损伤小等。
此外,超临界流体的可调节性使得可以根据不同物质的特性来进行选择性提取,提高提取效果。
总而言之,超临界流体萃取法利用超临界流体的特性进行溶解和分离,是一种高效、环保的提取方法,具有较广泛的应用前景。
超临界流体萃取的原理和应用一、超临界流体萃取的原理超临界流体萃取是一种利用超临界流体对物质进行分离和提取的技术。
所谓超临界流体,是指在高于其临界温度和临界压力条件下的流体状态。
在这种状态下,超临界流体既具有气体的低粘度和高扩散性,又具有液体的高溶解力和可控性。
超临界流体萃取的基本原理是通过调节温度和压力,使超临界流体的密度和溶解力发生变化,从而实现对目标物质的选择性提取。
超临界流体萃取的主要原理包括溶解度变化原理、扩散速率变化原理和传质机理变化原理。
1. 溶解度变化原理超临界流体的溶解力随温度和压力的变化而变化。
通过调节温度和压力,可以使溶解度增大或减小,从而实现对目标物质的选择性提取。
当温度和压力适当增大时,超临界流体的溶解力会增大,有助于提高目标物质的萃取效率。
2. 扩散速率变化原理超临界流体的扩散速率比常规溶剂要快得多。
基于扩散速率变化原理,超临界流体可以更快地进入被提取物质的内部,提高物质的提取速率。
此外,超临界流体的扩散速率还受到温度和压力的影响,可以通过调节参数来控制提取速率。
3. 传质机理变化原理超临界流体的传质机理与常规溶剂有所不同。
超临界流体通过质量传递和热传递来实现物质的提取和分离。
传质机理的变化使得超临界流体的提取效率更高,同时还可以减少对环境的影响。
二、超临界流体萃取的应用超临界流体萃取技术在许多领域都有广泛的应用,主要包括化学、食品、药物和环境等。
1. 化学领域超临界流体萃取技术在化学合成、催化反应、分析测试等方面有着重要的应用。
超临界流体可以作为溶剂或反应介质,用于提取和分离化学物质,提高反应速率和选择性,减少催化剂的使用量。
2. 食品领域超临界流体萃取技术可以用于提取天然食品成分,如咖啡因、花青素、香料等。
相比传统的有机溶剂提取方法,超临界流体萃取技术具有高效、环保、无残留等优点,被广泛应用于食品加工和营养保健等领域。
3. 药物领域超临界流体萃取技术在药物研发、制备和分析中有着重要的应用。
超临界流体萃取技术超临界流体概念任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。
三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。
在临界温度以上,无论怎样加压,气态物质绝不会被液化。
当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。
超临界流体萃取原理及其特点所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。
SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。
与其它常规分离方法相比,SFE具有以下特点[13]:1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质;可在较低温度和无氧环境下操作,分离、精制热敏2)选择适宜的溶剂如CO2性物质和易氧化物质;3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提取有效成分;4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回收溶剂无相变过程,能耗低;5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。
SFE存在的不足有[14]:1) 高压下萃取,相平衡较复杂,物性数据缺乏;2) 高压装置与高压操作,投资费用高,安全要求亦高;3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环;4) 超临界流体萃取过程固体物料居多,连续化生产较困难。
超临界流体的选择可用作SFE的溶剂很多,不同的溶剂其临界性质各不相同,而不同的萃取过程要求采用不同的溶剂。
超临界萃取1. 引言超临界萃取是一种利用超临界流体作为萃取介质的分离技术。
超临界流体是指在超过其临界点(临界温度和临界压力)的条件下存在的物质状态,表现出独特的物理和化学性质。
这种技术已经在化学、食品、制药和环境保护等领域得到广泛应用。
本文将介绍超临界萃取的原理、应用和优缺点。
