【2014届高考物理易错题查漏补缺】专题6 带电粒子在电场中的运动
- 格式:doc
- 大小:693.50 KB
- 文档页数:9
物理带电粒子在电场中的运动易错剖析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高中物理带电粒子在电场中的运动易错剖析及解析一、高考物理精讲专题带电粒子在电场中的运动1.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+2.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+ 【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A在D点时,下壁对球的支持力20v F m r==由牛顿第三定律,F F =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:21=解得1t = 小球在圆管内做匀速圆周运动的时间为t 2,则:2324A rt v π⋅==小球离开管后做类平抛运动,物块从B 到N的过程中所用时间:3t = 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.3.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.4.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL Bd q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d5.静电喷漆技术具有效率高、质量好、有益于健康等优点,其装置可简化为如图甲所示.A 、B 为水平放置的间距d =1.6m 的两块足够大的平行金属板,两板间有方向由B 指向A 的0.1/E V m =的匀强电场.在A 板的中央放置一个安全接她的静电油漆喷枪P ,油漆喷枪可向各个方向均匀地喷出初速度大小均为0 6.0/v m s =的油漆微粒,已知油漆微粒的质量均为m =1.0×10-5kg ,带负电且电荷量均为q =1.0×10-3C ,不计油漆微粒间的相互作用以及油漆微粒带电量对板间电场和磁场的影响,忽略空气阻力,g 取210/m s ,已知sin53°=0.8,cos53°=0.6.求(计算结果小数点后保留一位数字):(1)油漆微粒落在B 板上的最大面积;(2)若让A 、B 两板间的电场反向(如图乙所示),并在两板间加垂直于纸面向里的匀强磁场,磁感应强度B =0.06T ,调节喷枪使油漆微粒只能在纸面内沿各个方向喷出,其他条件不变.①B 板被油漆微粒打中的区域的长度为多少?②打中B 板的油漆微粒中,在正交场中运动的最短时间为多少? 【答案】(1)18.1 m 2(2)1.6 m (3)0.31 s 【解析】试题分析:(1)油漆微粒的加速度Eq mga m+=① 根据运动学 212d at =② 运动的半径 0x v t =③落在B 板上所形成圆形面积2s x π=④由①②③式并代入数据得218.1m s =⑤(2)当电场反向Eq mg =⑥油漆微粒做匀速圆周运动,洛伦兹力充当向心力2v Bqv m R=⑦水平向右射出的油漆微粒打在B 板的右端,根据几何关系cos R R d α+=⑧ac 的长度⑨打在B 板左端的油漆微粒为和板相切的微粒,同理求得bc ac =⑩油漆微粒打在极板上的长度ab ac bc =+11由⑥⑦⑧⑨⑩11式并代入数据得1.6m ab =12(3)打在B 板上的微粒中,pc 最短的弦长对应的时间最短 有几何关系2sind Rθ=13运动的最短时间min 22t T θπ=14 微粒在磁场中运动的周期2mT Bqπ=15 由7131415式代入数据解得min 0.31s t =16考点:动能定理的应用;匀变速直线运动的位移与时间的关系;牛顿第二定律. 点评:本题是实际问题,考查理论联系实际的能力,关键在于建立物理模型.6.如图所示,OO′为正对放置的水平金属板M 、N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。
高考物理带电粒子在电场中的运动易错剖析及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
高考物理带电粒子在电场中的运动答题技巧及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.2.如图所示,有一比荷qm=2×1010C/kg 的带电粒子,由静止从Q 板 经电场加速后,从M 板的狭缝垂直直线边界a 进入磁感应强度为B =1.2×10-2T 的有界矩形匀强磁场区域后恰好未飞出直线边界b ,匀强磁场方向垂直平面向里,a 、b 间距d =2×10-2m(忽略粒子重力与空气阻力)求:(1)带电粒子射入磁场区域时速度v ; (2)Q 、M 两板间的电势差U QM 。
2014年高考物理黄金易错点专题汇编专题07 电场与带电粒子在电场中的运动1.A、B、C三点在同一直线上,AB∶BC=1∶2,B点位于A、C之间,在B处固定一电荷量为Q的点电荷。
当在A处放一电荷量为+q的点电荷时,它所受到的电场力为F;移去A处电荷,在C处放一电荷量为-2q的点电荷,其所受电场力为 ( )A.-F/2 B.F/2C.-F D.F2.一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C和两极板间的电势差U的变化情况是 ( )A.C和U均增大 B.C增大,U减小C.C减小,U增大 D.C和U均减小3.图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷。
