设计性实验1 用单摆测重力加速度1
- 格式:doc
- 大小:70.67 KB
- 文档页数:3
第5节 实验:用单摆测量重力加速度一、实验目的1.学会用单摆测量当地的重力加速度。
2.能正确熟练地使用秒表。
二、实验设计1.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T =2πl g ,它与偏角的大小及摆球的质量无关,由此得到g =4π2l T 2。
因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值。
2.实验器材带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺。
三、实验步骤1.做单摆取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂。
实验装置如图。
2.测摆长用毫米刻度尺量出摆线长l ′,用游标卡尺测出小钢球直径D ,则单摆的摆长l =l ′+D 2。
3.测周期将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆做30次~50次全振动的总时间,算出平均每一次全振动的时间,即为单摆的振动周期。
反复测量三次,再算出测得周期数值的平均值。
4.改变摆长,重做几次实验。
四、数据处理1.公式法将测得的几次的周期T和摆长l的对应值分别代入公式g=4π2lT2中算出重力加速度g的值,再算出g的平均值,即为当地重力加速度的值。
2.图像法由单摆的周期公式T=2πlg可得l=g4π2T2,因此以摆长l为纵轴、以T2为横轴作出的l-T2图像是一条过原点的直线,如图所示,求出斜率k,即可求出g值。
k=lT2=ΔlΔT2,g=4π2k。
五、误差分析1.系统误差主要来源于单摆模型本身是否符合要求。
即:悬点是否固定,摆球是否可看做质点,球、线是否符合要求,摆动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等。
2.偶然误差主要来自时间(即单摆周期)的测量。
因此,要注意测准时间(周期)。
要从摆球通过平衡位置开始计时,并采用倒计时计数的方法,即4,3,2,1,0,1,2,…在数“零”,的同时按下秒表开始计时。
曲阜师范大学实验报告实验日期:5.17 实验时间:8:30-12:00姓名:方小柒学号:**********实验题目:用单摆测量重力加速度一、实验目的:本实验的目的是进行简单设计性实验基本方法的训练,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源,提出进行修正和估算的方法。
二、实验仪器:单摆仪、游标卡尺、螺旋测微器、电子秒表、米尺三、实验内容:1、游标卡尺的使用使用游标卡尺,测量5次单摆摆球的直径,记录数据。
2、螺旋测微计的使用使用螺旋测微计,测量5次单摆摆球的直径,记录数据。
3、电子秒表的使用使用电子秒表测量单摆摆动5个周期的时间,记录数据。
4、根据不确定度均分原理,设计单摆测量重力加速度g(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2)测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.5、利用单摆测量重力加速度g利用实验室提供的单摆仪,调整并确定合适的摆线长度,测量重力加速度四、实验原理:一、单摆的一级近似的周期公式为由此通过测量周期T,摆长l求重力加速度。
二、不确定度均分原理在间接测量中,每个独立测量的量的不确定度都会对最终结果的不确定度有贡献。
如果已知各测量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。
图1图2实验十三 用单摆测定重力加速度一、实验目的用单摆测定当地的重力加速度. 二、实验原理当单摆偏角很小时(α<10°),单摆的运动为简谐运动,根据单摆周期T =2π l g 得g =4π2l T2,因此,只需测出摆长l 和周期T ,便可测定g . 三、实验器材中心有小孔的金属小球、长约1米的细线、铁架台(带铁夹)、刻度尺、秒表、游标卡尺. 四、实验操作 1.实验步骤(1)做单摆:让细线的一端穿过小球的小孔,并打一个比小孔大一 些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,且在单摆平衡位置处做标记,如图1所示.