2. 超临界萃取原理超临界萃取的原理基于超临界流体的特殊性质。
在超临界条件下,流体的密度和溶解性都显著增强,从而增强了其对目标物质的溶解能力。
超临界萃取可以选择性地提取目标物质,同时不引入有毒或有害的溶剂。
超临界萃取的基本步骤包括: - 原料准备:选择合适的原料,通常为植物或动物组织。
- 超临界流体的选择:根据目标物质的特性选择合适的超临界流体,常用的有二氧化碳和乙醇。
- 超临界萃取设备:使用高压容器和恒温器来实现超临界条件。
- 萃取过程:将原料置于超临界流体中,通过参数控制溶解和分离的过程。
- 分离和回收:通过减压和蒸发等方法将目标物质从超临界流体中分离提取,并回收使用。
3. 超临界萃取的应用3.1 化学领域超临界萃取在化学合成中的应用越来越广泛。
它可以用于分离和纯化有机化合物,提取天然产物和制备新型材料。
由于超临界流体可调节的溶解能力,可以选择性地提取目标物质,避免了传统方法中使用大量有机溶剂带来的环境问题。
3.2 食品工业在食品工业中,超临界萃取被广泛用于营养成分的提取,如咖啡因从咖啡中的提取,花青素从葡萄皮中的提取等。
超临界萃取不仅能够提取目标物质,还可以保留原料的营养成分,提高产品的质量。
3.3 制药领域超临界萃取在制药领域中也有重要的应用。
它可以用于药物的分离和提纯,提高药物的纯度和效果。
此外,超临界萃取还可以用于药物的微粒化和载药体系的制备,提高药物的生物利用度和稳定性。
4. 超临界萃取的优缺点4.1 优点•高效:超临界流体具有较高的扩散速度和溶解能力,能够在较短时间内完成目标物质的提取。
•环保:超临界流体通常采用二氧化碳等无毒无害的物质,不会对环境和人体健康造成危害。
超临界流体萃取技术引言超临界流体萃取技术(Supercritical fluid extraction, SFE)是一种利用超临界流体对固体样品进行萃取的过程。
超临界流体是介于气体和液体之间的状态,在这种状态下具有类似于气体的低粘度和高扩散性,以及类似于液体的高溶解性。
超临界流体萃取技术在许多领域中得到了广泛应用,例如食品、医药、化妆品等行业。
超临界流体的特性超临界流体具有以下几种独特的特性:1.低粘度:超临界流体的黏度比液体低,因此在流体中的质量传递速度更快。
2.高扩散性:超临界流体的粒子间距比液体小,因此分子在流体中的扩散速度更快。
3.高溶解性:超临界流体具有较高的溶解度,能够更好地溶解固体样品。
4.可调性:超临界流体的溶解度可以通过调整温度和压力来控制,从而实现对萃取过程的精确控制。
超临界流体萃取技术的原理超临界流体萃取技术的原理基于超临界流体的特性。
在该技术中,固态样品首先与超临界流体接触,随着温度和压力的上升,样品中的目标化合物被溶解在超临界流体中。
然后,通过降低温度和压力,从超临界流体中分离出目标化合物。
超临界流体萃取技术常用的超临界流体包括二氧化碳(CO2)和乙烷(C2H6)等。
这些超临界流体在超临界状态下具有较好的溶解性和选择性,能够有效地提取出目标化合物。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域中得到了广泛应用。
食品行业超临界流体萃取技术可以用于食品中有机溶剂残留的提取。
超临界流体能够高效地去除有机溶剂,同时保持食品的营养成分和风味。
医药行业超临界流体萃取技术可以用于药物成分的提取和纯化。
超临界流体能够高效地提取药物成分,同时减少对环境的污染。
化妆品行业超临界流体萃取技术可以用于提取植物精华和天然色素,用于化妆品的生产。
环境监测超临界流体萃取技术可以用于环境中有机污染物的提取和测定。
超临界流体能够高效地提取有机污染物,并且对环境无毒性。
超临界流体萃取技术的优势超临界流体萃取技术相比传统的溶剂提取方法具有以下几个优势:•高效性:超临界流体能够高效地提取目标化合物,减少提取时间和成本。
超临界流体萃取法超临界流体萃取法,又称为超临界流体提取法,是一种先进的绿色化学分离技术。
它利用临界点附近的高压高温条件下的超临界流体来进行物质的萃取、分离和纯化,具有高效、环保等显著优势。
本文将介绍超临界流体萃取法的原理、应用及前景展望。
## 原理与基础知识超临界流体是介于气态和液态之间的状态,在高压高温下具有较高的溶解能力和扩散能力,因此在化学分离领域具有独特的优势。
超临界流体萃取法的基本原理是通过控制温度和压力,将物质置于超临界条件下,使其与超临界流体发生相互作用,实现目标物质的萃取。
这种方法避免了传统有机溶剂的使用,减少了环境污染,符合绿色化学的发展方向。
