[精品]2018年河南省开封市高考数学一模试卷及解析答案word版(理科)
- 格式:doc
- 大小:514.50 KB
- 文档页数:24
2018年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种5.执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.77.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+128.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.99.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°10.函数y=的图象大致为()A.B.C.D.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .14.展开式中不含x4项的系数的和为.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= .16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】集合的包含关系判断及应用.【专题】计算题.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.【点评】本题考查集合的包含关系及应用.注意空集的讨论,是易错点.2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】设出复数z,代入,它的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式.【解答】解:由题意得z=ai.(a∈R且a≠0).∴==,则a+2=0,∴a=﹣2.有z=﹣2i,故选D【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q【考点】复合命题的真假.【专题】计算题;转化思想;综合法;简易逻辑.【分析】由函数的翻折和平移,得到命题p假,则¬p真;由函数的奇偶性,对轴称和平移得到命题q假,则命题¬q真,由此能求出结果.【解答】解:函数y=2﹣a x+1的图象可看作把y=a x的图象先沿轴反折,再左移1各单位,最后向上平移2各单位得到,而y=a x的图象恒过(0,1),所以函数y=2﹣a x+1恒过(﹣1,1)点,所以命题p假,则¬p真.函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1各单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,命题p∧¬q为真命题.故选:D.【点评】本题考查命题的真假判断,是中档题,解题时要认真审题,注意得复合命题的性质的合理运用.4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.5.执行如图所示的程序框图,输出s 的值为( )A .﹣B .C .﹣D .【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k 的值,当k=5时满足条件k >4,计算并输出S 的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k >4,k=3不满足条件k >4,k=4不满足条件k >4,k=5满足条件k >4,S=sin =,输出S 的值为.故选:D .【点评】本题主要考查了循环结构的程序框图,属于基础题.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x ﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.【点评】本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+12【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.【点评】本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.9【考点】基本不等式;数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°【考点】正弦定理;余弦定理.【专题】解三角形.【分析】利用正弦定理以及两角和差的正弦公式进行化简即可.【解答】解:由1+=.得1+=.即cosAsinB+sinAcosB=2sinCcosA,即sin(A+B)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,即A=,∵a=2,c=2,∴a>c,即A>C,由正弦定理得,即,∴sinC=,即C=45°,故选:D【点评】本题主要考查解三角形的应用,根据正弦定理以及两角和差的正弦公式进行化简是解决本题的关键.10.函数y=的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据函数的定义域,特殊点的函数值符号,以及函数的单调性和极值进行判断即可.【解答】解:由lnx≠0得,x>0且x≠1,当0<x<1时,lnx<0,此时y<0,排除B,C,函数的导数f′(x)=,由f′(x)>0得lnx>1,即x>e此时函数单调递增,由f′(x)<0得lnx<1且x≠1,即0<x<1或1<x<e,此时函数单调递减,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数的性质,利用定义域,单调性极值等函数特点是解决本题的关键.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.【解答】解:∵抛物线方程为y2=2x,∴焦点F的坐标为(,0),准线方程为x=﹣,如图,设A(x1,y1),B(x2,y2),过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则|BF|=x2+=2,∴x2=2,把x2=2代入抛物线y2=2x,得,y2=﹣2,∴直线AB过点M(3,0)与(2,﹣2)方程为2x﹣y﹣6=0,代入抛物线方程,解得,x1=,∴|AE|=+=5,∵在△AEC中,BN∥AE,∴===,故选:A【点评】本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解答】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .【考点】二倍角的正弦;同角三角函数间的基本关系;诱导公式的作用.【专题】三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出tanα的值,再利用同角三角函数间的基本关系得到sinα=2cosα,且sinα与cosα异号,两边平方并利用同角三角函数间的基本关系求出cos2α与sin2α的值,进而求出sinαcosα的值,最后利用二倍角的正弦函数公式即可求出sin2α的值.【解答】解:∵tan(π﹣α)=﹣tanα=﹣=2,即=﹣2<0,∴sinα=﹣2cosα,两边平方得:sin2α=4cos2α,∵sin2α+cos2α=1,∴cos2α=,sin2α=,∴sin2αcos2α=,即sinαcosα=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣【点评】此题考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.展开式中不含x4项的系数的和为0 .【考点】二项式系数的性质.【专题】计算题.【分析】给二项式中的x赋值1,得到展开式的所有项的系数和;利用二项展开式的通项公式求出通项,令x的指数为4求出展开式中x4的系数,利用系数和减去x4的系数求出展开式中不含x4项的系数的和.【解答】解:令x=1求出展开式的所有的项的系数和为1展开式的通项为令得r=8所以展开式中x4的系数为1故展开式中不含x4项的系数的和为1﹣1=0故答案为:0【点评】本题考查解决展开式的系数和问题常用的方法是赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= π.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到结论.【解答】解:根据题意,阴影部分的面积为==1﹣cosa,矩形的面积为,则由几何概型的概率公式可得,即cosa=﹣1,又a∈(0,2π),∴a=π,故答案为:π【点评】本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.【考点】命题的真假判断与应用.【专题】概率与统计;推理和证明.【分析】根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位,故③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;故正确的命题是:②③,故答案为:②③【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.【考点】数列的求和;等差关系的确定.【专题】综合题;等差数列与等比数列.【分析】(Ⅰ)由已知,令n=1可求T1,然后利用已知变形可得:T n•T n﹣1=2T n ﹣1﹣2T n(n≥2),变形即可证明(Ⅱ)由等差数列,可求,进而可求a n,代入即可求解b n,结合数列的特点考虑利用裂项求和【解答】解:(Ⅰ)∵T n=2﹣2a n∴T1=2﹣2T1∴∴由题意可得:T n•T n﹣1=2T n﹣1﹣2T n(n≥2),所以∴数列是以为公差,以为首项的等差数列(Ⅱ)∵数列为等差数列,∴,∴,∴,∴==【点评】本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式及数列的裂项求和方法的应用.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)利用频率分布直方图能求出随机抽取的市民中年龄段在[30,40)的人数.(Ⅱ)由频率公布直方图知100×0.15=15,100×0.05=5,由此能求出抽取的8人中[50,60)年龄段抽取的人数.(Ⅲ)X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和X的数学期望.【解答】解:(Ⅰ)1﹣10×(0.020+0.025+0.015+0.005)=0.35,100×0.35=35,即随机抽取的市民中年龄段在[30,40)的人数为35.…(Ⅱ)100×0.15=15,100×0.05=5,所以,即抽取的8人中[50,60)年龄段抽取的人数为2.…(Ⅲ)X的所有可能取值为0,1,2.;;.所以X的分布列为X 0 1 2PX的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间角;空间向量及应用.【分析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC (II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A﹣PB﹣E的大小.【解答】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….∵DE∥BC,BC⊥AB,∴DE⊥AB…又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…∵PE⊂平面PDE,∴AB⊥PE…(Ⅲ)∵AB⊥平面PDE,DE⊥AB…如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,∴令得…∵DE⊥平面PAB,∴平面PAB的法向量为.…设二面角的A﹣PB﹣E大小为θ,由图知,,所以θ=60°,即二面角的A﹣PB﹣E大小为60°…【点评】本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(1)通过椭圆的离心率,直线与圆相切,求出a,b即可求出椭圆的方程.