一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a、b、c三点是实线与虚线的交点。
则该粒子( )A.带负电B.在c点受力最大C.在b点的电势能大于在c点的电势能D.由a点到b点的动能变化大于由b点到c点的动能变化4. N(N>1)个电荷量均为q(q>0)的小球,均匀分布在半径为R的圆周上,示意如图所示,若移去位于圆周上P点的一个小球,则圆心O点处的电场强度大小为 ________,方向________。
(已知静电力常量为k)5.两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中( )A.做直线运动,电势能先变小后变大B.做直线运动,电势能先变大后变小C.做曲线运动,电势能先变小后变大D.做曲线运动,电势能先变大后变小6.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似。
如图所示,在虚线MN两侧分别存在着方向相反的两个匀强电场,一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动。
高考物理带电粒子在电场中的运动解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min .【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα003sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α= ,解得233L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=;由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min0(22)2R T t vπα--=解得()min 06323L T v π+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()202B A ve v mϕϕ-+;(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()0020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()202B A ve v mϕϕ-+;(2)① ②()1122211sin 2e v mθϕϕ=-+4.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+ 【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A在D点时,下壁对球的支持力20v F m r==由牛顿第三定律,F F =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:21=解得1t = 小球在圆管内做匀速圆周运动的时间为t 2,则:2324A rt v π⋅==小球离开管后做类平抛运动,物块从B 到N的过程中所用时间:3t = 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.5.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142Bt T m qB π== 所以2B E t t π=6.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B d q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t dv +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d7.如图所示,一质量为m 、电荷量为的带正电粒子从O 点以初速度v 0水平射出。
高考物理带电粒子在电场中的运动易错剖析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα003sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得233L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos 2d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 06323L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 02y )2y由数学知识可知,当(x 02y )2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm5.如图所示,在竖直面内有两平行金属导轨AB 、CD .导轨间距为L ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有一水平放置的电容为C 的平行板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