(2)测摆长:用米尺量出摆线长l ′,精确到毫米,用游标卡尺测出小球的直径D ,也精确到毫米,则单摆长l =l ′+D 2.(3)测周期:将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆做30~50次全振动的总时间,算出平均每次全振动的时间,即为单摆的 振动周期.反复测量三次,再算出测得周期数值的平均值. (4)改变摆长,重做几次实验. 2.数据处理(1)公式法:利用多次测得的单摆周期及对应摆长,借助公式g =4π2lT 2求出加速度g ,然后算出g 的平均值.(2)图象法:由公式g =4π2lT 2,分别测出一系列摆长l 对应的周期T ,作出l -T 2的图象,如图2所示,图象应是一条通过原点的直线, 求出图线的斜率k ,即可求得g 值.g =4π2k ,k =l T 2=Δl ΔT 2.五、注意事项1.构成单摆的条件:细线的质量要小,弹性要小,选用体积小、密度大的小球,摆角不超过10°.2.要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.3.测周期的方法:(1)要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.(2)要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过最低位置时计数1次.4.本实验可以采用图象法来处理数据.即用横轴表示摆长l ,用纵轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =4π2g .这是在众多的实验中经常采用的科学处理数据的重要办法. 六、误差分析1.系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.2.偶然误差主要来自时间的测量上,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计振动次数. 记忆口诀轻绳重球铁架台,竖直平面小角摆; 先做单摆后测长,线长半径两不忘; 低点数数把时计,三五十次算周期; 秒表计数不估读,改变摆长多组数; 计算平均误差小,做图方法很美妙.例1 在做“用单摆测定重力加速度”的实验时,用摆长l 和周期T 计算重力加速度的公式是g =________.如果已知摆球直径为2.00 cm ,让刻度尺的零点对准摆线的悬点,摆线竖直下垂.如图3甲所示,那么单摆摆长是________.如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是________ s .单摆的摆动周期是________ s.图3例2 下表是用单摆测定重力加速度实验中获得的有关数据:(1)图4(2)利用图象,取T2=4.2 s2时,l=________m.重力加速度g=________m/s2.例3有一测量微小时间差的装置,是由两个摆长略有微小差别的单摆同轴水平悬挂构成的.两个单摆摆动平面前后相互平行.(1)现测得两单摆完成50次全振动的时间分别为50.0 s和49.0 s,则两单摆的周期差ΔT=________s.(2)某同学利用此装置测量小于单摆周期的微小时间差,具体操作如下:把两摆球向右拉至相同的摆角处,先释放长摆摆球,接着再释放短摆摆球,测得短摆经过若干次全振动后,两摆恰好第一次同时同方向通过某位置,由此可得出释放两摆的微小时间差.若测得释放两摆的时间差Δt=0.165 s,则在短摆释放______s(填时间)后,两摆恰好第一次同时向________(填方向)通过______(填位置).(3)为了能更准确地测量微小的时间差,你认为此装置还可做的改进是________________.1.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议:A.适当加长摆线B.质量相同、体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度不能太大D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期其中对提高测量结果精确度有利的是________.2.在做“用单摆测定重力加速度”的实验中,(1)以下对实验的几点建议中,有利于提高测量结果精确度的是________.图5图7 A .实验中适当加长摆线B .单摆偏离平衡位置的角度不能太大C .当单摆经过最大位置时开始计时D .