高二数学简单曲线的极坐标方程
- 格式:pdf
- 大小:1.62 MB
- 文档页数:11
高二数学简单曲线的极坐标方程试题答案及解析1.已知极坐标的极点在平面直角坐标系的原点O处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,曲线C:(为参数),其中.(Ⅰ)试写出直线的直角坐标方程及曲线C的普通方程;(Ⅱ)若点P为曲线C上的动点,求点P到直线距离的最大值.【解析】(Ⅰ)直接利用极坐标与直角坐标的互化,以及消去参数,即可取得直线的直角坐标方程及曲线C的普通方程;(Ⅱ)求出圆的圆心与半径,利用圆心到直线的距离加半径即可求出点P到直线距离的最大值.试题解析:(Ⅰ)因为,所以,则直线的直角坐标方程为.曲线C:,且参数,消去参数可知曲线C的普通方程为.(Ⅱ)由(Ⅰ)知,曲线C是以(0,2)为圆心,半径为2的圆,则圆心到直线的距离,所以点P到直线的距离的最大值是.【考点】参数方程化成普通方程.2.已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则曲线的直角坐标方程为 .【答案】【解析】已知曲线的极坐标方程是,以极点为原点,因此方程【考点】参数方程的应用.3.已知圆的极坐标方程为ρ2-4ρ·cos+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.【答案】(1)普通方程:,圆的参数方程为:,为参数;(2).【解析】(1)圆的普通方程与圆的极坐标方程之间的转换关系在于圆上一点与极径,极角间的关系:,圆的普通方程与圆的参数方程的关系也在于此,即圆上一点与圆半径,圆上点与圆心连线与轴正向夹角的关系:;(2)利用圆的参数方程,将转化为关于的三角函数关系求最值,一般将三角函数转化为的形式.试题解析:由圆上一点与极径,极角间的关系:,可得,并可得圆的标准方程:,所以得圆的参数方程为:,为参数.由(1)可知:故.【考点】(1)圆的普通方程与圆的参数方程和极坐标之间的关系;(2)利用参数方程求最值. 4.已知曲线M与曲线N:ρ=5cosθ-5sinθ关于极轴对称,则曲线M的方程为() A.ρ=-10cos B.ρ=10cosC.ρ=-10cos D.ρ=10cos【答案】B【解析】设点是曲线M上的任意一点,点关于极轴的对称点必在曲线N上,所以故选B.【考点】极坐标方程.5.在极坐标系中,圆的圆心的极坐标为()A.B.C.D.【答案】D.【解析】把圆的极坐标方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.6.极坐标方程表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆【答案】C【解析】化简为,得到或,化成直角坐标方程为:或,故选C.【考点】极坐标方程与普通方程的互化7.在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.【答案】(1),(2)相交【解析】解:(Ⅰ)由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为 5分(Ⅱ)由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交 10分【考点】直线与圆点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
简单曲线的极坐标方程教案章节:第一章至第五章第一章:引言1.1 极坐标系的介绍极坐标系的定义和基本概念极坐标系与直角坐标系的关系极坐标系的优点和应用领域1.2 极坐标方程的基本形式极坐标方程的定义和表达方式极坐标方程与直角坐标方程的转换方法常见曲线的极坐标方程的例子第二章:圆的极坐标方程2.1 圆的极坐标方程的定义和性质圆的极坐标方程的表达方式圆的半径和角度的关系圆的极坐标方程的图像和特点2.2 圆的极坐标方程的参数方程参数方程的定义和表达方式圆的参数方程与极坐标方程的关系参数方程在圆的极坐标方程中的应用第三章:螺旋线的极坐标方程3.1 螺旋线的极坐标方程的定义和性质螺旋线的极坐标方程的表达方式螺旋线的半径和角度的关系螺旋线的极坐标方程的图像和特点3.2 