高考物理带电粒子在电场中的运动易错剖析含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a=22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min .【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα003sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α= ,解得233L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=;由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 06323L T v π+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.一带正电小球通过绝缘细线悬挂于场强大小为E 1的水平匀强电场中,静止时细线与竖直方向的夹角θ=45°,如图所示。
2014届高考物理易错题查漏补缺专题6带电粒子在电场中的运动例1、如图,虚线a 、b 和c 是静电场中的三个等势面,它们的电势分别为φa 、φb 、和φc ,φa ﹥φb ﹥φc 。
一带电的粒子射入电场中,其运动轨迹如实线KLMN 所示,由图可知 ( ) A 、 粒子从K 到L 的过程中,电场力做负功 B 、 粒子从L 到M 的过程中,电场力做负功 C 、 粒子从K 到L 的过程中,静电势能增加 D 、 粒子从L 到M 的过程中,动能减少例2、如图所示,有三个质量相等,分别带正电,负电和不 带电 的小球,从上、下带电平行金属板间的P 点.以相同速率垂直电场方向射入电场,它们分别落到A 、B 、C 三点,则 ( )(A ) A 带正电、B 不带电、C 带负电 (B ) 三小球在电场中运动时间相等(C ) 在电场中加速度的关系是a C >a B >a A (D ) 到达正极板时动能关系E A >E B >E C例3、如图所示,带负电的小球静止在水平放置的平行板电容器两板间,距下板0.8 cm ,两板间的电势差为300 V.如果两板间电势差减小到60 V ,则带电小球运动到极板上需多长时间? 例4、绝缘的半径为R 的光滑圆环,放在竖直平面内,环上套有一个质量为m ,带电量为+q 的小环,它们处在水平向右的匀强电场中,电场强度为E (如图所示),小环从最高点A 由静止开始滑动,当小环通过(1)与大环圆心等高的B 点与(2)最低点C 时,大环对它的弹力多大?方向如何?A CE例5、如图4所示,质量为m 、带电量为 q 的小球从距地面高h 处以一定的初速度v 0水平抛出,在距抛出水平距离为L 处,有一根管口比小球直径略大的竖直细管,管的上口距地面h /2,为使小球能无碰撞地通过管子可在管口上方整个区域里加一场强方向向左的匀强电场。
求:(1)小球的初速度v 0;(2)电场强度E 的大小;(3)小球落地时的动能。
mqv图4练习1、如图所示,有一质量为m 、带电量为q 的油滴,被置于竖直放置的两平行金属板间的匀强电场中,设油滴是从两板中间位置,并以初速度为零进入电场的,可以判定( ).(A)油滴在电场中做抛物线运动 (B)油滴在电场中做匀加速直线运动(C)油滴打在极板上的运动时间只决定于电场强度和两板间距离(D)油滴打在极板上的运动时间不仅决定于电场强度和两板间距离,还决定于油滴的荷质比2、 (01全国理科综合)图中所示是一个平行板电容器,其电容为C ,带电量为Q ,上极板带正电。
现将一个试探电荷q 由两极板间的A 点移动到B 点,如图所示。
A 、B 两点间的距离为s ,连线AB 与极板间的夹角为30°,则电场力对试探电荷q 所做的功等于 ( C ) A .Qd qCs B .CdqQsC .Cd qQs 2D .Qd qCs 23、(01上海)A 、B 两点各放有电量为+Q 和+2Q 的点电荷,A 、B 、C 、D 四点在同一直线上,且AC=CD=DB 。
将一正电荷从C 点沿直线移到D 点,则 ( B ) A 、 电场力一直做正功B 、 电场力先做正功再做负功C 、 电场力一直做负功D 、电场力先做负功再做正功4、如图所示,在光滑的水平面上有一个绝缘弹簧振子,小球带负电,在振动过程中,当弹簧压缩到最短时,突然加上一个水平向左的匀强电场, A .振子振幅增大 B .振子振幅减小C .振子的平衡位置不变D .振子的周期增大5、若带正电荷的小球只受到电场力作用,则它在任意一段时间内 A .一定沿电场线由高电势处向低电势处运动 B .一定沿电场线由低电势处向高电势处运动C .不一定沿电场线运动,但一定由高电势处向低电势处运动D .不一定沿电场线运动,也不一定由高电势处向低电势处运动6、如图所示,两平行金属板a 板对b 板的电压随时间变化图像如静止释放,已知在一个周 期内电子没有到达c 面和d 面,则以后到达c 面或d 面可能是:A .向右运动时通过c 面B .向左运动时通过c 面C .向右运动时通过d 面D .向左运动时通过d 面7、质量为m 、带电量为+q 的小球,用一绝缘细线悬挂于O 点,开始时它在A 、B 之间来回摆动,OA 、OB 与竖直方向OC 的夹角均为θ如图1所示。
求(1)如果当它摆到B 点时突然施加一竖直向上的、大小为E mg q =/的匀强电场,则此时线中拉力T 1(2)如果这一电场是在小球从A 点摆到最低点C 时突然加上去的,则当小球运动到B 点时线中的拉力2T8、一个质量为m 、带有电荷-q 的小物体,可在水平轨道Ox 上运动,O 端有一与轨道垂直的固定墙、轨道处于匀强电场中,其场强大小为E,方向沿OX 轴正方向,如图所示。
小物体以初速度v0从x0点沿OX 轨道运动,运动时受到大小不变的摩擦力f 作用,且f <qE ;设小物体与墙碰撞时不损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s 。