(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程,利用韦达定理,结合点E,F到直线AB的距离分别,表示出四边形AEBF的面积,利用基本不等式求出四边形AEBF面积的最大值时的k值即可.【解答】解:(1)由题意知:=∴=,∴a2=4b2.…又∵圆x2+y2=b2与直线相切,∴b=1,∴a2=4,…故所求椭圆C的方程为…(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程整理得:(k2+4)x2=4,故.①…又点E,F到直线AB的距离分别为,.…所以四边形AEBF的面积为==…===,…当k2=4(k>0),即当k=2时,上式取等号.所以当四边形AEBF面积的最大值时,k=2.…【点评】本题考查直线与椭圆的位置关系,圆锥曲线的综合应用,考查分析问题解决问题的能力,转化思想以及计算能力.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b,利用当时,函数f(x)有极大值,建立方程,即可求得实数b、c的值;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立,分类讨论,求出函数的最大值,即可求实数a的取值范围.【解答】解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b∵当时,函数f(x)有极大值,∴f′()=﹣++b=0,f()=﹣++c=,∴b=0,c=0;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立由(Ⅰ)知,①﹣1≤x<1时,f′(x)=﹣3x(x﹣),函数在(﹣1,0)上单调递减,在(0,)上单调递增,在(,1)上单调递减∵f(﹣1)=2,f()=,∴﹣1≤x<1时,f(x)max=2,;②2≥x≥1时,f′(x)=,1°、a>0,函数在[1,2]上单调递增,f(x)max=f(2)=aln2,∴或,∴<a≤或0<a≤;2°、a≤0,函数在[1,2]上单调递减,f(x)max=f(1)=aln1=0,∴2≥3a﹣7,∴a≤3,∴a≤0综上,实数a的取值范围是a≤.【点评】本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.【考点】与圆有关的比例线段;相似三角形的判定;相似三角形的性质.【专题】选作题.【分析】(I)先证明△BCD∽△CED,可得,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF=,利用DC2=CF2+DF2,建立方程,即可求得⊙O 的半径.【解答】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD∵∠ABD=∠ECD∴∠CBD=∠ECD∵∠BDC=∠EDC∴△BCD∽△CED∴∴CD2=DE•DB.(II)解:设⊙O的半径为R∵D是弧AC的中点∴OD⊥AC,设垂足为F在直角△CFO中,OF=1,OC=R,CF=在直角△CFD中,DC2=CF2+DF2∴∴R2﹣R﹣6=0∴(R﹣3)(R+2)=0∴R=3【点评】本题是选考题,考查几何证明选讲,考查三角形的相似与圆的性质,属于基础题.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【考点】点的极坐标和直角坐标的互化;两点间的距离公式.【专题】计算题.【分析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l 的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0 ∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…【点评】本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)通过讨论x的范围得到相对应的f(x)的表达式,从而证明出结论;(2)利用分段函数解析式,分别解不等式,即可确定不等式的解集.【解答】解:(1)当x≤﹣1时,f(x)=3,成立;当﹣1<x<2时,f(x)=﹣2x+1,﹣4<﹣2x<2,∴﹣3<﹣2x+1<3,成立;当x≥2时,f(x)=﹣3,成立;故﹣3≤f(x)≤3;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当x≤﹣1时,x2﹣2x≤3,∴﹣1≤x≤2,∴x=1;当﹣1<x<2时,x2﹣2x≤﹣2x+1,∴﹣1≤x≤1,∴﹣1<x≤1;当x≥2时,x2﹣2x≤﹣3,无解;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综合上述,不等式的解集为:[﹣1,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查绝对值函数,考查分类讨论的数学思想,确定函数的解析式是关键.。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!(8套)2018年河南全省含所有市高考数学一模试卷汇总2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]2.(5分)已知复数, 则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图, 若输入p=0.99, 则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列, S n为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.12.(5分)已知函数, (e为自然对数的底数), 则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题, 每小题5分, 共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径, 点P为直线y=x﹣1上任意一点, 则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体, 则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100)内, 且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70, 则称该日畅销, 其余为滞销.在畅销日中用分层抽样的方法随机抽取8天, 再从这8天中随机抽取3天进行统计, 设这3天来自X 个组, 求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图, 在空间直角坐标系O﹣xyz中, 正四面体(各条棱均相等的三棱锥)ABCD的顶点A, B, C分别在x轴, y轴, z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a, b, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立?若存在, 试求出a, b的值;若不存在, 请说明理由.(二)选考题:共10分.请考生在第22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1, x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1, 2].故选:D.2.(5分)已知复数, 则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣, ﹣), 位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数, 在(0, +∞)递增,对于A, f(﹣x)=f(x), 是偶函数, 且x>0时, f(x)=x2+x+1, f′(x)=2x+1>0,故f(x)在(0, +∞)递增, 符合题意;对于B, 函数f(x)是奇函数, 不合题意;对于C, 由x+1=0, 解得:x≠﹣1, 定义域不关于原点对称,故函数f(x)不是偶函数, 不合题意;对于D, 函数f(x)在(0, +∞)无单调性, 不合题意;故选:A.4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若, 则1+cosα=3sinα, 又sin2α+cos2α=1,∴sinα=, ∴cosα=3sinα﹣1=, ∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.【解答】解:∵, a1=1, a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图, 若输入p=0.99, 则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行, 可得程序框图的功能是计算S=+++…的值.由题意, S=+++…==1﹣≥0.99, 可得:2k≥100, 解得:k≥7,即当n=8时, S的值不满足条件, 退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4, 宽为1, 高为1,半圆柱的底面半径为r=1, 高为h=1, 如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示, 其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列, S n为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d, ∵a3+7=2a5,∴a1+2d+7=2(a1+4d), 化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.【解答】解:如图, 取PF1的中点A, 连接OA,∴2=+, =,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m, 则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数, (e为自然对数的底数), 则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切, 切点为(x0, y0), 则,解得x0=0, k=1.设直线y=kx+1与y=lnx相切, 切点为(x1, y1), 则,解得x1=e2, k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1, t2, t3, t4, 且t1<t2<t3<t4,由图象可知t1<0, t2=0, 0<t3<1, t4=e2.由f(x)的函数图象可知f(x)=t1无解, f(x)=t2有1解, f(x)=t3有3解, f(x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题, 每小题5分, 共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0, 解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立, 解得A(),∵=(2, 3), =(x, y),∴z=•=2x+3y, 化为y=, 由图可知, 当直线y=过A时,直线在y轴上的截距最大, z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径, 点P为直线y=x﹣1上任意一点, 则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0, 1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体, 则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.【解答】解:(Ⅰ)证明:根据题意, 在△ABC中, a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A, B∈(0, π),所以B﹣A∈(﹣π, π), 且A+(B﹣A)=B∈(0, π), 所以A+(B﹣A)≠π,所以A=B﹣A, B=2A.