## 超临界流体的特性### 1. 高溶解度超临界流体的溶解度随压力和温度的变化呈现出极大的变化,使其能够高效地溶解多种物质,包括极性和非极性物质。
### 2. 温和条件相比传统的溶剂萃取方法,超临界流体萃取法所需的温度和压力通常较低,有利于保护热敏感物质的活性。
### 3. 选择性通过调节超临界流体的性质和条件,可以实现对特定物质的选择性萃取,从而达到高效分离的目的。
## 应用领域### 1. 天然产物提取超临界流体萃取法在提取天然产物中得到了广泛的应用,如植物提取物、海洋生物活性成分等。
其高效、温和的特性使其能够保留大部分活性成分,同时减少了杂质的同时萃取。
### 2. 药物制备在药物制备领域,超临界流体萃取法可以用于分离和纯化药物成分,提高药物的纯度和活性,同时避免了有机溶剂残留的问题。
### 3. 食品工业在食品工业中,超临界流体萃取法可以用于提取食品中的香精、色素等活性成分,保证食品的天然和健康。
### 4. 环境保护由于超临界流体萃取法的绿色环保特性,它在处理废水、废弃物等方面也有着广泛的应用前景。
## 前景展望随着绿色化学的发展和对环保要求的日益提高,超临界流体萃取法将在化学工业、生物工程、医药等领域得到更广泛的应用。
同时,随着研究的深入,超临界流体萃取技术也将不断创新和完善,为各个领域提供更为高效、环保的分离方法。
超临界流体萃取技术及其应用简介一、本文概述《超临界流体萃取技术及其应用简介》一文旨在全面介绍超临界流体萃取(Supercritical Fluid Extraction,简称SFE)这一先进的分离和提取技术,以及其在各个领域的广泛应用。
本文将概述超临界流体萃取技术的基本原理、特点、优势以及在实际应用中的成功案例,从而揭示这一技术在现代科学和工业中的重要地位。
超临界流体萃取技术利用超临界流体(如二氧化碳)的特殊性质,通过调整压力和温度实现对目标组分的有效提取。
与传统的提取方法相比,超临界流体萃取具有操作简便、提取效率高、溶剂残留低、环境友好等诸多优点,因此受到广泛关注。
本文将从理论基础入手,详细阐述超临界流体萃取技术的原理及其在不同领域的应用。
通过案例分析,我们将展示这一技术在医药、食品、化工、环保等领域取得的显著成果,以及其对现代工业发展的推动作用。
我们将对超临界流体萃取技术的发展前景进行展望,以期为读者提供全面的技术信息和应用参考。
二、超临界流体萃取技术的基本原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种先进的提取分离技术,其基本原理是利用超临界状态下的流体作为萃取剂,从目标物质中分离出所需组分。
超临界流体指的是在温度和压力超过其临界值后,流体既非液体也非气体的状态,具有介于液体和气体之间的独特物理性质,如密度、溶解度和扩散系数等。
在超临界状态下,流体对许多物质表现出很强的溶解能力,这主要得益于其特殊的物理性质。
通过调整温度和压力,可以控制超临界流体的溶解能力和选择性,从而实现对目标组分的有效提取。
常用的超临界流体包括二氧化碳(CO₂)、乙烯、氨等,其中二氧化碳因其无毒、无臭、化学性质稳定且易获取等优点,被广泛应用于超临界流体萃取中。
在超临界流体萃取过程中,目标物质与超临界流体接触后,其中的目标组分因溶解度差异而被选择性溶解在超临界流体中。
第二章文献综述超临界流体萃取技术超临界流体概念任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。
三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。
在临界温度以上,无论怎样加压,气态物质绝不会被液化。
当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。
超临界流体萃取原理及其特点所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。
SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。
与其它常规分离方法相比,SFE具有以下特点[13]:1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质;2)选择适宜的溶剂如CO2可在较低温度和无氧环境下操作,分离、精制热敏性物质和易氧化物质;3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提取有效成分;4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回收溶剂无相变过程,能耗低;5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。