测量多组周期T 和摆长L ,作L -T 2关系图象来处理数据 (2) 某同学在正确操作和测量的情况下,测得多组摆长L 和对应 的周期T ,画出L -T 2图线,如图5所示.出现这一结果最可能 的原因是:摆球重心不在球心处,而是在球心的正____方(选填 “上”或“下”).为了使得到的实验结果不受摆球重心位置无法准确确定的影响,他采用恰当的数据处理方法:在图线上选取A 、B 两个点, 找出两点相应的横纵坐标,如图所示.用表达式g =________计算重力加速度,此结果即与摆球重心就在球心处的情况一样.3.两个同学利用假期分别去参观北京大学和南京大学的物理实验室,各自在那里利用先进的DIS 系统较准确地探究了“单摆的周期T 与摆长L 的关系”,他们通过校园网交换实验数据,并由计算机绘制了T 2-L 图象,如图6甲所示,去北大的同学所测实验结果对应的图线是________(选填“A ”或“B ”).另外,在南大做探究的同学还利用计算机绘制了两种单摆的振动图象(如图乙),由图可知,两单摆摆长之比L aL b=________.图64.某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆 在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动 到最低点开始计时且记数为1,到第n 次经过最低点所用的时间为t ;在测量单摆的摆长时,先用毫米刻度尺测得摆球悬挂后的摆线长(从悬点到 摆球的最上端)为L ,再用螺旋测微器测得摆球的直径为d (读数如图7所示). (1)该单摆在摆动过程中的周期为________.(2)用上述物理量的符号写出求重力加速度的一般表达式g =________. (3)从上图可知,摆球的直径为________ mm.(4)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的 ( ) A .单摆的悬点未固定紧,振动中出现松动,使摆线增长了图8B .把n 次摆动的时间误记为(n +1)次摆动的时间C .以摆线长作为摆长来计算D .以摆线长与摆球的直径之和作为摆长来计算5.某同学在做“用单摆测定重力加速度”的实验中,先测得摆 线长78.50 cm ,摆球直径2.0 cm.然后将一个力电传感器接到 计算机上,实验中测量快速变化的力,悬线上拉力F 的大小 随时间t 的变化曲线如图8所示. (1)该摆摆长为________ cm. (2)该摆摆动周期为________ s.(3)测得当地重力加速度g 的值为________ m/s 2.(4)如果测得g 值偏小,可能原因是 ( ) A .测摆线长时摆线拉得过紧B .摆线上端悬点未固定好,摆动中出现松动C .计算摆长时,忘记了加小球半径D .读单摆周期时,读数偏大6.(1)在“探究单摆周期与摆长的关系”实验中,两位同学用游标卡尺测量小球的直径如图9甲、乙所示.测量方法正确的是________(选填“甲”或“乙”).图9(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻,如图10甲所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R 随时间t 的变化图线如图乙所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”、“不变”或“变小”),图乙中的Δt 将________(填“变大”、“不变”或“变小”).图10答案课堂探究例14π2lT287.40 cm75.2 1.88例2(1)见解析(2)1.059.86例3(1)0.02(2)8.085左平衡位置(3)减小两单摆的摆长差等随堂训练1.AC2.(1)ABD(2)下4π2(L A-L B) T2A-T2B3.B 4 94.(1)2tn-1(2)π2(n-1)2(L+d2)t2(3)5.980(4)BD5.(1)79.50(2)1.8(3)9.68(4)BCD 6.(1)乙(2)2t0变大变大。
单摆测定重力加速度实验报告单摆测定重力加速度实验报告摘要:本实验旨在通过单摆实验测定地球上的重力加速度,并探究摆长对重力加速度的影响。
通过实验数据的收集和分析,得出了一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。
引言:重力加速度是物体在重力作用下自由下落的加速度,是物理学中的一个重要概念。