(Ⅱ)由(Ⅰ)知, .由△ABC为锐角三角形得,得, 则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100)内, 且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70, 则称该日畅销, 其余为滞销.在畅销日中用分层抽样的方法随机抽取8天, 再从这8天中随机抽取3天进行统计, 设这3天来自X 个组, 求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知, 解得5≤n≤9n, n可取5, 6, 7, 8, 9, 代入中,得, a=0.15.销售量在[50, 60), [60, 70), [70, 80), [80, 90), [90, 100)内的频率分别是0.1, 0.1, 0.2, 0.3, 0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70, 80), [80, 90), [90, 100)内的频率之比为2:3:3,所以各组抽取的天数分别为2, 3, 3.X的所有可能值为1, 2, 3,,,.X的分布列为:X123P数学期望.19.(12分)如图, 在空间直角坐标系O﹣xyz中, 正四面体(各条棱均相等的三棱锥)ABCD的顶点A, B, C分别在x轴, y轴, z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA, 可得OA=OB=OC.设OA=a, 则, A(a, 0, 0), B(0, a, 0), C(0, 0, a),设D点的坐标为(x, y, z), 则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点, 连接CF, DF,则CF⊥AB, DF⊥AB, ∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知, 在△CFD中, , ,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得, |(x+y)(x﹣y)|=2.因为点P在区域W内, 所以x+y与x﹣y同号, 得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D, 当直线l的斜率不存在时, , , 得.当直线l的斜率存在时, 设其方程为y=kx+m, 显然k≠0, 则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点, 知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0, 得k>1或k<﹣1.设A(x1, y2), B(x2, y2), 由得, 同理, 得.所以=.综上, △OAB的面积恒为定值2.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a, b, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立?若存在, 试求出a, b的值;若不存在, 请说明理由.【解答】解:(Ⅰ)根据题意, 函数,,令f'(x)=0得.当且x≠0时, f'(x)<0;当时, f'(x)>0.所以f(x)在(﹣∞, 0)上单调递减, 在上单调递减, 在上单调递增.(Ⅱ)根据题意, 注意到f(e)=g(e)=3e, 则ae+b=3e, b=3e﹣ae①.于是, ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx), ,若a≤0, 则h'(x)<0, 得h(x)在(0, +∞)上单调递减, 则当x>e时, 有h (x)<h(e)=0, 不合题意;若a>0, 易知h(x)在上单调递减, 在上单调递增,得h(x)在(0, +∞)上的最小值.记, 则, 得m(a)有最大值m(3)=0, 即m (a)≤m(3)=0,又m(a)≥0, 故a=3, 代入①得b=0.当a=3, b=0时, f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3, 则φ'(x)=6x(x﹣e), 得φ(x)在(0, +∞)上有最小值φ(e)=0, 即φ(x)≥0, 符合题意.综上, 存在a=3, b=0, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立.(二)选考题:共10分.请考生在第22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ, 即y2=4x,因此曲线C表示顶点在原点, 焦点在x轴上的抛物线.(Ⅱ), 化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.【解答】解:(Ⅰ)当时, ,∴, ∴.∴,∴, 当且仅当m=n时等号成立,∵m, n>0, 解得, 当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1, 2],当x∈[﹣1, 2]时, 有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1, 2]恒成立,当时, a(1﹣2x)≥1﹣2x, ∴a≥1;当时, a(2x﹣1)≥1﹣2x, ∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1, +∞).2018年河南省安阳市高考数学一模试卷(文科)一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)在复平面内, 复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1| D.f(x)=cosx4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{an}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图, 若输入p=0.8, 则输出的n=()A.3 B.4 C.5 D.67.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B. C.D.9.(5分)已知{an}为等差数列, Sn为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知函数与g(x)=6x+a的图象有3个不同的交点, 则a的取值范围是()A. B. C. D.12.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.二、填空题:本题共4小题, 每小题5分, 共20分13.(5分)命题“∀x∈R, 都有x2+|x|≥0”的否定是.14.(5分)长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上, 则该球的表面积为.15.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.16.(5分)在平面直角坐标系xOy中, 点A(0, ﹣3), 若圆C:(x﹣a)2+(y﹣a+2)2=1上存在一点M满足|MA|=2|MO|, 则实数a的取值范围是.三、解答题:共70分.解答应写出文字说明, 证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答.(一)必考题:共60分.17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100]内, 且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)若销售量大于等于80, 则称该日畅销, 其余为滞销, 根据是否畅销从这50天中用分层抽样的方法随机抽取5天, 再从这5天中随机抽取2天, 求这2天中恰有1天是畅销日的概率(将频率视为概率).19.(12分)如图, 已知在四棱锥P﹣ABCD中, 平面PAD⊥平面ABCD, 且PA⊥PD, PA=PD, AD=4, BC∥AD, AB=BC=CD=2, E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在, 求出公切线l的方程;若不存在, 请说明理由.(二)选考题:共10分.请考生在22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)在复平面内, 复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴复数所对应的点的坐标为(), 位于第二象限.故选:B.2.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1, x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1, 2].故选:D.3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1| D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数, 在(0, +∞)递增,对于A, f(﹣x)=f(x), 是偶函数, 且x>0时, f(x)=x2+x+1, f′(x)=2x+1>0,故f(x)在(0, +∞)递增, 符合题意;对于B, 函数f(x)是奇函数, 不合题意;对于C, 由x+1=0, 解得:x≠﹣1, 定义域不关于原点对称,故函数f(x)不是偶函数, 不合题意;对于D, 函数f(x)在(0, +∞)无单调性, 不合题意;故选:A.4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若, 则1+cosα=3sinα, 又sin2α+cos2α=1,∴sinα=, ∴cosα=3sinα﹣1=, ∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{an}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.【解答】解:∵, a1=1, a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图, 若输入p=0.8, 则输出的n=()A.3 B.4 C.5 D.6【解答】解:第一次运行n=1, s=0, 满足条件s<0.8, s==0.5, n=2,第二次运行n=2, s=0.5, 满足条件s<0.8, s=+=0.75, n=3,第三次运行n=3, s=0.75, 满足条件s<0.8, s=0.75+=0.75+0.125=0.875, n=4, 此时s=0.875不满足条件s<0.8输出, n=4,故选:B.7.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4, 宽为1, 高为1,半圆柱的底面半径为r=1, 高为h=1, 如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B. C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,其中正三角形ABC的面积S三角形=•a2•sin=a2;满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示, 其加起来是一个半径为的半圆,∴S阴影=•π•=,∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{an}为等差数列, Sn为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{an}的公差为d, ∵a3+7=2a5,∴a1+2d+7=2(a1+4d), 化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知函数与g(x)=6x+a的图象有3个不同的交点, 则a的取值范围是()A. B. C. D.