SFE存在的不足有[14]:1) 高压下萃取,相平衡较复杂,物性数据缺乏;2) 高压装置与高压操作,投资费用高,安全要求亦高;3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环;4) 超临界流体萃取过程固体物料居多,连续化生产较困难。
超临界流体的选择可用作SFE的溶剂很多,不同的溶剂其临界性质各不相同,而不同的萃取过程要求采用不同的溶剂。
可用作超临界萃取剂的流体主要有乙烷、乙烯、丙稀、二氧化碳等。
采用SFE技术提取天然物质,CO2是人们首选的溶剂,因为CO2作为一种溶剂,具有如下的主要优点[15]:1) CO2与大多数的有机化合物具有良好的互溶性,而CO2液体与萃出物相比,具有更大的挥发度,从而使萃取剂与萃出物的分离更容易;2) 选择性好,超临界CO2对低分子量的脂肪烃,低极性的亲脂性化合物,如酯、醚、内脂等表现出优异的溶解性能;3) 临界温度℃)低,汽化焓低,更适合于工业化生产;4)临界压力低,较易达到;5)化学惰性,无燃烧爆炸危险,无毒性,无腐蚀性,对设备不构成侵蚀,不会对产品及环境造成污染;且价格便宜,较高纯度的CO2容易获得;6)在萃取体系中,高浓度的CO2对产品具有杀菌、防氧化的作用。
超临界CO2萃取技术的国外研究进展早在100多年前英国的Thomas Andrews[16]就发现超临界现象。
1879年Hannay[17]等人发现了SCF与液体一样,可以用来溶解高沸点的固体物质。
此后不少学者[18,19]研究了固体物质在SCF中的溶解度,初步意识到SCF具有分离能力。
1962年,德国的Zosel[20]博士首先发现SCF可用来分离混合物,是一种分离剂,这一见解奠定了以后SFE过程开发的基础。
此后,作为一种新型分离技术,SFE 的应用研究便蓬勃兴起。
1978年联邦德国进行了SFE工业化装置的研究[21],并首先建成从咖啡豆脱除咖啡因的超临界CO2萃取工业化装置[22]。
由于超临界CO2兼有气体和液体的特性,溶解能力强,传质性能好,加之CO2临界温度低、无毒、惰性、无残留等一系列优点,所以新工艺过程可以生产出能保持咖啡原有色、香、味的脱咖啡因咖啡,这是其他分离技术都无法达到的效果。
同年在西德ESSEN举行了第一次“超临界流体萃取”的专题讨论会,从基础理论、工艺过程和设备等方面讨论该项新技术,表明了SFE的研究已经进入了一个系统的崭新的历史时期。
其后,此技术在西方各国得到了广泛的应用和发展,指导学科进展的综述性文章、科学和技术方面的专著或论文集也陆续发表、出版[23-26]。
其中在天然产物萃取中的应用最为广泛,范围涉及到食品、香料、医药、化工等领域[27-29]。
超临界CO2萃取令人感兴趣的特点是提取分离天然产物中热敏性物质。
植物中含有较高价值的活性组分,广泛应用于调味品、香料、医药等领域。
近年来超临界CO2萃取植物中有效成分有了较大进展,一些物系已实现了工业化生产。
用超临界CO2萃取咖啡豆中的咖啡因是实现工业化生产的第一个SFE工艺,目前已实现了大规模生产。
德国的Zesst[30]博士开发了从咖啡豆中用超临界CO2萃取咖啡因的专题技术,被世界各国普遍采用。
Stahl[31]等人对许多药用植物采用超临界CO2萃取法对其有效成分(如各种生物碱,芳香性组分)实现了满意的分离,并获得专利。
Rao[32]等人进行了超临界CO2萃取茉莉花的研究,其浸膏收率和质量比常规方法优越。
Carbonell[33]讨论了超临界CO2萃取的大规模生产装置,并萃取了生姜、黑/绿/白胡椒、香兰草,将萃取的芳香化合物用于脱醇葡萄酒。
Caragay[34]等人对超临界CO2在从天然物中提取香料领域中应用进行了综述。
国际上在SFE技术的应用开发研究方面进展很快,出现了一些工业化生产的SFE装置,以及SFE技术与分析技术相结合的实验装置[35,36]。
德、美、英、日和瑞士等国在此技术上作了大量的工作,并推出各具特色的SFE装置,综合起来有如下特点[12]:1) 系列化装置类型有试验装置、小型装置、中型装置、大型装置;2) 多功能化SFE装置与快速分析装置相结合,既可用于生产,又可用作软件开发,即新产品开发;3) 向适用、普及和廉价方向发展目前设备制造厂家除注重设备的适用性和普及性外,还尽量采用先进技术,向价廉物美的方向发展。
伴随着SFE技术应用研究的发展,在基础理论方面也取得了一定的进展,其中主要在相平衡研究方面。
