上海市川沙中学2019-2020学年上学期高一期末考试数学试题
- 格式:pdf
- 大小:173.01 KB
- 文档页数:4
2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。
秘密★启用前2019-2020年高一上学期期末考试试卷 数学 含答案一.选择题.(每小题5分,共60分)1.已知扇形的半径为,弧长为,则该扇形的圆心角为( )A .2B . 4C . 8D . 16 2.设全集,集合,,则等于( )A .B .C .D .3.( )A. B. C. D. 4.幂函数为偶函数,且在上单调递增,则实数( )A . 1B .2C . 4D . 5 5.已知,且,则( )A .2B .C .D . 6.函数满足,那么=( )A .B .C .D . 7.已知函数,则下列说法正确的是( )A .函数为奇函数B .函数有最大值C .函数在区间上单调递增D .函数在区间上单调递增8.函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,为了得到的图象,则只需将的图象 ( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位 9.已知函数,则不等式(2sin )3,[,]22f x x ππ>∈-的解集为( ) A . B .C .D .10.若关于的函数22222sin ()(0)tx x t x xf x t x t+++=>+的最大值为,最小值为,且,则实数的值为( )A .1 B.2 C.3 D .4 11.(原创)已知关于方程,则该方程的所有根的和为( )A.0B.2C.4D.612.(原创)已知是定义在上的奇函数,对任意满足,且当时,2()cos 1f x x x x π=-+-,则函数在区间上的零点个数是( )A .7B .9C .11D .13 二.填空题.(每小题5分,共20分)13.已知角的始边落在轴的非负半轴上,且终边过点,且,则 . 14.求值:___________. (其中为自然对数的底) 15.求值: .16.已知二次函数满足条件:①;②时,,若对任意的,都有恒成立,则实数的取值范围为 .三.解答题.(共6小题,共70分) 17.(本小题满分10分)已知, (1)求的值; (2)求2sin()cos()sin()cos()22παπαππαα-++--+的值.18.(本小题满分12分)已知函数的定义域为,关于的不等式的解集为,其中, (1)求;(2)若,求实数的取值范围.19.(本小题满分12分)在中,为锐角,角所对应的边分别为,且. (1)求的值;(2)求函数()cos 225sin sin f x x A x =+的最大值.20.(本小题满分12分)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->. (1)若的最小正周期为,求在区间上的值域; (2)若函数在上单调递减.求的取值范围.21.(原创)(本小题满分12分)已知,定义在上的连续不断的函数满足,当时,且. (1)解关于不等式:; (2)若对任意的,存在,使得221122()(1)()(4)(2)4()72ag x g x g a f x f x +-+-≥-+成立,求实数的范围.22.(原创)(本小题满分12分)已知函数,, (1),若关于的方程42233log [(1)]log ()log (4)24f x a x x --=---有两个不同解,求实数的范围;(2)若关于的方程:有三个不同解,且对任意的,恒成立,求实数的范围.何 勇 关毓维xx 重庆一中高xx 级高一上期期末考试数 学 答 案xx.1一、选择题ACDBDC CDCBDB 二、填空题13. 14. 15. 16. 三、解答题 17.解:(1);(2)2sin()cos()2sin cos 2tan 12cos sin 1tan 7sin()cos()22παπααααππααααα-++--===++--+.18.解:(1)2222log 0,log 2log 4,(0,4]x x A -≥≤==; (2)由于所以,2232()0()()0x a a x a x a x a -++<⇔--<,若,,符合题意;若,,则; 若,,则,综上,.19.解:(Ⅰ)、为锐角,,2310cos 1sin 10B b ∴=-=又,,225cos 1sin 5A A =-=, 253105102cos()cos cos sin sin 5105102A B A B A B ∴+=-=⨯-⨯= ; (2)2()cos 225sin sin cos 22sin 2sin 2sin 1f x x A x x x x x =+=+=-++,所以函数的最大值为.20.