9、如图3-2-11所示,在竖直平面内,有一半径为R 的绝缘的光滑圆环,圆环处于场强大小为E ,方向水平向右的匀强电场中,圆环上的A 、C 两点处于同一水平面上,B 、D 分别为圆环的最高点和最低点.M 为圆环上的一点,∠MOA=45°.环上穿着一个质量为m ,带电量为+q 的小球,它正在圆环上做圆周运动,已知电场力大小qE 等于重力的大小mg ,且小球经过M 点时球与环之间的相互作用力为零.试确定小球经过A 、B 、C 、D 点时的动能各是多少?10、如图3(a )所示,真空室中电极K 发出的电子(初速为零)。
经U=1000V 的加速电场后,由小孔S 沿两水平金属板A 、B 两板间的中心线射入,A 、B 板长L=0.20m ,相距d=0.020m ,加在A 、B 两板间的电压U 随时间t 变化u —t 图线如图3(b )。
设A 、B 两板间的电场可以看做是均匀的,且两板外无电场。
在每个电子通过电场区域的极短时间内,电场可视作恒定的。
两板右侧放一记录圆筒,筒的左侧边缘与极板右端距离b m =015.,筒绕其竖直轴匀速转动,周期T s =020.,筒的周长S m =020.,筒能接收到通过A 、B 板的全部电子。
(a)答案例1、AC 例2、AC例3、解析:取带电小球为研究对象,设它带电量为q ,则带电小球受重力mg 和电场力qE 的作用. 当U 1=300 V 时,小球平衡:dU qmg 1= ① 当U2=60 V 时,带电小球向下板做匀加速直线运动:ma dU qmg =-2② 又221at h =③由①②③得:10)60300(300108.02)(22211⨯-⨯⨯⨯=-=-gU U hU t s=4.5×10-2s例4、解:(1)小环由A 到B 的过程中,重力做正功(mgR ),电场力也做正功(qER ),弹力不做功;根据动能定理(设通过B 点时速度大小为v B )122mv mgR qER B =+①小环通过B 点的运动方程为:mv R N qE BB 2=-②解方程①和②,可知小环通过B 点时,大环对它的弹力指向环心O ,大小为N mv R qE mg qEB B=+=+223(2)小环由A 到C 的过程中,电场力与弹力都不做功,只有重力做功,设通过C 点时小环的速度大小为v C ,根据动能定理:1222mv mgR C =③小环通过C 点时的运动方程为mv R N mg CC 2=-④解方程③和④得:N mv R mg mgC C=+=25例5、(1)从抛出点到管口小球的运动时间为t ,则h gt t h g ///222==,。
水平方向做匀减速运动,则有v t L v L g h 0022/./=∴=。
(2)在水平方向上应用牛顿第二定律有Eq ma =。
由运动学公式知a v t gL h ==02//。
由上二式E mgL gh =2/。
(3)在全过程应用动能定理得 E mv mgh EqL K 地-=-022/ ∴小球落地时的动能。
E mv mgh EqL mgh K 地=+-=022/练习 1、BD 2、C 3、B 4、B 5、D 6、C7、解:(1)小球摆到B 点时,速度为零,突然加上电场,小球受到电场力:F qE mg ==方向向上,小球受到的合力为零,小球将在B 处静止而达到平衡状态。
∴=T 10。
(2)小球摆 到平衡位置C 时,由机械能守恒定律: 得 m g L mv (cos )1122-=θ, ∴=-v gL 221(cos )θ这时突然加上电场,电场力仍与重力平衡,小球将做匀速圆周运动,绳的拉力提供做圆周运动的向心力。
∴==-T m v Rmg 2221(cos )θ8、解:由于f <qE ,所以物体最后停在O 点,物体停止运动前所通过的总路程为s ,根据动能定理有所以20210mv fs qEx -=-9、解根据牛顿第二定律当小球从M 点运动到A 点的过程中,电场力和重力做功分别为根据动能定理得:同理:10、解(1)以t =0时(见图b 此时u =0)电子打到圆筒记录纸上的点作为xy 坐标系的原点,并取y 轴竖直向上,试计算电子打到记录纸上的最高点的y 坐标和x 坐标(不计重力)。
(2)在给出的坐标纸(如图d )上定量地画出电子打到记录纸上的点形成的图线。
析与解:本题是综合性较强的一道高考压轴题,可分为四个阶段加速、偏转、放大和扫描。
而电子的加速、偏转问题都是学生熟悉的,有新意的是该题把常见的固定的接收屏改为转动的圆筒,加进了扫描因素,构成了一新的情境问题,对学生的能力、素质提出了较高的要求。
(1)设v 0为电子沿AB 板中心线射入电场时的初速度则fmv qEx s 22200+=mv eU 0202/= (1) 电子穿过A 、B 板的时间为t 0,则 t L v 00=/ (2)电子在垂直于A 、B 板方向的运动为匀加速直线运动,对于能穿过A 、B 板的电子,在它通过时加在两板间的u 0应满足:1212002d eu mdt = (3) 由(1)、(2)、(3)解得 u d U L V 0202220==/此电子从A 、B 板射出的沿Y 方向分速度为: v eu mdt y =0 (4) 以后此电子作匀速直线运动,它打在记录纸上的点最高,设纵坐标为y 由图(c )可得y d b v v y-=/20(5) 由以上各式解得:y db L d cm =+=//.225 (6)由u t -图线可知,加在两板电压u 的周期T s 0010=.,u 的最大值U V m =100,因为u U m 0<,在一个周期T 0内只有开始的一段时间间隔∆t 内有电子通过A 、B 板∆t u U T m=0 (7) 因为电子打在记录纸上的最高点不止一个,根据题中关于坐标原点与起始记录时刻的规定,第一个最高点的x 坐标为x ts t cm 12==∆/ (8) 第二个最高点的x 坐标为x t T Ts cm 2012=+=∆ (9) 第三个最高点的x 坐标为x t T Ts cm 30222=+=∆ 由于记录筒的周长为20cm ,所以第三个最高点已与第一个最高点重合,即电子打到记录纸上的最高点只有两个,它们的坐标分别由(8)、(9)表示。