Universal Quantum Computation with the nu=52 Fractional Quantum Hall State
- 格式:pdf
- 大小:310.51 KB
- 文档页数:17
有限图上量子行走的叠加态和概率探究刘齐祯;黄寿胜【摘要】In this paper ,quantum Fourier Transform is expanded ,another variable is added into the phase of quantum Fourier Transform .Discrete-time quantum walks on finite graph can be simulated with such expanded quantum Fourier Transform . The result of simulated quantum walks canbe attained by inverse quantum Fourier Transform .The quantum walk simulated can attain both large superposition state and non-asymptotic probability of quantum walker on the vertexes .%对量子傅里叶变换进行扩展,在相位中添加了一个变量。
利用扩展后的量子傅里叶变换对有限图上的量子行走进行模拟,最后利用逆量子傅里叶变换得到结果。
解决了在有限图上的量子行走有较大的叠加态和量子行走子在各点的概率发生变化不能同时满足的矛盾。
【期刊名称】《衡阳师范学院学报》【年(卷),期】2014(000)003【总页数】4页(P28-31)【关键词】量子行走;模拟;量子傅里叶变换【作者】刘齐祯;黄寿胜【作者单位】温州大学物理与电子信息工程学院,浙江温州 325035;温州大学物理与电子信息工程学院,浙江温州 325035【正文语种】中文【中图分类】O413量子行走是经典随机行走的扩展[1]。
因为很多问题都可以归结为经典随机行走,所以量子行走以经典随机行走为类比,希望能把量子的并行性和经典随机行走的全能性结合起来。
电脑的发展英语作文Title: The Evolution of Computers。
Introduction:Computers have undergone a remarkable evolution since their inception. From the massive, room-sized machines of the mid-20th century to the sleek, portable devices of today, the journey of computers is one of constant innovation and advancement. In this essay, we will explore the key milestones in the development of computers, from their humble beginnings to their pervasive presence in our modern world.Early Computers:The history of computers dates back to the early 20th century when pioneers like Alan Turing and John von Neumann laid the theoretical groundwork for modern computing. The first electronic computers, such as the ENIAC and UNIVAC,emerged in the 1940s and 1950s. These machines were enormous, requiring vast amounts of space and power to operate. They were primarily used for complex calculations, particularly in scientific and military applications.The Rise of Personal Computers:The 1970s witnessed the dawn of the personal computer era with the introduction of machines like the Altair 8800 and the Apple I. These early PCs were rudimentary bytoday's standards, often consisting of little more than a keyboard and a monochrome display. However, they represented a paradigm shift in computing by bringing the power of computation into the hands of individuals. As the 1980s progressed, companies like IBM and Apple competed fiercely to dominate the burgeoning personal computer market, leading to rapid advancements in hardware and software technology.The Internet Age:The invention of the World Wide Web in the late 20thcentury revolutionized the way we interact with computers. The internet transformed computers from isolated tools into interconnected nodes in a global network. With the rise of email, websites, and online services, computers became indispensable tools for communication, commerce, and entertainment. The advent of high-speed internet further accelerated this trend, enabling rich multimedia experiences and real-time collaboration.Mobile Computing:The 21st century witnessed the proliferation of mobile computing devices, such as smartphones and tablets. These compact, portable devices pack immense computing power into pocket-sized form factors, allowing users to access information and services on the go. The popularity of mobile apps has further fueled the adoption of mobile computing, with millions of applications available for download to enhance productivity, entertainment, and communication.The Era of Artificial Intelligence:In recent years, artificial intelligence (AI) has emerged as a transformative force in computing. Breakthroughs in machine learning and neural networks have enabled computers to perform tasks that were once thought to be the exclusive domain of human intelligence. From virtual assistants like Siri and Alexa to self-driving cars and predictive analytics, AI is reshaping industries and revolutionizing the way we interact with technology.The Future of Computing:Looking ahead, the future of computing promises even greater innovation and advancement. Emerging technologies such as quantum computing, augmented reality, and brain-computer interfaces hold the potential to revolutionize the way we compute, communicate, and experience the world. As computers continue to evolve, one thing is certain: they will remain at the forefront of human progress, driving innovation and shaping the future of our society.Conclusion:The evolution of computers is a testament to human ingenuity and innovation. From humble beginnings as room-sized calculators to ubiquitous devices that pervade every aspect of our lives, computers have come a long way in a remarkably short span of time. As we look to the future, the possibilities for computing are limitless, and the journey of exploration and discovery continues unabated.。