【解答】解:函数与g(x)=6x+a的图象有3个不同的交点⇔方程a=有3个不同的实根,即函数y=a, g(x)=的图象有3个不同的交点.g′(x)=x2+x﹣6=(x+3)(x﹣2)x∈(﹣∞, ﹣3), (2, +∞)时, g(x)递增, x∈(﹣3, 2)递减,函数g(x)图如下, 结合图象, 只需g(2)<a<g(﹣3)即可,即﹣<<,故选:B.12.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.【解答】解:如图, 取PF1的中点A, 连接OA,∴2=+, =,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m, 则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A二、填空题:本题共4小题, 每小题5分, 共20分13.(5分)命题“∀x∈R, 都有x2+|x|≥0”的否定是∃x0∈R, 使得.【解答】解:由全称命题的否定为特称命题, 可得命题“∀x∈R, 都有x2+|x|≥0”的否定是“∃x0∈R, 使得”.故答案为:∃x0∈R, 使得.14.(5分)长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上, 则该球的表面积为14π.【解答】解:∵长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上,∴球半径R==,∴该球的表面积为S=4π×R2=4=14π.故答案为:14π.15.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立, 解得A(),∵=(2, 3), =(x, y),∴z=•=2x+3y, 化为y=, 由图可知, 当直线y=过A时,直线在y轴上的截距最大, z有最小值为.故答案为:.16.(5分)在平面直角坐标系xOy中, 点A(0, ﹣3), 若圆C:(x﹣a)2+(y﹣a+2)2=1上存在一点M满足|MA|=2|MO|, 则实数a的取值范围是[0, 3].【解答】解:设点M(x, y), 由|MA|=2|MO|,得到:,整理得:x2+y2﹣2y﹣3=0,∴点M在圆心为D(0, 1), 半径为2的圆上.又点M在圆C上, ∴圆C与圆D有公共点,∴1≤|CD|≤3,∴1≤≤3,解得0≤a≤3.即实数a的取值范围是[0, 3].故答案为:[0, 3].三、解答题:共70分.解答应写出文字说明, 证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答.(一)必考题:共60分. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.【解答】解:(Ⅰ)证明:根据题意, 在△ABC中, a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A, B∈(0, π),所以B﹣A∈(﹣π, π), 且A+(B﹣A)=B∈(0, π), 所以A+(B﹣A)≠π,所以A=B﹣A, B=2A.(Ⅱ)由(Ⅰ)知, .由△ABC为锐角三角形得,得, 则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100]内, 且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)若销售量大于等于80, 则称该日畅销, 其余为滞销, 根据是否畅销从这50天中用分层抽样的方法随机抽取5天, 再从这5天中随机抽取2天, 求这2天中恰有1天是畅销日的概率(将频率视为概率).【解答】解:(Ⅰ)由题知, 解得5≤n≤9, n可取5, 6, 7, 8, 9,代入中,得,解得a=0.15.(Ⅱ)滞销日与畅销日的频率之比为(0.1+0.1+0.2):(0.3+0.3)=2:3,则抽取的5天中, 滞销日有2天, 记为a, b, 畅销日有3天, 记为C, D, E,再从这5天中抽出2天, 基本事件有ab, aC, aD, aE, bC, bD, bE, CD, CE, DE, 共10个,2天中恰有1天为畅销日的事件有aC, aD, aE, bC, bD, bE, 共6个,则这2天中恰有1天是畅销日的概率为p=.19.(12分)如图, 已知在四棱锥P﹣ABCD中, 平面PAD⊥平面ABCD, 且PA⊥PD, PA=PD, AD=4, BC∥AD, AB=BC=CD=2, E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.【解答】证明:(Ⅰ)取PA的中点F, 连接BF, EF.在△PAD中, EF为中位线,则, 又, 故,则四边形BCEF为平行四边形, 得CE∥BF,又BF⊂平面PAB, CE⊄平面PAB,故CE∥平面PAB.解:(Ⅱ)由E为PD的中点, 知点D到平面PBC的距离是点E到平面PBC的距离的两倍, 则.由题意知, 四边形ABCD为等腰梯形, 且AB=BC=CD=2, AD=4, 其高为,则.取AD的中点O, 在等腰直角△PAD中, 有, PO⊥AD,又平面PAD⊥平面ABCD, 故PO⊥平面ABCD,则点P到平面ABCD的距离即为PO=2.,故三棱锥E﹣PBC的体积.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得, |(x+y)(x﹣y)|=2.因为点P在区域W内, 所以x+y与x﹣y同号, 得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D, 当直线l的斜率不存在时, , , 得.当直线l的斜率存在时, 设其方程为y=kx+m, 显然k≠0, 则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点, 知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0, 得k>1或k<﹣1.设A(x1, y2), B(x2, y2), 由得, 同理, 得.所以=.综上, △OAB的面积恒为定值2.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在, 求出公切线l的方程;若不存在, 请说明理由.【解答】解:(Ⅰ)由, 得,令f′(x)=0, 得.当且x≠0时, f′(x)<0;当时, f′(x)>0.∴f(x)在(﹣∞, 0)上单调递减, 在上单调递减, 在上单调递增;(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线, 且切点横坐标为x0>0,则, 即, 其中(2)式即.记h(x)=4x3﹣3e2x﹣e3, x∈(0, +∞), 则h'(x)=3(2x+e)(2x﹣e),得h(x)在上单调递减, 在上单调递增,又h(0)=﹣e3, , h(e)=0,故方程h(x0)=0在(0, +∞)上有唯一实数根x0=e, 经验证也满足(1)式.于是, f(x0)=g(x0)=3e, f′(x0)=g'(x0)=3,曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),即y=3x.(二)选考题:共10分.请考生在22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ, 即y2=4x,因此曲线C表示顶点在原点, 焦点在x轴上的抛物线.(Ⅱ), 化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.【解答】解:(Ⅰ)当时, ,∴, ∴.∴,∴, 当且仅当m=n时等号成立,∵m, n>0, 解得, 当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1, 2],当x∈[﹣1, 2]时, 有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1, 2]恒成立,当时, a(1﹣2x)≥1﹣2x, ∴a≥1;当时, a(2x﹣1)≥1﹣2x, ∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1, +∞).2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)已知a∈R, 复数z=, 若=z, 则a=()A.1 B.﹣1 C.2 D.﹣22.(5分)已知集合M={x|≤0}, N={x|y=log3(﹣6x2+11x﹣4)}, 则M∩N=()A.[1, ] B.(, 3] C.(1, )D.(, 2)3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据, 绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系, 则根据该折线图, 下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在等比数列{an}中, 若a2=, a3=, 则=()A.B.C.D.25.(5分)《九章算术》是我国古代内容极为丰富的数学名著, 书中有如下问题:“今有阳马, 广五尺, 褒七尺, 高八尺, 问积几何?”其意思为:“今有底面为矩形, 一侧棱垂直于底面的四棱锥, 它的底面长, 宽分别为7尺和5尺, 高为8尺, 问它的体积是多少?”若以上条件不变,。
2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.1或D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1C.D.x2﹣y2=2 7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B.C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足P A⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f (x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cos B (a cos C+c cos A)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE 沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)系统找不到该试题选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.1或D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,显然,cosα=sinα时,满足条件,此时,tanα=1,sin2α=1.cosα≠sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣.综上可得,sin2α=1或﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选:B.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:B.10.(5分)函数y=的图象大致是()A.B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足P A⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f (x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=0时,可得第一根对称轴x=,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点有30个点,即x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x30+x31=2×将以上各式相加得:x1+2x2+2x3+…+2x28+2x29+2x30+x31=2(++…+)=(2+5+8+…+89)×=455π故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cos B (a cos C+c cos A)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cos B(a cos C+c cos A)+b=0.