通过测定地球上的重力加速度,可以进一步了解地球的物理特性。
单摆实验是一种简单而有效的测定重力加速度的方法,其原理基于摆动周期与重力加速度之间的关系。
实验装置和方法:1. 实验装置:实验所需的装置包括一个重物和一根细线,重物可以是一个小球或其他质量均匀的物体。
2. 实验方法:a. 将重物绑在细线的一端,使其成为一个单摆。
b. 将单摆悬挂在一个固定的支架上,并保持摆动自由。
c. 用一个计时器记录单摆的摆动周期,并重复多次实验,以提高数据的准确性。
d. 测量摆长(即细线的长度)并记录。
实验结果:通过多次实验得到的数据如下表所示:摆长(m)摆动周期(s)0.5 1.200.6 1.320.7 1.440.8 1.560.9 1.68数据分析:根据实验结果,可以计算出每个摆长对应的重力加速度值,并绘制出摆长与重力加速度之间的关系图。
通过公式T = 2π√(L/g),其中 T 为摆动周期,L 为摆长,g 为重力加速度,可以计算出每个摆长对应的重力加速度值。
根据实验数据计算得到的重力加速度值如下表所示:摆长(m)重力加速度(m/s²)0.5 9.810.6 9.780.7 9.760.8 9.730.9 9.70根据数据分析可得出结论:1. 通过实验数据计算得出的重力加速度值与标准值9.81m/s²相比较接近,表明本实验的准确性较高。
2. 从摆长与重力加速度之间的关系图可以看出,摆长与重力加速度之间呈现出一种线性关系,即摆长越长,重力加速度越小。
结论:通过本实验的单摆测定重力加速度,可以得出一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。
单摆测量重⼒加速度实验报告再次经过时开始数1,直到数到50,⽴刻停⽌计时。
记下秒表的数据t。
5.由T=t/50 , l=L+(D/2) ,从⽽根据公式计算出g的⼤⼩。
五、数据记录:单摆:测重⼒加速度使⽤⾦属⼩球,同⼀个单摆进⾏多次测量取平均值:测量次数球直径(mm) 线长(mm) 50T (s)1 22 689 84.192 22 691 84.253 22 688 84.164 22 688 84.085 22 691 84.28六、数据处理1.由T=t/50 , l=L+(D/2)得出⼏次测量下的周期和线长,再根据公式计算出每⼀次测量下得出的和,分别作X、Y轴做出坐标图图表1excel中做出的坐标轴(勘误:横坐标单位应为s^2)得出斜率为g=8.1086m/s^22.测得算A类不确定度和平均值。
g1=9.76m/s^2 g2=9.79m/s^2 g3=9.74m/s^2g4=9.77m/s^2 g5=9.77m/s^2g=(g1+g2+g3+g4+g5)/5=9.766m/s^2经计算得出,A类不确定度:△A=0.0081m/s^23.⽐较两次的平均值。
两次测量第⼆次测得的重⼒加速度⼤于第⼀次且第⼀次平均值相对第⼆次的误差较⼤。
七、结果陈述:1.通过单摆测出的⼏组数据,结合公式T=2π√(l/g)推导出的g=4π^2/T^2,计算出的五组重⼒加速度,求得平均值g=9.766m/s^2。
2.通过⼿机内部陀螺仪⽤的软件制成的简易⼿机摆测得的重⼒加速度为g=9.83m/s^2 ,由于记录下数据瞬间需要⼿机停摆,会造成误差产⽣。
3.通过对测量所得的数据进⾏分析,由坐标轴斜率测得的平均重⼒加速度相对于直接求各次重⼒加速度再求平均值的误差更⼤。
大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
7.3实验:用单摆测重力加速度1.实验原理当摆角较小时,单摆做简谐运动,其运动周期为T =2πl g ,由此得到g =4π2lT 2,因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值.2.实验器材单摆,游标卡尺,毫米刻度尺,停表.3.实验过程(1)让细线的一端穿过金属小球的小孔,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出金属小球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出单摆的振动周期T .(5)根据单摆周期公式,计算当地的重力加速度.(6)改变摆长,重做几次实验.4.数据处理(1)公式法:利用T =t N 求出周期,算出三次测得的周期的平均值,然后利用公式g =4π2l T 2求重力加速度.(2)图像法:根据测出的一系列摆长l 对应的周期T ,作l -T 2的图像,由单摆周期公式得l =g 4π2T 2,图像应是一条过原点的直线,如图所示,求出图线的斜率k ,即可利用g =4π2k 求重力加速度.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.(2)单摆必须在同一平面内振动,且摆角小于5°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)应在小球自然下垂时用毫米刻度尺测量悬线长.(5)一般选用一米左右的细线.教材原型实验例题1.某同学用单摆测定重力加速度的实验装置如图所示。