凝聚态物理专业导师简介(以姓氏拼音为序)艾保全,男,副教授,硕士生导师。
主研方向是分子马达运动机制、低维材料(纳米)的能量和热的传输、生物非线性噪声效应。
2004年毕业于中山大学,获博士学位。
随后在香港大学及香港浸会大学从事博士后研究工作,2005年9月起华南师范大学教师。
主要从事理论生物物理的研究,包括生物非线性系统中的噪声效应,肌肉运动微观机制,分子马达的运动机制(线性和旋转马达)以及低维材料的热传导等领域的研究。
他以第一作者在Journal of physical chemistry B, Journal of Chemical physics, Physical Review E等 SCI收录国际重要期刊上发表论文32篇。
论文被引用200多次,其中关于肿瘤生长过程中噪声控制的论文被它引50次,关于微管中粒子定向输运的论文被著名综述期刊Reviews Modern of physics引用并介绍我们的相关工作。
主持国家自然科学基金和广东省自然科学基金各一项,并和澳门科技大学,日本产业科技大学以及香港浸会大学等研究组从事合作研究。
主要荣誉:2006年华南师范大学科研优秀工作者.2006年入选广东省“千百十”人才工程培养对象.2005年获得广东省优秀博士学位论文称号.研究兴趣:1.分子马达的研究: 研究分子马达的运动机制,线性分子马达,旋转分子马达,以及分子马达运动方向的控制,效率及其最大值研究,考虑量子效应的分子马达的运动。
2.低维材料(纳米)的能量和热的传输:一维纳米系统中热传导性质的研究及其应用的研究;热二极管,三级管及热(声子)操纵和控制的研究.3.生物非线性系统中的噪声效应: 基因选择过程中的噪声效应; 噪声对肿瘤生长的影响; 细菌生长过程中的噪声效应。
主持科研项目:1.国家自然科学基金2007.1-2009.12,分子马达运动机制的理论研究(旋转).2.广东省自然科学基金2007.1-2008.12,线性分子马达运动机制的基础研究.发表代表性论文(if>2.0)1.Bao-quan Ai and Liang-Gang Liu, Brownian pump in nonlinear diffusive media,The Journal of Physical Chemistry B 112(2008)95402.Bao-quan Ai and Liang-Gang Liu, Phase shift induces currents in a periodictube, Journal of Chemical Physics 126(2007) 2047063.Bao-quan Ai and Liang-Gang Liu, A channel Brownian pump powered by anunbiased external force, Journal of Chemical Physics , 128 (2008)0247064.Bao-quan Ai and Liang-Gang Liu, The tube wall fluctuation can induce a netcurrent in a periodic tube, Chemical Physics, 344 (2008)185-188.5.Bao-quan Ai and Liang-Gang Liu, Thermal noise can facilitate energytransformation in the presence of entropic barriers, Phys. Rev.E 75(2007)061126.6.Bao-quan Ai and Liang-Gang Liu, Reply to comment on correlated noise in alogistic growth model, Phys. Rev. E 77(2008)013902.7.Bao-quan Ai and Liang-Gang Liu, Facilitated movement of inertial Brownianmotors driven by a load under an asymmetric potential, Phys. Rev.E 76(2007)042103.8.Bao-quan Ai and Liang-Gang Liu, Current in a three-dimensional periodictube with unbiased forces, Phys. Rev. E 74(2006) 051114.9.Bao-quan Ai, Liqiu Wang and Liang-Gang Liu, Transport reversal in a thermalratchet, Phys. Rev. E 72, (2005) 031101.10.Bao-quan Ai, Xian-ju Wang, Guo-tao Liu and Liang-Gang Liu, Correlatednoise in a logistic growth model, Phys. Rev. E 67 (2003)022903.11.Bao-quan Ai, Xian-Ju Wang, Guo-Tao Liu, and Liang-Gang Liu, Efficiencyoptimization in a correlation ratchet with asymmetric unbiased fluctuations, Phys.Rev. E 68 (2003)061105.12.Xian-Ju Wang, Bao-quan Ai, Liang-Gang Liu, Modeling translocation ofparticles on one-dimensional polymer lattices,Phys. Rev. E 64, (2001)906-910.13.Bao-quan Ai and Liang-Gang Liu, Stochastic resonance in a stochastic bistablesystem,Journal of Statistical Mechanics: theory and experiment (2007)P02019.14.Bao-quan Ai and Liang-gang Liu,Efficiency in a temporally asymmetricBrownian motor with stochastic potentials, Journal of Statistical Mechanics: Theory and Experiment (2006)P09016.15.Bao-quan Ai, Guo-Tao Liu, Hui-zhang Xie and Liang-Gang Liu, Efficiency andCurrent in a correlated ratchet, Chaos 14(4)(2004)95716.Bao-quan Ai, Liqiu Wang and Liang-Gang Liu, Flashing motor at hightransition rate, Chaos, solitons & fractals 34( 2007 ) 1265-1271.17.Bao-quan Ai, and Liang-gang Liu, Transport driven by a spatially modulatednoise in a periodic tube, Journal of Physics: Condensed Matter 19(2007) 266215.Email:aibq@陈浩,男,教授,硕士生导师。
光量子计算英语Optical quantum computing, 光量子计算,is a rapidly emerging field that harnesses the unique properties of light to perform computations in a fundamentally different way than classical computers.是一个迅速兴起的领域,它利用光的独特属性以与经典计算机根本不同的方式进行计算。