解:(Ⅰ)2222()(sin cos )2cos 2sin cos sin 212cos 22f x x x x x x x x ωωωωωωω=++-=++++-sin 2cos 22sin(2)4x x x πωωω=+=+,的最小正周期为,,所以1,()2sin(2)4f x x πω==+,时,,,所以函数值域为;(2)时,令3222,242k x k k Z ππππωπ+≤+≤+∈,的单减区间为 ,由题意5(,)[,]288k k ππππππωωωω⊆++,可得8258k k πππωωπππωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,解得152,480k k k Z ωω⎧+≤≤+∈⎪⎨⎪>⎩,只有当时,.21.解:(1)2255(2)()0(222)(22)022x x x x f x f x ---≤⇔++-+≤⇔51(22)0(2)(22)022x x x x -+-≤⇔--≤,解得;(2)22(2)4()7(222)4(22)5xx x x y f x f x --=-+=++-++,问题转化为对任意的,有2211()(1)()(4)12ag x g x g a +-+-≥恒成立,即2()(2)()41g x a g x a +-+-≥恒成立,下证函数在上单增:取任意的,22121111()()()()()0x xg x g x g x g x g x x -=-=-<,所以函数在上单增, 由于,,所以时函数可取到之间的所有值,2()2()32(()1)()1()1g x g x a g x g x g x ++≤=++++恒成立,所以,当时取等.22.解:(1)原方程可化为,且,即,即,且方程要有解,, ①若,则此时,方程为,,方程的解为,仅有符合; ②若,此时,,即,方程的解为均符合题意,综上;(2)原方程等价于,则为的两个不同根,所以,解得,并且令, 又对任意的,恒成立,即[()()]x f x g x mx m +-<-,取,有,即,综上 由维达定理121220,30x x m x x =->+=>,所以,则对任意,212()(32)()()0h x x x x m x x x x x =-+-=--<,且,所以当时,原不等式恒成立,综上.秘密★启用前2019-2020年高一上学期期末考试试卷 物理 含答案45° 甲乙物 理 试 题 卷 xx.1第一部分 (选择题,共70分)一、选择题(1-9小题为单项选择题,每小题5分.10-14小题为多项选择题,每小题5分,选对未选全得3分,错选得0分) 1.下列物理量的单位属于导出单位的是( )A .质量B .时间C .位移D .力 2.下列关于力的说法中,正确的是( )A .自由下落的石块速度越来越大,是因为所受的的重力越来越大B .甲用力把乙推倒而自己不倒,说明甲对乙的作用力大于乙对甲的反作用力C .只有发生弹性形变的物体才产生弹力D .摩擦力的大小与正压力成正比3.学校秋季运动会上,飞辉同学以背越式成功跳过了1.90m ,如图所所示,则下列说法正确的是( ) A .飞辉起跳时地面对她的支持力等于她的重力 B .起跳以后在上升过程中处于超重状态 C .起跳以后在下降过程中处于失重状态 D .起跳以后在下降过程中重力消失了4.如图所示,甲、乙两人分别站在赤道和纬度为45°的地面上,则 ( )A .甲的线速度大B .乙的线速度大C .甲的角速度大D .乙的角速度大5.质量为0.5kg 的物体做变速直线运动,以水平向右为正方向,它的速度一时间图象如图所示,则该物体( )A .在前2s 内和2s ~6s 内的加速度相同B .在前2s 内向右运动,2s ~6s 内向左运动C .在4s ~6s 内和6s ~8s 内的速度变化量相同D .在8s 末离出发点的距离最远6.如图所示,质量相等的三个物块A 、B 、C ,A 与天花板之间、与B 之间用轻绳相连,与之间用轻弹簧相连,当系统静止时,C 恰好与水平地面接触,此时弹簧伸长量为。
2019-2020学年上海市川沙中学高一上学期期末数学试题一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限. 【详解】Q 复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+,因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-u u u u v u u u u v u u u u v的最小值为( )A .B .4C .D .以上都不对【答案】B【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuuu r uuu r uuu r,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r 的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =从而可求解.