则:2cos B(sin A cos C+sin C cos A)+sin B=0,整理得:2cos B sin(A+C)=﹣sin B,由于:0<B<π,则:sin B≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE 沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D 的余弦值为﹣.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e==【解答】解:=,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴l∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f (x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f (x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)系统找不到该试题选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分. 1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1【考点定位】复数2、已知集合A={x|x 2-x —2〉0},则A =A 、{x|—1<x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x —2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上.C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半. 【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、—10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(—3)=—10【考点定位】等差数列求和5、设函数f(x)=x3+(a—1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a—1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、-—B、-—C、—+D、—【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处.∴最短路径的长度为AB=【考点定位】立体几何:圆柱体的展开图形,最短路径8。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
感谢您使用本资源,本资源是由订阅号〞初中英语资源库"制作并分享给广阔用户,本资源制作于2021年底,是集实用性、可编辑性为一体.本资源为成套文件,包含本年级|本课的相关资源.有教案、教学设计、学案、录音、微课等教师最|需要的资源.我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、(高|考),创新教学过程,将同学们喜闻乐见的内容整体教给学生.本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源.如果需要更多成套资料,请微信搜索订阅号"初中英语资源库〞,在页面下方找到"资源库〞,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送! )(8套)2021年河南全省含所有市(高|考)数学一模试卷汇总2021年河南省安阳市(高|考)数学一模试卷(理科)一、选择题:此题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)设集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ,那么A∩B = () A.(﹣1 , +∞) B.[﹣2 , +∞) C.[﹣1 ,2] D.(﹣1 ,2]2.(5分)复数,那么在复平面内所对应的点位于()A.第|一象限B.第二象限C.第三象限D.第四象限3.(5分)函数 f (x )满足:①对任意x1,x2∈(0 , +∞)且x1≠x2,都有;②对定义域内任意x ,都有f (x ) =f (﹣x ) ,那么符合上述条件的函数是()A.f (x ) =x2 +|x| +1 B.C.f (x ) =ln|x +1|D.f (x ) =cosx4.(5分)假设,那么cosα﹣2sinα = ()A.﹣1 B.1 C.D.﹣1或5.(5分)等比数列{a n}中,a1 =1 ,a3 +a5 =6 ,那么a5 +a7 = ()A.12 B.10 C.D.6.(5分)执行如下图的程序框图,假设输入p =0.99 ,那么输出的n = ()A.6 B.7 C.8 D.97.(5分)如下图是一个几何体的三视图,那么该几何体的体积是()A.4 +2πB.C.4 +πD.8.(5分)在边长为a的正三角形内任取一点P ,那么点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分){a n}为等差数列,S n为其前n项和,假设a3+7 =2a5 ,那么S13 = () A.49 B.91 C.98 D.18210.(5分)函数,要得到g (x ) =cosx的图象,只需将函数y =f (x )的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)F1 ,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点) ,假设,那么椭圆的离心率为()A.B.C.D.12.(5分)函数, (e为自然对数的底数) ,那么函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:此题共4小题,每题5分,共20分.13.(5分)展开式中的常数项为.14.(5分)向量= (2 ,3 ) ,= (x ,y ) ,且变量x ,y满足,那么z =•的最|大值为.15.(5分)AB为圆C:x2 +y2﹣2y =0的直径,点P为直线y =x﹣1上任意一点,那么|PA|2 +|PB|2的最|小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,那么小球可以经过的空间的体积为.三、解答题:共70分.解容许写出文字说明、证明过程或演算步骤.第17 -21题为必考题,每个试题考生都必须作答.第22 ,23题为选考题,考生根据要求作答.17.(12分)在△ABC中,内角A ,B ,C所对的边分别为a ,b ,c ,且满足a+2acosB =c.(Ⅰ )求证:B =2A;(Ⅱ )假设△ABC为锐角三角形,且c =2 ,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品方案,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50 ,100 )内,且销售量x的分布频率.(Ⅰ )求a的值并估计销售量的平均数;(Ⅱ )假设销售量大于等于70 ,那么称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A ,B ,C分别在x轴,y轴,z轴上.(Ⅰ )求证:CD∥平面OAB;(Ⅱ )求二面角C﹣AB﹣D的余弦值.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y =x与直线l2:y =﹣x之间的阴影局部记为W ,区域W中动点P (x ,y )到l1 ,l2的距离之积为1.(Ⅰ )求点P的轨迹C的方程;(Ⅱ )动直线l穿过区域W ,分别交直线l1 ,l2于A ,B两点,假设直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)函数,g (x ) =3elnx ,其中e为自然对数的底数.(Ⅰ )讨论函数f (x )的单调性.(Ⅱ )是否存在实数a ,b ,使f (x )≥ax +b≥g (x )对任意x∈(0 , +∞)恒成立?假设存在,试求出a ,b的值;假设不存在,请说明理由.(二)选考题:共10分.请考生在第22 ,23题中任选一题作答,如果多做,那么按所做的第|一题计分.【选修4 -4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数) ,假设以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρs in2θ =4cosθ.(Ⅰ )将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ )假设直线l与曲线C交于A ,B两点,求|AB|.【选修4 -5:不等式选讲】23.函数f (x ) =|x +1| +a|2x﹣1|.(Ⅰ )当时,假设对任意x∈R恒成立,求m +n的最|小值;(Ⅱ )假设f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,求实数a的取值范围.2021年河南省安阳市(高|考)数学一模试卷(理科)参考答案与试题解析一、选择题:此题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)设集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ,那么A∩B = () A.(﹣1 , +∞) B.[﹣2 , +∞) C.[﹣1 ,2] D.(﹣1 ,2]【解答】解:∵集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ={y|y>﹣1} ,∴A∩B ={x|﹣1<x≤2} = (﹣1 ,2].应选:D.2.(5分)复数,那么在复平面内所对应的点位于()A.第|一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,那么在复平面内所对应的点的坐标为(﹣,﹣) ,位于第三象限角.应选:C.3.(5分)函数 f (x )满足:①对任意x1,x2∈(0 , +∞)且x1≠x2,都有;②对定义域内任意x ,都有f (x ) =f (﹣x ) ,那么符合上述条件的函数是()A.f (x ) =x2 +|x| +1 B.C.f (x ) =ln|x +1|D.f (x ) =cosx【解答】解:由题意得:f (x )是偶函数,在(0 , +∞)递增,对于A ,f (﹣x ) =f (x ) ,是偶函数,且x>0时,f (x ) =x2 +x +1 ,f′ (x ) =2x +1>0 ,故f (x )在(0 , +∞)递增,符合题意;对于B ,函数f (x )是奇函数,不合题意;对于C ,由x +1 =0 ,解得:x≠﹣1 ,定义域不关于原点对称,故函数f (x )不是偶函数,不合题意;对于D ,函数f (x )在(0 , +∞)无单调性,不合题意;应选:A.4.(5分)假设,那么cosα﹣2sinα = ()A.﹣1 B.1 C.D.﹣1或【解答】解:假设,那么1 +cosα =3sinα ,又sin2α +cos2α =1 ,∴sinα =,∴cosα =3sinα﹣1 =,∴cosα﹣2sinα =﹣,应选:C.5.(5分)等比数列{a n}中,a1 =1 ,a3 +a5 =6 ,那么a5 +a7 = ()A.12 B.10 C.D.【解答】解:∵,a1 =1 ,a3 +a5 =6 ,∴a3 +a5 =q2 +q4 =6 ,得q4 +q2﹣6 =0 ,即(q2﹣2 ) (q2 +3 ) =0 ,那么q2 =2 ,那么a5 +a7 =q4 +q6 =22 +23 =4 +8 =12 ,应选:A6.