By utilizing quantum mechanical effects such as superposition and entanglement,通过利用诸如叠加和纠缠等量子力学效应,optical quantum computers promise to solve certain types of problems much faster and more efficiently than classical computers.光量子计算机有望以比经典计算机更快、更高效的方式解决某些类型的问题。
This technology holds the potential to revolutionize areas like cryptography, optimization, and material science.这项技术有可能彻底改变密码学、优化和材料科学等领域。
With the continued development of optical quantum computing systems, 随着光量子计算系统的不断发展,we may soon witness a new era of computing that harnesses the full power of quantum mechanics.我们可能很快就会见证一个利用量子力学全部力量的计算新时代。
T互联网+安全internet Security 量子信道超可加性分析_____□徐恪山东理工大学计算机科学与技术学院【摘要】实验结果显示,相干信息零状态,随着量子信道使用次数增加,容量逐渐变成正值。
跟普通信道可加性不一样,量子信道具备超可加性统计学特征,也就是所谓"o+o=r。
超可加性实验,从信道容量角度证明,相干信息容易受到设计及装置的影响,难以避免隐变量。
显而易见,量子信道存在无法观测残余信息,处于隐藏或背景状态,经过进一步确认,有机会成为另一个版本的微波背景辐射。
【关键词】超可加性隐变置微波背景辐射引言量子表示物理量无法继续分割基本单位,不针对任何单一粒子,融入不少数学概念进行物理学研究,描述不确定性离散变化,定义量子化(quantization)其实更合适。
以量子科学的一系列学术概念作为支撑点,用发展的态度致敬经典理论,可以归纳出来一个符合客观现实的基本逻辑关系。
量 子关联(correlations)包含量子失谐(discord),量子失谐包含量子纠缠(entanglement)。
只有一部分量子纠缠可以控制,只有一部分可以控制量子纠缠表现非定域性。
除了量子纠缠甚至量子失谐等量子关联,仍然存在非常广阔的量子化世界。
针对量子信道超可加性(superacWitivity)m若干研究,有助于发现量子化核心本质,进一步推动信息与通信的未来技术探索。
一、零容量信道实验实验结果显示m,相干(coherent)信息零状态,随着量子信道使用次数增加,容量逐渐变成正值。
跟普通信道可加性不一样,量子信道具备超可加性统计学特征,也就是所谓“0+0=1”。
这个量子现象,通过一种特殊的设计及装置(dephmsure)131可以实现直接观测。
多光子纠缠源,折叠信道,同样的补充信道及远程状态,层析成像仪器。
采用量子计算,信道容量[4]代表通过纠错信息数量多少,相干信息类似交互信息。
一般认为,由于缺乏超可加性基础理论及实验工具,编码输人疑似存在尚未发现关联,纠缠着量子信道,导致突破数学处理方法界线。
解密量子计算:探索未来计算技术的奇妙世界1. Introduction1.1 OverviewQuantum computing, a revolutionary computing technology, has the potential to transform various fields and industries by harnessing the principles of quantum mechanics. Unlike classical computers that use bits for data processing, quantum computers utilize quantum bits or qubits, which can exist in multiple states simultaneously and can be entangled with one another. This unique property of qubits enables quantum computers to perform complex calculations at an exponential speed compared to classical computers.1.2 Article StructureThis article aims to provide a comprehensive understanding of quantum computing by delving into its fundamental theories, current technological advancements, practical applications, and future prospects. The content is structured as follows:- Section 2: The Fundamentals of Quantum Computing- Section 3: The Current State and Challenges of Quantum ComputingTechnology- Section 4: Attempts and Achievements in Practical Applications of Quantum Computing- Section 5: Conclusion and OutlookEach section will explore various aspects related to quantum computing and shed light on the potential impact it may have on different industries.1.3 ObjectivesThe objectives of this article are:- To explain the basic principles underlying quantum computing and highlight the differences between qubits and classical bits.- To discuss essential concepts such as superposition and entanglement, which form the foundation of quantum mechanics.- To explore the principles behind quantum gate operations and algorithms used in quantum computations.- To provide an overview of the current state of research in quantum computing laboratories.- To analyze the challenges faced by researchers in developing practical quantum computing technologies.- To examine real-world applications of quantum computing, including its use in cryptography.- To introduce commercialized products and case studies that showcase practical applications of this technology.- To analyze the strategies adopted by tech giants like Microsoft and Google for their involvement in the field of quantum computing.- To offer personal perspectives on the future development of quantum computing technologies.- To predict potential industries and sectors that may be transformed by quantum computing.- To provide recommendations from scientists and researchers regarding future research directions in the field of quantum computing.By addressing these objectives, this article aims to unravel the mysteries of quantum computing, offer insights into its potential applications, and inspire further exploration in this exciting and dynamic field.2. 量子计算的基础理论:2.1 量子比特与经典比特的区别:量子计算中使用的基本信息单元是量子比特(qubit),它与经典计算中使用的比特(bit)有着明显的区别。