【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=,225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________. 【答案】34y x =?【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34y x =?【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是122301c c ⎛⎫⎪⎝⎭,其解为11x y =⎧⎨=⎩,则12c c +=________ 【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得: 1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________. 【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-. 故答案为1-. 【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值. 8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。
上海市川沙中学【精品】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知(],0A =-∞,(),B a =+∞,若AB R =,则a 的取值范围是_________. 2.已知α为第二象限角,且3cos 5α=-,则tan α的值为______. 3.已知函数()14f x x -=,则函数()f x 的定义域为_________.4.已知()12x f x x -=-,()g x =,则()()f x g x ⋅=_________. 5.函数()f x =的递减区间是_________. 6.已知3log 5a =,7log 3b =,则3log 35=_________(用a b 、表示) 7.方程()()2lg 2lg 2610+-+-+=x x x 的解集为_________. 8.函数()21f x ax bx =++是偶函数,且定义域是[]1,2a a -,则a b +=_________. 9.奇函数()f x 的周期4T =,当02x <<时,()2x f x =,则()5f -=_________.10.已知4x >,函数()24x x f x x-+=的值域为_________. 11.已知函数()()()()12141x a x f x a x x⎧-<⎪=⎨+≥⎪⎩,在R 上是增函数,则实数a 的取值范围是_________.12.已知函数()y f x =和()y g x =的图像关于y 轴对称,当函数()y f x =和()y g x =在区间[,]a b 上同时递增或者同时递减时,把区间[,]a b 叫做函数()y f x =的“不动区间”,若区间[1,2]为函数2xy t =-的“不动区间”,则实数t 的取值范围是_____二、单选题13.“260x x --=”是“3x =”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14.若()cos cos παα-=-,则角α的终边位置在( )A .y 轴右侧B .y 轴及y 轴右侧C .y 轴左侧D .y 轴及y 轴左侧15.若2x =是方程222160x ax b ++-=的解,则ab 的最大值是( )A .16B .12C .8D .4 16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是( ) A .()3,-+∞B .(]3,3-C .[)3,3-D .(),3-∞三、解答题 17.已知:角α终边上一点()(),20>P k k k .求:(1)tan α;(2)()3sin cos 2cos sin παααα--+.18.设全集U =R ,集合{}1A x x a =-<,122x B x x ⎧⎫+=≤⎨⎬-⎩⎭. (1)求出集合B ;(2)若u A C B ⊆,求出实数a 的取值范围.19.有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x 米,每分钟的用氧量为2190x 升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟0.5x 米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y 升;(1)将y 表示为x 的函数;(2)若[]4,8x ∈,求总用氧量y 的取值范围.20.