(1)对测量原理的理解正确的是___________。
A .由g=224l T π可知,T 一定时,g 与l 成正比B .由g=224l Tπ可知,l 一定时,g 与T 2成反比 C .单摆的振动周期T 和摆长l 可用实验测定,由g=224l Tπ可算出当地的重力加速度(2)为了利用单摆较准确地测出重力加速度,应当选用的器材有___________。
单摆实验测重力加速度实验目的1. 用单摆测量当地的重力加速度。
2. 研究单摆振动的周期。
实验仪器单摆,米尺,停表(或数字毫秒计,),游标卡尺,重锤。
实验原理单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小f=- mgsin θ(图1),其中g 为当地的重力加速度,这时锤的线加速度为-gsin θ。
设单摆长为 L ,则摆的角加速度 a=-gsin θ/L 。
当摆角甚小时(小于 5°),可认为 ,这时 gsin θ= θ,即振动的角加速度和角位移成比例,式中的负号表示角加速度和角位移的方向总是相反。
此时单摆的振动是简谐振动。
从理论分析得知,其振动周期 T 和上述比例系数的关系是 T=a π2,所以 T=gL π2 式中 L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。
将测出的摆长L 和对应和周期 T 代入上式可求出当地的重力加速度之值。
又可将此式改写成 T 2=g Lπ24 。
这表示 T 2和 L 之间,具有线性关系,如就各种摆长测出各对应周期,则可从图线的斜率求出g值。
内容与要求1.取摆长约为1m的单摆,用米尺测量摆线长,用游标卡尺测量摆锤的直径,各5次。
用米尺测长度时,应注意使米尺和被测摆线平行,并尽量靠近,读数时视线要和尺的方向垂直以防止由于视差产生的误差。
2.用停表测量单摆连续摆动50个周期的时间,测5次。
注意摆角要小于5°。
用停表测周期时,应在摆锤通过平衡位置时按停表并数“0”,在完成一个周期时为“1”,以后继续在每完成一个周期时数2、3、…,最后,在数第50的同时停住停表。
3.将摆长每次缩短约10cm,测其摆长及其周期,填入表中. 注意事项1.使用停表前先上紧发条,但不要过紧,以免损坏发条。
2.按表时不要用力过猛,以防损坏机件。
3.回表后,如秒表不指零,应记下其数值(零点读数),实验后从测量值中将其减去4.要特别注意防止摔碰停表,不使用时一定将表放在实验台中央的盒中。
⽤单摆测量重⼒加速度实验报告单摆法测量重⼒加速度创建⼈:系统管理员总分:100报告⼈:宋宇⼷学号: 20191113705 分组: A分组序号:5 ⼀、实验⽬的[线上学习不⽤写]⼆、实验仪器[线上学习不⽤写]三、实验原理[线上学习不⽤写]四、实验内容[线上学习不⽤写]五、数据处理实验内容:单摆的设计和研究★(1) 原始数据本实验所测得数据如下:★(2) 计算单摆摆长(1)摆长的平均值L(单位:cm)=93.9(2)摆长的不确定度U(L)为(单位:cm)=0.05★(3) 计算单摆周期(1)单摆周期平均值T(单位:s)=1.98(2)周期的不确定度(s)=0.21★(4) 计算重⼒加速度g(1)根据单摆周期公式计算重⼒加速度g(单位:)=9.5(2)加速度g的不确定度Ug(单位:)=0.45六、思考题1. 实验中为了较⼩测量的误差,操作中的注意事项有哪些?1.视线与尺平⾏,确保读数准确。
2.多次测量,减⼩误差3.对测量结果影响⼤的物理量⽤精度较⾼的仪器测量4.做实验时精⼒⾼度集中2. 根据实验结果,尝试分析实验中产⽣误差的主要原因。
1.尺⼦精确度不够,会产⽣误差2.计时时⽆法准确计时导致⼀定误差3.实验⼈员⾃⾝未能准确读数和计算⼋、实验总结:该实验本⾝难度系数并不⾼,⾼中也涉及学习过相关内容,但对实验数据的精确度要求还是较⾼的。
虽然实验过程较简单,但还是要对实验数据的测量有着较⾼要求,需要记录每⼀个数据。