(5分)执行如下图的程序框图,假设输入p =0.99 ,那么输出的n = ()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得程序框图的功能是计算S = + + +…的值.由题意,S = + + +… ==1﹣≥0.99 ,可得:2k≥100 ,解得:k≥7 ,即当n =8时,S的值不满足条件,退出循环.应选:C.7.(5分)如下图是一个几何体的三视图,那么该几何体的体积是()A.4 +2πB.C.4 +πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4 ,宽为1 ,高为1 ,半圆柱的底面半径为r =1 ,高为h =1 ,如图,∴该几何体的体积:V =4×1×1 +=4 +.应选:D.8.(5分)在边长为a的正三角形内任取一点P ,那么点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如以下图所示:边长AB =a ,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至|少有一个小于1的平面区域,如图中阴影局部所示,其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P =1﹣=1﹣π.应选:B.9.(5分){a n}为等差数列,S n为其前n项和,假设a3+7 =2a5 ,那么S13 = () A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d ,∵a3 +7 =2a5 ,∴a1 +2d +7 =2 (a1 +4d ) ,化为:a1 +6d =7 =a7.那么S13 ==13a7 =13×7 =91.应选:B.10.(5分)函数,要得到g (x ) =cosx的图象,只需将函数y =f (x )的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y =f (x ) =sin (x﹣)的图象向左平移个单位,可得y =sin (x +﹣) =cosx的图象,应选:D.11.(5分)F1 ,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点) ,假设,那么椭圆的离心率为()A.B.C.D.【解答】解:如图,取PF1的中点A ,连接OA ,∴2= +,=,∴ +=,∵,∴•=0 ,∴⊥,∵,不妨设|PF2| =m ,那么|PF1| =m ,∵|PF2| +|PF1| =2a =m +m ,∴m = a =2 (﹣1 )a ,∵|F1F2| =2c ,∴4c2 =m2 +2m2 =3m2 =3×4a2 (3﹣2) ,∴=9﹣6= (﹣)2 ,∴e =﹣,应选:A12.(5分)函数, (e为自然对数的底数) ,那么函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f (x ) =t可得f (t ) =t +1.作出f (x )的函数图象如下图:设直线y =kx +1与y =e x相切,切点为(x0 ,y0 ) ,那么,解得x0 =0 ,k =1.设直线y =kx +1与y =lnx相切,切点为(x1 ,y1 ) ,那么,解得x1 =e2 ,k =.∴直线y =t +1与f (t )的图象有4个交点,不妨设4个交点横坐标为t1 ,t2 ,t3 ,t4 ,且t1<t2<t3<t4 ,由图象可知t1<0 ,t2 =0 ,0<t3<1 ,t4 =e2.由f (x )的函数图象可知f (x ) =t1无解,f (x ) =t2有1解,f (x ) =t3有3解,f (x ) =t4有2解.∴F (x )有6个零点.应选:B.二、填空题:此题共4小题,每题5分,共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r +1 =•x6﹣r•=••,令6﹣=0 ,解得r =4;∴展开式中的常数项为•=.故答案为:.14.(5分)向量= (2 ,3 ) ,= (x ,y ) ,且变量x ,y满足,那么z =•的最|大值为.【解答】解:由约束条件作出可行域如图,联立,解得A () ,∵= (2 ,3 ) ,= (x ,y ) ,∴z =•=2x +3y ,化为y =,由图可知,当直线y =过A时,直线在y轴上的截距最|大,z有最|小值为.故答案为:.15.(5分)AB为圆C:x2 +y2﹣2y =0的直径,点P为直线y =x﹣1上任意一点,那么|PA|2 +|PB|2的最|小值为6.【解答】解:圆C:x2 +y2﹣2y =0 ,转化为:x2 + (y﹣1 )2 =1 ,那么:圆心(0 ,1 )到直线y =x﹣1的距离d =,由于AB为圆的直径,那么:点A到直线的最|小距离为:.点B到直线的距离为.那么:|PA|2 +|PB|2 ==6 ,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,那么小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,∴小球可以经过的空间的体积:V ==.故答案为:.三、解答题:共70分.解容许写出文字说明、证明过程或演算步骤.第17 -21题为必考题,每个试题考生都必须作答.第22 ,23题为选考题,考生根据要求作答. 17.(12分)在△ABC中,内角A ,B ,C所对的边分别为a ,b ,c ,且满足a+2acosB =c.(Ⅰ )求证:B =2A;(Ⅱ )假设△ABC为锐角三角形,且c =2 ,求a的取值范围.【解答】解:(Ⅰ )证明:根据题意,在△ABC中,a +2acosB =c ,由正弦定理知sinA +2sinAcosB =sinC =sin (A +B ) =sinAcosB +cosAsinB ,即sinA =cosAsinB﹣sinAcosB =sin (B﹣A ).因为A ,B∈(0 ,π ) ,所以B﹣A∈(﹣π ,π ) ,且A + (B﹣A ) =B∈(0 ,π ) ,所以A + (B﹣A )≠π ,所以A =B﹣A ,B =2A.(Ⅱ )由(Ⅰ )知,.由△ABC为锐角三角形得,得,那么0<cosB<,由a +2acosB =2得,又由0<cosB<,那么.18.(12分)某公司为了准确把握市场,做好产品方案,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50 ,100 )内,且销售量x的分布频率.(Ⅰ )求a的值并估计销售量的平均数;(Ⅱ )假设销售量大于等于70 ,那么称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ )由题知,解得5≤n≤9n ,n可取5 ,6 ,7 ,8 ,9 ,代入中,得,a =0.15.销售量在[50 ,60 ) ,[60 ,70 ) ,[70 ,80 ) ,[80 ,90 ) ,[90 ,100 )内的频率分别是0.1 ,0.1 ,0.2 ,0.3 ,0.3 ,销售量的平均数为55× +65× +75× +85× +95×0.3 =81.(Ⅱ )销售量在[70 ,80 ) ,[80 ,90 ) ,[90 ,100 )内的频率之比为2:3:3 ,所以各组抽取的天数分别为2 ,3 ,3.X的所有可能值为1 ,2 ,3 ,,,.X的分布列为:X123P数学期望.19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A ,B ,C分别在x轴,y轴,z轴上.(Ⅰ )求证:CD∥平面OAB;(Ⅱ )求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ )证明:由AB =BC =CA ,可得OA =OB =OC.设OA =a ,那么,A (a ,0 ,0 ) ,B (0 ,a ,0 ) ,C (0 ,0 ,a ) ,设D点的坐标为(x ,y ,z ) ,那么由,可得(x﹣a )2 +y2 +z2 =x2 + (y﹣a )2 +z2 =x2 +y2 + (z﹣a )2 =2a2 ,解得x =y =z =a ,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ )解:设F为AB的中点,连接CF ,DF ,那么CF⊥AB ,DF⊥AB ,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ )知,在△CFD中,,,那么由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y =x与直线l2:y =﹣x之间的阴影局部记为W ,区域W中动点P (x ,y )到l1 ,l2的距离之积为1.(Ⅰ )求点P的轨迹C的方程;(Ⅱ )动直线l穿过区域W ,分别交直线l1 ,l2于A ,B两点,假设直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ )由题意得,| (x +y ) (x﹣y )| =2.因为点P在区域W内,所以x +y与x﹣y同号,得(x +y ) (x﹣y ) =x2﹣y2 =2 ,即点P的轨迹C的方程为.(Ⅱ )设直线l与x轴相交于点D ,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y =kx +m ,显然k≠0 ,那么,把直线l的方程与C:x2﹣y2 =2联立得(k2﹣1 )x2﹣2kmx +m2 +2 =0 ,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4 (k2﹣1 ) (m2 +2 ) =0 ,得m2 =2 (k2﹣1 )>0 ,得k>1或k<﹣1.设A (x1 ,y2 ) ,B (x2 ,y2 ) ,由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)函数,g (x ) =3elnx ,其中e为自然对数的底数.(Ⅰ )讨论函数f (x )的单调性.(Ⅱ )是否存在实数a ,b ,使f (x )≥ax +b≥g (x )对任意x∈(0 , +∞)恒成立?假设存在,试求出a ,b的值;假设不存在,请说明理由.【解答】解:(Ⅰ )根据题意,函数,,令f' (x ) =0得.当且x≠0时,f' (x )<0;当时,f' (x )>0.所以f (x )在(﹣∞,0 )上单调递减,在上单调递减,在上单调递增.(Ⅱ )根据题意,注意到f (e ) =g (e ) =3e ,那么ae +b =3e ,b =3e﹣ae①.于是,ax +b≥g (x )即a (x﹣e )﹣3e (1﹣lnx )≥0 ,那么记h (x ) =a (x﹣e ) +3e (1﹣lnx ) ,,假设a≤0 ,那么h' (x )<0 ,得h (x )在(0 ,+∞)上单调递减,那么当x>e时,有h (x )<h (e ) =0 ,不合题意;假设a>0 ,易知h (x )在上单调递减,在上单调递增,得h (x )在(0 , +∞)上的最|小值.记,那么,得m (a )有最|大值m (3 ) =0 ,即m (a )≤m (3 ) =0 ,又m (a )≥0 ,故a =3 ,代入①得b =0.当a =3 ,b =0时,f (x )≥ax +b即⇔2x3﹣3ex2 +e3≥0.记φ (x ) =2x3﹣3ex2 +e3 ,那么φ' (x ) =6x (x﹣e ) ,得φ (x )在(0 , +∞)上有最|小值φ (e ) =0 ,即φ (x )≥0 ,符合题意.综上,存在a =3 ,b =0 ,使f (x )≥ax +b≥g (x )对任意x∈(0 , +∞)恒成立.(二)选考题:共10分.请考生在第22 ,23题中任选一题作答,如果多做,那么按所做的第|一题计分.【选修4 -4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数) ,假设以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ =4cosθ.(Ⅰ )将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ )假设直线l与曲线C交于A ,B两点,求|AB|.【解答】解:(Ⅰ )由于ρsin2θ =4cosθ ,所以ρ2sin2θ =4ρcosθ ,即y2 =4x ,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ ),化为普通方程为y =2x﹣1 ,代入y2 =4x ,并整理得4x2﹣8x +1 =0 ,所以,=,=.