已知()211()2x f x a x a +=≠+. (1)求它的反函数()1f x -;(2)若函数()f x 的图象关于直线y x =对称,求a 的值;(3)若()-123f a=-,求a 的值. 21.对于函数()f x ,若在定义域内存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.(Ⅰ)已知二次函数2()24()f x ax x a a R =+-∈,试判断()f x 是否为“局部奇函数”?并说明理由;(Ⅱ)若()2x f x m =+是定义在区间[1,1]-上的“局部奇函数”,求实数m 的取值范围;(Ⅲ)若12()423x x f x m m +=-+-为定义域R 上的“局部奇函数”,求实数m 的取值范围.参考答案1.0a ≤【解析】【分析】由题中条件,可直接得出结果.【详解】因为(],0A =-∞,(),B a =+∞,若AB R =, 则0a ≤.故答案为:0a ≤【点睛】本题主要考查由并集的结果求参数的问题,熟记集合并集的概念即可,属于基础题型. 2.43- 【解析】 试题分析:由题意得,α为第二象限角,且3cos 5α=-,则4sin 5α=,所以sin 4tan cos 3ααα==-. 考点:三角函数的基本关系式.3.(0,)+∞【分析】先将函数解析式化为()=f x ,进而可求出其定义域. 【详解】因为()14-==f x x ,所以0x >, 即函数()f x 的定义域为(0,)+∞.故答案为:(0,)+∞【点睛】本题主要考查求具体函数的定义域,只需求使解析式有意义的自变量的范围即可,属于基础题型.4.【分析】 先由解析式得到函数定义域,再将两式相乘化简,即可得出结果.【详解】因为()12x f x x -=-,()g x =, 所以要使()()⋅f x g x 有意义,只需2010x x -≠⎧⎨->⎩,即1x >且2x ≠;所以()()12-⋅==-x f x g x x 1x >且2x ≠. 故答案为【点睛】本题主要考查求函数解析,求函数解析式时,务必注意自变量的范围,属于常考题型. 5.()1,+∞【分析】先由解析式得到函数定义域,再由()=f x 可看作由12-=y t 与1t x =-复合而成,根据幂函数与一次函数单调性,即可得出结果.【详解】因为函数()f x =的定义域为()1,+∞; 令1t x =-,则()=f x 可看作由12-=y t 与1t x =-复合而成; 因为12-=y t 是减函数,1t x =-是增函数,所以()f x =在定义域上单调递减, 即减区间为:()1,+∞.故答案为:()1,+∞【点睛】本题主要考查求复合函数的单调区间,熟记基本初等函数的单调性即可,属于常考题型. 6.1ab b+ 【分析】 先由换底公式,将7log 3b =转化为3 log 71=b ,再由333log 35log 5log 7=+,即可得出结果.【详解】 因为731 log 3log 7==b ,所以3 log 71=b, 又3log 5a =,因此33311log 35log 5log 7ab a b b +=+=+=. 故答案为1ab b+ 【点睛】 本题主要考查对数的运算,熟记对数运算法则以及换底公式即可,属于常考题型. 7.132⎧⎫⎨⎬⎩⎭【分析】根据对数运算法则,先将方程化为()()2lg102lg 26+=+-x x x ,得到()210226+=+-x x x ,求解,再由对数的性质,得到x 的范围,即可得出结果.【详解】因为()()2lg 2lg 2610+-+-+=x x x , 所以()()2lg102lg 26+=+-x x x ,所以()210226+=+-x x x , 整理得:292602--=x x ,解得2x =-或132x =; 又由220260x x x +>⎧⎨+->⎩解得 32x >; 所以132x =,原方程的解集为132⎧⎫⎨⎬⎩⎭故答案为:132⎧⎫⎨⎬⎩⎭本题主要考查解对数方程,熟记对数运算法则与对数的性质即可,属于常考题型. 8.13【分析】根据函数奇偶性与定义域,列出方程组,求出a b 、的值,即可求出结果.【详解】因为数()21f x ax bx =++是偶函数,且定义域是[]1,2a a -, 所以()()120f x f x a a ⎧-=⎨-+=⎩,即2211310ax bx ax bx a ⎧-+=++⎨-=⎩,解得130a b ⎧=⎪⎨⎪=⎩, 所以13a b +=. 故答案为:13【点睛】 本题主要考查由函数奇偶性求参数的问题,熟记函数奇偶性的定义即可,属于常考题型. 9.-2【分析】先由函数()f x 的奇偶性与周期,得到()5(1)-=-f f ,再由已知解析式,即可求出结果.【详解】因为奇函数()f x 的周期4T =,所以()5(1)(1)-=-=-f f f ,又当02x <<时, ()2x f x =,所以()5(1)2-=-=-f f .