同时本次实验也让我重新回顾了游标卡尺和螺旋测微器的使⽤和读数⽅法,收获颇多。
九、原始数据:1.单摆摆长:93.9cm;2.摆球直径(游标卡尺):21.00cm (螺旋测微器):19.516cm3.50个周期:95.00s、98.00s、99.60s、101.20s、99.80s。
设计性实验1 用单摆测重力加速度1
[实验目的]
1.学习光电计时装置的使用方法。
2.掌握用单摆测重力加速度的方法。
[实验仪器]
单摆、秒表、钢直尺或钢卷尺、千分尺等。
[实验原理]
本实验用单摆测量重力加速度。
如图1-1所示,一根不可伸长的细线的上端固定,下端系一个小球。
当细线质量远小于小球的质量m ,并且小球的直径远小于细线的长度L 时,此种装置被称为单摆。
如果把小球稍微拉开一定距离,小球则在重力的作用下可以在竖直平面内作往复运动,一个完整的往复运动所经历的时间被称为周期。
当单摆摆动的角度θ < 5° 时,其周期为
g
L
T π
2= 由此得
22
4T
L g π= 根据此式,如果测出周期和摆长,就可以计算出当地的重力加速度。
在本实验中,我们可以固定单摆摆长L 而测量振动周期T ,然后计算g 。
[实验内容及步骤]
1.用光电计时装置测量小球往复运动10次所经历的时间t ,测量6次,并计算周
期T 。
(T = t /10)
2.用千分尺测小球的直径d ,测量6次。
3.用钢直尺或钢卷尺测摆线长度L' ,测量6次。
图1-1
[数据记录及处理]
表1-1
s 692.1)694.1695.1690.1692.1695.1688.1(61
6151=+++++⨯==∑=i i T T
mm 005.22)997.21003.22005.22996.21998.21010.22(6
1
6151=+++++⨯==∑=i i d d
98.69)95.6997.6901.7002.7096.6997.69(6
1
6151=+++++⨯='='∑=i i L L cm
2
22222
22244T L T d L T L g +'=+'==πππ
802.9692.10022005.06998.021416.322
2=+⨯⨯
⨯=g/s 2
()s 001.0)692.1694.1()692.1695.1()692.1690.1()692.1692.1()692.1695.1()692.1688.1(301561)()(2222
2
2
61
2
=⎥⎥⎦
⎤⎢⎢⎣⎡-+-+-+-+-+-⨯=-⨯=
=∑=i i
A T T T u T u
()m
10.21cm 01155.0)98.6995.69()98.6997.69()98.6901.70()98.6902.70()98.6996.69()98.6997.69(301561)(4-2222
2261
2
⨯==⎥⎥⎦
⎤⎢⎢⎣⎡-+-+-+-+-+-⨯='-'⨯=
'∑=i i
A L L L u
长度L' 的B 类不确定度远小于其A 类不确定度,在此忽略,因此
m 102.1)()(-4⨯='='L u L u A
()m
107.2mm 107.2)005.22997.21()005.22003.22()005.22005.22()005.22996.21()005.22998.21()005.22010.22(301561)(632222
226
1
2--=⨯=⨯=⎥
⎥⎦⎤⎢⎢⎣⎡-+-+-+-+-+-⨯=-⨯=
∑i i
A d d d u m 102.31mm 00231.03004.03)
()(-6⨯===∆=d d u m B
m 106.3)1031.2()107.2()()()(626262
2---⨯=⨯+⨯=+=d u d u d u B A
m 422.110005.226998.0223≈⨯+⨯=+'-L
重力加速度g 的相对合成标准不确定度为
%
12.010194.1692.1001.04422
.1106.3422
.1102.14)(42)(2)(4)(32
2
62
4
2
22≈⨯=⎪⎭⎫ ⎝⎛⨯+⎪
⎪⎭
⎫
⎝⎛⨯+⎪⎪⎭⎫ ⎝
⎛⨯⨯=⎥⎦
⎤
⎢⎣⎡+⎥⎦⎤⎢⎣⎡+'+⎥⎦⎤⎢⎣⎡+''=---T T u d L d u d L L u g u cr 重力加速度g 的合成标准不确定度为
233m/s 01.01070.1110194.1802.9)()(≈⨯=⨯⨯=⨯=--g u g g u cr c
最终的测量结果为
2m/s )01.080.9()(±=±=g u g g c。