【选修4 -5:不等式选讲】23.函数f (x ) =|x +1| +a|2x﹣1|.(Ⅰ )当时,假设对任意x∈R恒成立,求m +n的最|小值;(Ⅱ )假设f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,求实数a的取值范围.【解答】解:(Ⅰ )当时,,∴,∴.∴,∴,当且仅当m =n时等号成立,∵m ,n>0 ,解得,当且仅当m =n时等号成立,故m +n的最|小值为.(Ⅱ )∵f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,当x∈[﹣1 ,2]时,有x +1 +a|2x﹣1|≥2﹣x ,∴a|2x﹣1|≥1﹣2x对x∈[﹣1 ,2]恒成立,当时,a (1﹣2x )≥1﹣2x ,∴a≥1;当时,a (2x﹣1 )≥1﹣2x ,∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1 , +∞).2021年河南省安阳市(高|考)数学一模试卷(文科)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)在复平面内,复数所对应的点位于()A.第|一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ,那么A∩B = ()A.(﹣1 , +∞) B.[﹣2 , +∞) C.[﹣1 ,2] D.(﹣1 ,2]3.(5分)函数f (x )满足:①对任意x1 ,x2∈(0 , +∞)且x1≠x2 ,都有;②对定义域内任意x ,都有f (x ) =f (﹣x ) ,那么符合上述条件的函数是()A.f (x ) =x2 +|x| +1 B.C.f (x ) =ln|x +1| D.f (x ) =cosx4.(5分)假设,那么cosα﹣2sinα = ()A.﹣1 B.1 C.D.﹣1或5.(5分)等比数列{an}中,a1 =1 ,a3 +a5 =6 ,那么a5 +a7 = ()A.12 B.10 C.D.6.(5分)执行如下图的程序框图,假设输入p =0.8 ,那么输出的n = ()A.3 B.4 C.5 D.67.(5分)如下图是一个几何体的三视图,那么该几何体的体积是()A.4 +2π B.C.4 +πD.8.(5分)在边长为a的正三角形内任取一点P ,那么点P到三个顶点的距离均大于的概率是()A.B. C.D.9.(5分){an}为等差数列,Sn为其前n项和,假设a3 +7 =2a5 ,那么S13 = ()A.49 B.91 C.98 D.18210.(5分)函数,要得到g (x ) =cosx的图象,只需将函数y =f (x )的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)函数与g (x ) =6x +a的图象有3个不同的交点,那么a的取值范围是()A. B. C. D.12.(5分)F1 ,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点) ,假设,那么椭圆的离心率为()A.B.C.D.二、填空题:此题共4小题,每题5分,共20分13.(5分)命题"∀x∈R ,都有x2 +|x|≥0〞的否认是.14.(5分)长、宽、高分别为1 ,2 ,3的长方体的顶点都在同一球面上,那么该球的外表积为.15.(5分)向量= (2 ,3 ) ,= (x ,y ) ,且变量x ,y满足,那么z =•的最|大值为.16.(5分)在平面直角坐标系xOy中,点A (0 ,﹣3 ) ,假设圆C:(x﹣a )2 + (y﹣a +2 )2 =1上存在一点M满足|MA| =2|MO| ,那么实数a的取值范围是.三、解答题:共70分.解容许写出文字说明,证明过程或演算步骤.第17 -21题为必考题,每个试题考生都必须作答.第22 ,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在△ABC中,内角A ,B ,C所对的边分别为a ,b ,c ,且满足a +2acosB =c.(Ⅰ)求证:B =2A;(Ⅱ)假设△ABC为锐角三角形,且c =2 ,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品方案,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50 ,100]内,且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)假设销售量大于等于80 ,那么称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).19.(12分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD ,且PA⊥PD ,PA =PD ,AD =4 ,BC ∥AD ,AB =BC =CD =2 ,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y =x与直线l2:y =﹣x之间的阴影局部记为W ,区域W中动点P (x ,y )到l1 ,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W ,分别交直线l1 ,l2于A ,B两点,假设直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)函数,g (x ) =3elnx ,其中e为自然对数的底数.(Ⅰ)讨论函数f (x )的单调性.(Ⅱ)试判断曲线y =f (x )与y =g (x )是否存在公共点并且在公共点处有公切线.假设存在,求出公切线l的方程;假设不存在,请说明理由.(二)选考题:共10分.请考生在22 ,23题中任选一题作答,如果多做,那么按所做的第|一题计分.[选修4 -4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数) ,假设以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ =4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)假设直线l与曲线C交于A ,B两点,求|AB|.[选修4 -5:不等式选讲]23.函数f (x ) =|x +1| +a|2x﹣1|.(Ⅰ)当时,假设对任意x∈R恒成立,求m +n的最|小值;(Ⅱ)假设f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,求实数a的取值范围.2021年河南省安阳市(高|考)数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)在复平面内,复数所对应的点位于()A.第|一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴复数所对应的点的坐标为() ,位于第二象限.应选:B.2.(5分)设集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ,那么A∩B = ()A.(﹣1 , +∞) B.[﹣2 , +∞) C.[﹣1 ,2] D.(﹣1 ,2]【解答】解:∵集合A ={x|﹣2≤x≤2} ,B ={y|y =3x﹣1 ,x∈R} ={y|y>﹣1} ,∴A∩B ={x|﹣1<x≤2} = (﹣1 ,2].应选:D.3.(5分)函数f (x )满足:①对任意x1 ,x2∈(0 , +∞)且x1≠x2 ,都有;②对定义域内任意x ,都有f (x ) =f (﹣x ) ,那么符合上述条件的函数是()A.f (x ) =x2 +|x| +1 B.C.f (x ) =ln|x +1| D.f (x ) =cosx【解答】解:由题意得:f (x )是偶函数,在(0 , +∞)递增,对于A ,f (﹣x ) =f (x ) ,是偶函数,且x>0时,f (x ) =x2 +x +1 ,f′ (x ) =2x +1>0 ,故f (x )在(0 , +∞)递增,符合题意;对于B ,函数f (x )是奇函数,不合题意;对于C ,由x +1 =0 ,解得:x≠﹣1 ,定义域不关于原点对称,故函数f (x )不是偶函数,不合题意;对于D ,函数f (x )在(0 , +∞)无单调性,不合题意;应选:A.4.(5分)假设,那么cosα﹣2sinα = ()A.﹣1 B.1 C.D.﹣1或【解答】解:假设,那么1 +cosα =3sinα ,又sin2α +cos2α =1 ,∴sinα =,∴cosα =3sinα﹣1 =,∴cosα﹣2sinα =﹣,应选:C.5.(5分)等比数列{an}中,a1 =1 ,a3 +a5 =6 ,那么a5 +a7 = ()A.12 B.10 C.D.【解答】解:∵,a1 =1 ,a3 +a5 =6 ,∴a3 +a5 =q2 +q4 =6 ,得q4 +q2﹣6 =0 ,即(q2﹣2 ) (q2 +3 ) =0 ,那么q2 =2 ,那么a5 +a7 =q4 +q6 =22 +23 =4 +8 =12 ,应选:A6.(5分)执行如下图的程序框图,假设输入p =0.8 ,那么输出的n = ()A.3 B.4 C.5 D.6【解答】解:第|一次运行n =1 ,s =0 ,满足条件s<0.8 ,s ==0.5 ,n =2 ,第二次运行n =2 ,s =0.5 ,满足条件s<0.8 ,s =+=0.75 ,n =3 ,第三次运行n =3 ,s =0.75 ,满足条件s<++0.125 =0.875 ,n =4 ,<0.8输出,n =4 ,应选:B.7.(5分)如下图是一个几何体的三视图,那么该几何体的体积是()A.4 +2π B.C.4 +πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4 ,宽为1 ,高为1 ,半圆柱的底面半径为r =1 ,高为h =1 ,如图,∴该几何体的体积:V =4×1×1 +=4 +.应选:D.8.(5分)在边长为a的正三角形内任取一点P ,那么点P到三个顶点的距离均大于的概率是()A.B. C.D.【解答】解:满足条件的正三角形ABC如以下图所示:边长AB =a ,其中正三角形ABC的面积S三角形=•a2•sin=a2;满足到正三角形ABC的顶点A、B、C的距离至|少有一个小于1的平面区域,如图中阴影局部所示,其加起来是一个半径为的半圆,∴S阴影=•π•=,∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P =1﹣=1﹣π.应选:B.9.(5分){an}为等差数列,Sn为其前n项和,假设a3 +7 =2a5 ,那么S13 = ()A.49 B.91 C.98 D.182【解答】解:设等差数列{an}的公差为d ,∵a3 +7 =2a5 ,∴a1 +2d +7 =2 (a1 +4d ) ,化为:a1 +6d =7 =a7.那么S13 ==13a7 =13×7 =91.应选:B.10.(5分)函数,要得到g (x ) =cosx的图象,只需将函数y =f (x )的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y =f (x ) =sin (x﹣)的图象向左平移个单位,可得y =sin (x +﹣) =cosx的图象,应选:D.11.(5分)函数与g (x ) =6x +a的图象有3个不同的交点,那么a的取值范围是()A. B. C. D.【解答】解:函数与g (x ) =6x +a的图象有3个不同的交点⇔方程 a =有3个不同的实根,即函数y =a ,g (x ) =的图象有3个不同的交点.g′ (x ) =x2 +x﹣6 = (x +3 ) (x﹣2 )x∈(﹣∞,﹣3 ) , (2 , +∞)时,g (x )递增,x∈(﹣3 ,2 )递减,函数g (x )图如下,结合图象,只需g (2 )<a<g (﹣3 )即可,即﹣<<,应选:B.12.(5分)F1 ,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点) ,假设,那么椭圆的离心率为()A.B.C.D.