故答案为()5(1)2-=-=-f f【点睛】本主要考查由函数的周期性与奇偶性求函数值,熟记函数奇偶性与周期性的定义即可,属于常考题型.10.()4,+∞先任取124<<x x ,由函数单调性的定义,判断函数单调性,进而可求出函数的值域.【详解】因为()2441-+==+-x x f x x x x, 任取124<<x x ,则()()()1212121212444411⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f x f x x x x x x x x x ()121241⎛⎫=-- ⎪⎝⎭x x x x , 因为124<<x x ,所以120x x -<,1216>x x ,所以()1212410⎛⎫--< ⎪⎝⎭x x x x , 因此()()12f x f x <,故函数()24x x f x x-+=在()4,+∞上单调递增, 所以()(4)4>=f x f ,即所求函数值域为()4,+∞.故答案为()4,+∞【点睛】本题主要考查求函数的值域问题,熟记函数单调性的定义,会根据函数单调性的定义判断函数单调性即可,属于常考题型.11.10a -≤<【分析】由函数恒增,列出不等式组,求解,即可得出结果.【详解】因为函数()()()()12141x a x f x a x x⎧-<⎪=⎨+≥⎪⎩,在R 上是增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<,即实数a 的取值范围10a -≤<.故答案为:10a -≤<【点睛】本题主要考查由分段函数的单调性求参数的问题,熟记基本初等函数的单调性,注意函数整体的单调性即可,属于常考题型.12.1[,2]2【详解】解:因为函数y =f (x )与y =F (x )的图象关于y 轴对称,所以F (x )=f (﹣x )=|2﹣x ﹣t |,因为区间[1,2]为函数y =|2x ﹣t |的“不动区间”,所以函数y =|2x ﹣t |和函数F (x )=|2﹣x ﹣t |在[1,2]上单调性相同, 因为y =2x ﹣t 和函数y =2﹣x ﹣t 的单调性相反,所以(2x ﹣t )(2﹣x ﹣t )≤0在[1,2]上恒成立,即1﹣t (2x +2﹣x )+t 2≤0在[1,2]上恒成立,即2﹣x ≤t ≤2x 在[1,2]上恒成立, 得12≤t ≤2; 故答案为[122,] 点睛:已知函数单调性求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.13.B【分析】先由260x x --=得到3x =或2x =-,根据充分条件与必要条件的概念,即可判断出结果.【详解】由260x x --=,解得3x =或2x =-,所以由“260x x --=”不能推出“3x =”, “260x x --=”不是“3x =”的充分条件;由“3x =”能推出“260x x --=”, “260x x --=”是“3x =”的必要条件; 因此,“260x x --=”是“3x =”的必要不充分条件. 故选B 【点睛】本题主要考查充分条件与必要条件的判定,熟记概念即可,属于常考题型. 14.D 【分析】先将原式化简,得到cos cos αα=-,推出cos 0α≤,从而确定角的位置,即可得出结果. 【详解】因为()cos cos παα-=-,所以cos cos αα=-,从而cos 0α≤,所以32222πππαπ+≤≤+k k ,k Z ∈,所以角α的终边位置在y 轴及y 轴左侧.故选D 【点睛】本题主要考查任意角的终边位置,熟记诱导公式以及任意角的定义即可,属于常考题型. 15.D 【分析】先由题意,得到4a b +=,再由基本不等式,即可求出结果. 【详解】因为2x =是方程222160x ax b ++-=的解, 所以822160++-=a b ,即4a b +=,所以242+⎛⎫≤= ⎪⎝⎭a b ab ,当且仅当2a b ==时,取等号.【点睛】本题主要考查由基本不等式求最值的问题,熟记基本不等式即可,属于常考题型. 16.B 【分析】作函数22,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象,从而可得124x x +=-,341x x =,3114x ≤<,从而解得结果. 【详解】作出函数22,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下图所示:可得:124x x +=-,341x x =,所以()12234333114x x x x x x x ++=+-, 因为230log 2x <-≤, 所以3114x ≤<, 所以331343x x -<-≤,所以3122341()x x x x x ++的范围是(]3,3-, 故选:B.