如Jongsic Hwang[37]对粗油在超临界CO2中的相平衡进行了研究,并运用SRK状态方程关联流体相组成,得到了相应的数学模型。
Owen [38]等人研究了鱼油在超临界CO2中的溶解度,并提供了一个经验方程。
[39]阐述了在SCF中固体相平衡的两种测定方法,并提出了平衡测定的实验装置。
Ozlem Guclu-Ustundag[40]利用Chrastil方程及改进的方程关联了油脂和脂肪酸酯在超临界CO2中的溶解度数据,得到了较好的效果。
综上所述,无论是理论研究,还是实际应用,超临界CO2萃取技术均已取得很大发展,许多研究如从鲜花和香料中提取香精、从动植物油中提取不饱和脂肪酸等,已进入实用化阶段。
在食品工业、中草药有效成分的提取等研究工作正蓬勃开展。
与此同时,超临界CO2萃取装置的研究也不断取得新的进展。
特别是工业化生产装置的经济运行,使得超临界CO2萃取技术引起了国内外的普遍重视。
SFE技术将逐渐成为重要的化工分离、提纯技术。
超临界CO2萃取技术的国内研究进展我国在超临界流体萃取领域的研究工作起步较晚,从早期偏重于相平衡研究、数学模型的建立、理论公式的探讨等方面向实用化、工业化拓展,应用领域也从石油、化工等工业领域扩展到食品、医药等行业。
历经十余年的努力,我国SFE技术的研究和应用已取得显著成绩[41]。
全国每二年召开一次SCF学术讨论会成为我国SCF技术的学术中心,对推动该项技术进一步发展和趋向产业化具有重要意义。
从植物中提取生理活性成分是我国目前超临界CO2萃取研究较多领域之一。
用超临界CO2提取药用植物中的有效成分已有月见草油[42]、青蒿素[43]、维生素E[44]等。
臧志清[45]提出乙醇溶剂浸出与超临界CO2萃取结合的工艺路线,从大蒜中获得的蒜油得率和品质与直接用超临界CO2萃取法相当,可实现高压萃取釜不卸压的连续作业模式,便于实现工业化,实验表明萃取物中蒜素含量高,粘度小,蒜味浓烈,保持大蒜原有新鲜风味和药用成分。
李华[46]等人利用超临界CO2萃取法从红豆杉枝叶中提取分离紫杉醇,与传统的乙醇提取方法相比,萃取率高,纯度高,耗时短,无废渣溶剂残留。
游海[47]等人采用超临界CO2萃取法,研究了从银杏叶中提取黄酮类化合物、萜内酯的最佳工艺条件,结果表明此法可有效地提取出银杏叶中的药用活性成分,且萃取物中黄酮和萜内酯的含量高,而有毒物质的含量得到了较好的控制。
华南理工大学的黄俊辉[48]等人采用超临界CO2萃取技术提取了海带中的多不饱和脂肪酸,在优化条件下可使海带总脂肪酸中多不饱和脂肪酸含量达到%。
各种天然香料、色素的超临界流体萃取也是我国科技人员研究的一个主要方面。
何春茂[49]等人运用超临界CO2对桂花和茉莉花进行了提取,通过实验摸索了萃取最佳工艺条件,避免了芳香物质的损失,表明了超临界CO2萃取法在提取香味化合物所具有的优势,他们还研究了超临界CO2萃取茉莉花净油的化学成分,表明超临界CO2萃取与石油醚萃取的茉莉花净油主要化学成分基本相同,但有些组分含量有明显差异[50]。
柯于家[51]等人研究了用超临界CO2萃取小试装置萃取生姜、芜荽籽、砂仁和八角等辛香料精油的工艺,并与传统的水汽蒸馏法进行了比较,结果表明超临界CO2萃取法能提取更多的有效成分,同时提高了精油的收率和产品质量。
柯于家还研究了用25L、200L的超临界CO2中试装置萃取生姜等辛香料精油的工艺、组成成分及物性指标,结果表明,油的收率与质量基本达到小试水平,所采用的工艺流程及设备合理,重复性好,达到预期工艺目标[52]。
何军[53]等人采取静态、动态相结合的超临界CO2萃取操作方式,研究了萃取压力、温度及CO2体积对花椒挥发油萃取的影响,得到了优化的萃取条件。
超临界流体萃取相平衡模型方程研究现状在相平衡研究方面,尽管近十年来国际上SFE过程中相平衡研究取得了较大进展,特别对纯物质在纯SCF中溶解度的研究进展较快[54],已经测定了不少数据,开发了一些热力学模型,但这远未达到成熟的地步,特别是近临界区的相平衡数据更是缺乏,不能建立比较满意的关联或预测模型,给过程设计和经济评价带来困难,阻碍了SFE技术的开发。
因此,需要进行大量的实验研究,测定超临界体系的高压相平衡数据,充分了解超临界体系中真实分子过程,建立和开发可信的、有理论基础的相平衡模型。
目前已发展多种方法计算物质在SCF中的溶解度,如将SCF看作压缩气体的状态方程法;将SCF看作膨胀液体的活度系数法;缔合模型法;以密度为变量的半理论半经验法等[55]。
但是这些模型一般只适用于纯物质或组分明确的混合物在SCF中的溶解度计算,很难适用于像从植物中提取出的复杂混合物。