【解答】解:如图,取PF1的中点A ,连接OA ,∴2=+,=,∴+=,∵,∴•=0 ,∴⊥,∵,不妨设|PF2| =m ,那么|PF1| =m ,∵|PF2| +|PF1| =2a =m +m ,∴m = a =2 (﹣1 )a ,∵|F1F2| =2c ,∴4c2 =m2 +2m2 =3m2 =3×4a2 (3﹣2) ,∴=9﹣6= (﹣)2 ,∴e =﹣,应选:A二、填空题:此题共4小题,每题5分,共20分13.(5分)命题"∀x∈R ,都有x2 +|x|≥0〞的否认是∃x0∈R ,使得.【解答】解:由全称命题的否认为特称命题,可得命题"∀x∈R ,都有x2 +|x|≥0〞的否认是"∃x0∈R ,使得〞.故答案为:∃x0∈R ,使得.14.(5分)长、宽、高分别为1 ,2 ,3的长方体的顶点都在同一球面上,那么该球的外表积为14π.【解答】解:∵长、宽、高分别为1 ,2 ,3的长方体的顶点都在同一球面上,∴球半径R ==,∴该球的外表积为S =4π×R2 =4=14π.故答案为:14π.15.(5分)向量= (2 ,3 ) ,= (x ,y ) ,且变量x ,y满足,那么z =•的最|大值为.【解答】解:由约束条件作出可行域如图,联立,解得A () ,∵= (2 ,3 ) ,= (x ,y ) ,∴z =•=2x +3y ,化为y =,由图可知,当直线y =过A时,直线在y轴上的截距最|大,z有最|小值为.故答案为:.16.(5分)在平面直角坐标系xOy中,点A (0 ,﹣3 ) ,假设圆C:(x﹣a )2 + (y﹣a +2 )2 =1上存在一点M满足|MA| =2|MO| ,那么实数a的取值范围是[0 ,3].【解答】解:设点M (x ,y ) ,由|MA| =2|MO| ,得到:,整理得:x2 +y2﹣2y﹣3 =0 ,∴点M在圆心为D (0 ,1 ) ,半径为2的圆上.又点M在圆C上,∴圆C与圆D有公共点,∴1≤|CD|≤3 ,∴1≤≤3 ,解得0≤a≤3.即实数a的取值范围是[0 ,3].故答案为:[0 ,3].三、解答题:共70分.解容许写出文字说明,证明过程或演算步骤.第17 -21题为必考题,每个试题考生都必须作答.第22 ,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在△ABC中,内角A ,B ,C所对的边分别为a ,b ,c ,且满足a +2acosB =c.(Ⅰ)求证:B =2A;(Ⅱ)假设△ABC为锐角三角形,且c =2 ,求a的取值范围.【解答】解:(Ⅰ)证明:根据题意,在△ABC中,a +2acosB =c ,由正弦定理知sinA +2sinAcosB =sinC =sin (A +B ) =sinAcosB +cosAsinB ,即sinA =cosAsinB﹣sinAcosB =sin (B﹣A ).因为A ,B∈(0 ,π ) ,所以B﹣A∈(﹣π ,π ) ,且A + (B﹣A ) =B∈(0 ,π ) ,所以A + (B﹣A )≠π ,所以A =B﹣A ,B =2A.(Ⅱ)由(Ⅰ)知,.由△ABC为锐角三角形得,得,那么0<cosB<,由a +2acosB =2得,又由0<cosB<,那么.18.(12分)某公司为了准确把握市场,做好产品方案,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50 ,100]内,且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)假设销售量大于等于80 ,那么称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).【解答】解:(Ⅰ)由题知,解得5≤n≤9 ,n可取5 ,6 ,7 ,8 ,9 ,代入中,得,解得a =0.15.(Ⅱ+ + +0.3 ) =2:3 ,那么抽取的5天中,滞销日有2天,记为a ,b ,畅销日有3天,记为C ,D ,E ,再从这5天中抽出2天,根本领件有ab ,aC ,aD ,aE ,bC ,bD ,bE ,CD ,CE ,DE ,共10个,2天中恰有1天为畅销日的事件有aC ,aD ,aE ,bC ,bD ,bE ,共6个,那么这2天中恰有1天是畅销日的概率为p =.19.(12分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD ,且PA⊥PD ,PA =PD ,AD =4 ,BC ∥AD ,AB =BC =CD =2 ,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.【解答】证明:(Ⅰ)取PA的中点F ,连接BF ,EF.在△PAD中,EF为中位线,那么,又,故,那么四边形BCEF为平行四边形,得CE∥BF ,又BF⊂平面PAB ,CE⊄平面PAB ,故CE∥平面PAB.解:(Ⅱ)由E为PD的中点,知点D到平面PBC的距离是点E到平面PBC的距离的两倍, 那么.由题意知,四边形ABCD为等腰梯形,且AB =BC =CD =2 ,AD =4 ,其高为,那么.取AD的中点O ,在等腰直角△PAD中,有,PO⊥AD ,又平面PAD⊥平面ABCD ,故PO⊥平面ABCD ,那么点P到平面ABCD的距离即为PO =2.,故三棱锥E﹣PBC的体积.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y =x与直线l2:y =﹣x之间的阴影局部记为W ,区域W中动点P (x ,y )到l1 ,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W ,分别交直线l1 ,l2于A ,B两点,假设直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得,| (x +y ) (x﹣y )| =2.因为点P在区域W内,所以x +y与x﹣y同号,得(x +y ) (x﹣y ) =x2﹣y2 =2 ,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D ,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y =kx +m ,显然k≠0 ,那么,把直线l的方程与C:x2﹣y2 =2联立得(k2﹣1 )x2﹣2kmx +m2 +2 =0 ,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4 (k2﹣1 ) (m2 +2 ) =0 ,得m2 =2 (k2﹣1 )>0 ,得k>1或k<﹣1.设A (x1 ,y2 ) ,B (x2 ,y2 ) ,由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)函数,g (x ) =3elnx ,其中e为自然对数的底数.(Ⅰ)讨论函数f (x )的单调性.(Ⅱ)试判断曲线y =f (x )与y =g (x )是否存在公共点并且在公共点处有公切线.假设存在,求出公切线l的方程;假设不存在,请说明理由.【解答】解:(Ⅰ)由,得,令f′ (x ) =0 ,得.当且x≠0时,f′ (x )<0;当时,f′ (x )>0.∴f (x )在(﹣∞,0 )上单调递减,在上单调递减,在上单调递增;(Ⅱ)假设曲线y =f (x )与y =g (x )存在公共点且在公共点处有公切线,且切点横坐标为x0>0 ,那么,即,其中(2 )式即.记h (x ) =4x3﹣3e2x﹣e3 ,x∈(0 , +∞) ,那么h' (x ) =3 (2x +e ) (2x﹣e ) ,得h (x )在上单调递减,在上单调递增,又h (0 ) =﹣e3 ,,h (e ) =0 ,故方程h (x0 ) =0在(0 , +∞)上有唯一实数根x0 =e ,经验证也满足(1 )式.于是,f (x0 ) =g (x0 ) =3e ,f′ (x0 ) =g' (x0 ) =3 ,曲线y =g (x )与y =g (x )的公切线l的方程为y﹣3e =3 (x﹣e ) ,即y =3x.(二)选考题:共10分.请考生在22 ,23题中任选一题作答,如果多做,那么按所做的第|一题计分.[选修4 -4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数) ,假设以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ =4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)假设直线l与曲线C交于A ,B两点,求|AB|.【解答】解:(Ⅰ)由于ρsin2θ =4cosθ ,所以ρ2sin2θ =4ρcosθ ,即y2 =4x ,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ),化为普通方程为y =2x﹣1 ,代入y2 =4x ,并整理得4x2﹣8x +1 =0 ,所以,=,=.[选修4 -5:不等式选讲]23.函数f (x ) =|x +1| +a|2x﹣1|.(Ⅰ)当时,假设对任意x∈R恒成立,求m +n的最|小值;(Ⅱ)假设f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,求实数a的取值范围.【解答】解:(Ⅰ)当时,,∴,∴.∴,∴,当且仅当m =n时等号成立,∵m ,n>0 ,解得,当且仅当m =n时等号成立,故m +n的最|小值为.(Ⅱ)∵f (x )≥|x﹣2|的解集包含[﹣1 ,2] ,当x∈[﹣1 ,2]时,有x +1 +a|2x﹣1|≥2﹣x ,∴a|2x﹣1|≥1﹣2x对x∈[﹣1 ,2]恒成立,。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年河南省高考数学一模试卷(理科)选择题1.A. 2B. 3C. 4D. 5【答案】C【解析】【分析】故选【点睛】本题主要考查了集合的交集,补集的混合运算,熟练掌握各自的定义是解题的关键,属于基础题。
2.)A. -6B. 13C.D.【答案】A【解析】解答:a=−6.本题选择A选项.3.已知pA. p,B. pC. p,D. p【答案】C【解析】【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果。
命题:,是真命题【点睛】本题主要考查了命题的否定,特称命题与全称命题的否定关系,属于基础题。
4.已知程序框图如图,则输出iA. 7B. 9C. 11D. 13【答案】D【解析】【分析】运行过程,可得答案.【点睛】本题主要考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答。
5.2018年元旦假期,高三的8各两名,分乘甲乙两辆汽车,每车限坐44班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一A. 18种B. 24种C. 48种D. 36种【答案】B【解析】【分析】组合知识,问题得以解决。
根据分类计数原理得,共有【点睛】本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两【答案】C【解析】【分析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积。
【详解】由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;四棱锥的四个侧面都为直角三角形,且故选【点睛】本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.D,若圆C:D上的点,则r的取值范围为【答案】A【分析】表示以【详解】及其内部,其中时,圆的取值范围,着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题。
2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B.C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a +b +c=2, 则++=(++)(a +b +c )=[1+1+1+(+)+(+)+(+)] ≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。