该题考查的是有关求范围的问题,考查利用数形结合求有关函数的零点所满足的条件,属于中档题.17.(1)2 ;(2)54. 【分析】(1)根据任意角的正切函数的定义,可直接得出结果;(2)根据诱导公式,将所求式子化简,再由弦化切,结合(1)的结果,即可求出结果. 【详解】(1)由角α终边上一点()(),20>P k k k ,可得2tan 2α===y k x k; (2)()3sin cos 3sin cos 3sin cos cos 2cos sin 2cos sin 2cos sin cos ααπαααααααααααα----==+++3tan 16152tan 44αα--===+. 【点睛】本题主要考查任意角的三角函数,以及三角函数的化简求值问题,熟记任意角的三角函数的定义,以及诱导公式等即可,属于常考题型. 18.(1){5B x x =≥或}2x <;(2)34a ≤≤. 【分析】 (1)先将不等式122+≤-x x 化为025≥--x x ,等价于(5)(2)020x x x --≥⎧⎨-≠⎩,求解,即可得出结果;(2)由(1)求出u C B ,再由{}{}111A x x a x a x a =-<=-+<<+,根据u A C B ⊆,列出不等式组,求解,即可得出结果. 【详解】(1)因为不等式122+≤-x x 可化为025≥--x x ,等价于(5)(2)020x x x --≥⎧⎨-≠⎩,所以5x ≥或2x <, 因此{5B x x =≥或}2x <;(2)由(1)可得{}25u C B x x =≤<,又{}{}111A x x a x a x a =-<=-+<<+,u A C B ⊆, 所以只需1215a a -+≥⎧⎨+≤⎩,解得34a ≤≤,即实数a 的取值范围是34a ≤≤. 【点睛】本题主要考查解分式不等式,以及由集合的包含关系求参数的问题,熟记一元二次不等式解法,以及集合的基本运算即可,属于常考题型. 19.(1)()12303x y x x =++>;(2)17,73⎡⎤⎢⎥⎣⎦【分析】(1)先由题意,得到下潜所需时间为30x分钟,返回所用时间为60x 分钟,再由题中数据,即可求出结果;(2)先由基本不等式求出最小值,再令12()33=++x f x x,用单调性的定义,判断12()33=++x f x x在[]4,8上的单调性,从而可求出最大值,即可得出结果. 【详解】(1)由题意,下潜所需时间为30x分钟,返回所用时间为60x 分钟,所以总用氧量230112100.300.239036=⨯+⨯+⨯=++x y x x x x,0x >; (2)因为[]4,8x ∈,由(1)得123373=++≥=x y x ,当且仅当123=x x ,即6x =时,等号成立,即min 7y =; 令12()33=++x f x x当[)4,6x ∈时,任取[)12,4,6∈x x ,且12x x <,则1212121212()()3333⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭x x f x f x x x()122112121212()11233⎛⎫--=+=-- ⎪⎝⎭x x x x x x x x x x , 因为1246≤<<x x ,所以120x x -<,1236<x x ,因此()121212112()()03⎛⎫-=--> ⎪⎝⎭f x f x x x x x ,所以函数12()33=++x f x x 在[)4,6上单调递减; 同理,12()33=++x f x x 在(]6,8上单调递增; 又1222(4)33344=++=f ,1243(8)33688=++=f ,224336>, 所以max 22()(4)3==f x f ,即max 223=y ,所以总用氧量y 的取值范围为227,3⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查函数模型的应用,以及由函数单调性求函数最值的问题,熟记函数单调性,以及基本不等式即可,属于常考题型. 20.(1)()()1122--=≠-ax f x x x ;(2)2- ;(3)1或23-. 【分析】(1)根据21+=+x y x a,通过整理,得到12-=-ay x y ,2y ≠,即可得出反函数解析式;(2)若函数()f x 的图象关于直线y x =对称,则()()1-=f x f x ,根据(1)的结果,列出等式,根据对应项系数相等,即可求出结果; (3)由(1)得到()-1132332-==--a f a,解方程,即可求出结果. 