螺旋线的极坐标方程的参数方程参数方程的定义和表达方式螺旋线的参数方程与极坐标方程的关系参数方程在螺旋线的极坐标方程中的应用第四章:双曲线的极坐标方程4.1 双曲线的极坐标方程的定义和性质双曲线的极坐标方程的表达方式双曲线的半径和角度的关系双曲线的极坐标方程的图像和特点4.2 双曲线的极坐标方程的参数方程参数方程的定义和表达方式双曲线的参数方程与极坐标方程的关系参数方程在双曲线的极坐标方程中的应用第五章:椭圆的极坐标方程5.1 椭圆的极坐标方程的定义和性质椭圆的极坐标方程的表达方式椭圆的半径和角度的关系椭圆的极坐标方程的图像和特点5.2 椭圆的极坐标方程的参数方程参数方程的定义和表达方式椭圆的参数方程与极坐标方程的关系参数方程在椭圆的极坐标方程中的应用第六章:直线的极坐标方程6.1 直线的极坐标方程的定义和性质直线的极坐标方程的表达方式直线的极坐标方程与直角坐标方程的关系直线的极坐标方程的图像和特点6.2 直线的极坐标方程的参数方程参数方程的定义和表达方式直线的参数方程与极坐标方程的关系参数方程在直线的极坐标方程中的应用第七章:抛物线的极坐标方程7.1 抛物线的极坐标方程的定义和性质抛物线的极坐标方程的表达方式抛物线的半径和角度的关系抛物线的极坐标方程的图像和特点7.2 抛物线的极坐标方程的参数方程参数方程的定义和表达方式抛物线的参数方程与极坐标方程的关系参数方程在抛物线的极坐标方程中的应用第八章:渐开线的极坐标方程8.1 渐开线的极坐标方程的定义和性质渐开线的极坐标方程的表达方式渐开线的半径和角度的关系渐开线的极坐标方程的图像和特点8.2 渐开线的极坐标方程的参数方程参数方程的定义和表达方式渐开线的参数方程与极坐标方程的关系参数方程在渐开线的极坐标方程中的应用第九章:双曲线的渐近线的极坐标方程9.1 双曲线的渐近线的极坐标方程的定义和性质双曲线的渐近线的极坐标方程的表达方式双曲线的渐近线的半径和角度的关系双曲线的渐近线的极坐标方程的图像和特点9.2 双曲线的渐近线的极坐标方程的参数方程参数方程的定义和表达方式双曲线的渐近线的参数方程与极坐标方程的关系参数方程在双曲线的渐近线的极坐标方程中的应用第十章:总结与拓展10.1 简单曲线极坐标方程的应用极坐标方程在工程和物理领域的应用极坐标方程在艺术和设计领域的应用极坐标方程在其他领域的应用10.2 极坐标方程的进一步研究复杂曲线的极坐标方程研究极坐标方程与其他数学分支的联系极坐标方程在现代科学技术中的应用重点和难点解析:1. 第一章:引言极坐标系的定义和基本概念:需要重点关注极坐标系与直角坐标系的关系,以及极坐标系的优点和应用领域。
4.简单曲线的极坐标方程教学目标 班级______姓名________1.了解简单曲线的极坐标方程.2.熟练掌握曲线极坐标方程与直角坐标方程的相互转化.教学过程一、知识要点.1.极坐标与直角坐标的相互转化.(1)直角坐标),(y x 化极坐标),(θρ:22y x +=ρ,xy arctan =θ; (2)极坐标),(θρ化直角坐标),(y x :θρcos ⋅=x ,θρsin ⋅=y .2.简单曲线的极坐标方程.(1)直线:①过极点,倾斜角为α:αθ=或παθ+=.②过),(αa A ,垂直于极轴:αθρcos cos ⋅=⋅a .(2)圆:①以极点为圆心,a 为半径:a =ρ.②过)0,0(O ,)0,2(a A )0(>a ,以OA 为直径:θρcos 2a =.3.极坐标方程的解题思想:(1)将极坐标转化成直角坐标;(2)在直角坐标系中解决问题;(3)再将结果转化成极坐标.二、例题分析.1.极坐标方程化直角坐标方程.例1:把下列极坐标方程化成直角坐标方程.(1)2sin =θρ; (2)04)sin 5cos 2(=-+θθρ;(3)θρcos 10-=; (4)θθρsin 4cos 2-=.2.直角坐标方程化极坐标方程.例2:把下列直角坐标方程化成极坐标方程.(1)4=x ; (2)02=+y ;(3)0132=--y x ; (4)1622=-y x .作业:1.求下列曲线的极坐标方程.(1)过点)3,2(π,且与极轴垂直的直线;(2)圆心在)4,1(πA ,半径为1的圆.2.已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.。