【详解】 (1)由21+=+x y x a得21+=+xy ay x ,即(2)1-=-x y ay , 所以12-=-ayx y ,2y ≠, 因此,所求反函数为:()()1122--=≠-axfx x x ;(2)若函数()f x 的图象关于直线y x =对称,则()()1-=f x f x ,即2112+-=+-x ax x a x ,整理得:222232(1)--=---+x x ax a x a , 所以22132a a a -=⎧⎪-=⎨⎪=-⎩,解得2a =-;(3)若()-123fa =-,则13232-=--a a,整理得:2320a a --=, 解得1a =或23a =-, 即a 的值为1或23-.【点睛】本题主要考查求函数的反函数,以及由函数图像关于直线对称求参数的问题,熟记反函数的定义与性质即可,属于常考题型.21.(1)()f x ∴是“局部奇函数”,理由见解析;(2)5[,1]4--;(3)[1 【解析】试题分析:(Ⅰ)判断方程()()0f x f x +-=是否有解;(Ⅱ)在方程()()0f x f x +-=有解时,通过分离参数求取值范围;(Ⅲ)在不便于分离参数时,通二次函数的图象判断一元二次方程根的分布.试题解析:()f x 为“局部奇函数”等价于关于x 的方程()()0f x f x +-=有解.(Ⅰ)当2()24()f x ax x a a R =+-∈时,方程()()0f x f x +-=即有解2x =±,所以()f x 为“局部奇函数”. 3分(Ⅱ)当()2xf x m =+时,()()0f x f x +-=可化为2220x x m -++=,因为()f x 的定义域为[1,1]-,所以方程2220x x m -++=在[1,1]-上有解. 5分 令12[,2]2xt =∈,则12m t t-=+.设1()g t t t =+,则22211()1t g t t t='-=-,当(0,1)t ∈时,()0g t '<,故()g t 在(0,1)上为减函数,当(1,)t ∈+∞时,()0g t '>,故()g t 在(1,)+∞上为增函数,. 7分所以1[,2]2t ∈时,5()[2,]2g t ∈.所以52[2,]2m -∈,即5[,1]4m ∈--. 9分(Ⅲ)当12()423x x f x m m +=-+-时,()()0f x f x +-=可化为2442(22)260x x x x m m --+-++-=.设22[2,)xxt -=+∈+∞,则2442x x t -+=-,从而222280t mt m -+-=在[2,)+∞有解即可保证()f x 为“局部奇函数”. 11分 令22()228F t t mt m =-+-,1° 当(2)0F ≤,222280t mt m -+-=在[2,)+∞有解,由(2)0F ≤,即22440m m --≤,解得11m -≤; 13分 2° 当(2)0F >时,222280t mt m -+-=在[2,)+∞有解等价于2244(28)0,{2,(2)0m m m F ∆=--≥>>解得1m <≤ 15分 (说明:也可转化为大根大于等于2求解)综上,所求实数m的取值范围为1m ≤≤ 16分 考点:函数的值域、方程解的存在性的判定.。
2019-2020学年高一上学期期末考试数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卡上.)1.(5分)已知集合A={x∈N|0≤x≤5},集合B={1,3,5},则∁A B=()A.{0,2,4}B.{2,4}C.{0,1,3}D.{2,3,4} 2.(5分)tan225°的值为()A.B.﹣1C.D.13.(5分)要在半径OA=1m的圆形金属板上截取一块扇形板,使其弧AB的长为2m,则圆心角∠AOB为()A.1B.2C.3D.44.(5分)下列函数中,既是奇函数又是增函数的为()A.y=e x B.y=sin x C.y=2x﹣2﹣x D.y=﹣x35.(5分)函数的最小正周期是()A.1B.2C.3D.46.(5分)已知,则tanα=()A.﹣6B.C.D.67.(5分)在△ABC中,,,AD是BC边上的中线,则=()A.﹣7B.C.D.78.(5分)关于狄利克雷函数,下列叙述错误的是()A.D(x)的值域是{0,1}B.D(x)是偶函数C.D(x)是奇函数D.任意x∈R,都有f[f(x)]=19.(5分)已知函数,则f(﹣6)+f(log26)=()A.6B.8C.9D.1010.(5分)已知向量,,其中||=1,,,则在方向上的投影为()A.B.C.﹣2D.211.(5分)设点A(x,y)是函数f(x)=sin(﹣x)(x∈[0,π])图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合),设线段AB的长为h(x),则函数h(x)的图象是()A.B.C.D.12.(5分)已知定义在R上的奇函数,满足f(2﹣x)+f(x)=0,当x∈(0,1]时,f(x)=﹣log2x,若函数F(x)=f(x)﹣sinπx,在区间[﹣1,m]上有10个零点,则m的取值范围是()A.[3.5,4)B.(3.5,4]C.(3,4]D.[3,4)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置.)13.(5分)已知向量=(﹣2,3),=(x,1),若⊥,则实数x的值是.14.(5分)已知a=1.010.01,b=ln2,c=log20.5,则a,b,c从小到大的关系是.15.(5分)=.16.(5分)若f(x)=sin x+cos x在[0,a]是增函数,则a的最大值是三、解答题(本大题共6小题,共72分.解答写在答题卡相应位置并写出文字说明,证明过程或演算步骤.)17.(10分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)若函数f(x)的值域为A,集合C={x|m﹣1≤x≤m+3}且A∪C=A,求实数m的取值范围.18.(12分)已知sinα=,α∈().(Ⅰ)求sin2的值;(Ⅱ)若sin(α+β)=,β∈(0,),求β的值.19.(12分)已知函数f(x)=3.(Ⅰ)当a=1时,求函数f(x)的值域;(Ⅱ)若f(x)有最大值81,求实数a的值.20.(12分)若,且,(Ⅰ)求函数f(x)的解析式及其对称中心.(Ⅱ)函数y=g(x)的图象是先将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变得到的.求函数y=g(x),x∈[0,π]的单调增区间.21.(12分)已知定义在R上的奇函数f(x),对任意两个正数x1,x2,且x1<x2都有x1f (x1)﹣x2f(x2)<0,且f(2)=0.(Ⅰ)判断函数g(x)=xf(x)的奇偶性;(Ⅱ)若,是否存在正实数a,使得g(h(x))<0恒成立?若存在求a的取值范围,若不存在请说明理由.22.(12分)某投资人欲将5百万元资金投人甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入资金的关系式分别为y1=t,y2=,其中a为常数且0<a≤5.设对乙种产品投入资金x百万元.(Ⅰ)当a=2时,如何进行投资才能使得总收益y最大;(总收益y=y1+y2)(Ⅱ)银行为了吸储,考虑到投资人的收益,无论投资人资金如何分配,要使得总收益不低于0.45百万元,求a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卡上.)1.(5分)已知集合A={x∈N|0≤x≤5},集合B={1,3,5},则∁A B=()A.{0,2,4}B.{2,4}C.{0,1,3}D.{2,3,4}【分析】可解出集合A,然后进行补集的运算即可.【解答】解:A={0,1,2,3,4,5};∴∁A B={0,2,4}.故选:A.【点评】考查描述法、列举法的定义,以及补集的运算.2.(5分)tan225°的值为()A.B.﹣1C.D.1【分析】直接利用诱导公式化简求值.【解答】解:tan225°=tan(180°+45°)=tan45°=1.故选:D.【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.3.(5分)要在半径OA=1m的圆形金属板上截取一块扇形板,使其弧AB的长为2m,则圆心角∠AOB为()A.1B.2C.3D.4【分析】把已知数据代入弧长公式计算可得.【解答】解:由题意可知扇形的弧长l=2,扇形的半径r=OA=1,∴则圆心角∠AOB的弧度数α===2.故选:B.【点评】本题考查弧长公式,属基础题.4.(5分)下列函数中,既是奇函数又是增函数的为()A.y=e x B.y=sin x C.y=2x﹣2﹣x D.y=﹣x3【分析】根据条件分别判断函数的奇偶性和单调性即可.【解答】解:A.y=e x是增函数,为非奇非偶函数,不满足条件.B.y=sin x是奇函数,在定义域上不是单调性函数,不满足条件.C.f(﹣x)=2﹣x﹣2x=﹣(2x﹣2﹣x)=﹣f(x),则f(x)是奇函数,∵y=2x是增函数,y=2﹣x是减函数,则y=2x﹣2﹣x是增函数,故C正确,D.y=﹣x3是奇函数,则定义域上是减函数,不满足条件.故选:C.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.5.(5分)函数的最小正周期是()A.1B.2C.3D.4【分析】由题意利用正切函数的周期性,得出结论.【解答】解:函数的最小正周期是=2,故选:B.【点评】本题主要考查正切函数的周期性,属于基础题.6.(5分)已知,则tanα=()A.﹣6B.C.D.6【分析】由已知直接利用诱导公式及同角三角函数基本关系式求解tanα.【解答】解:由,得,即,解得tanα=6.故选:D.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.7.(5分)在△ABC中,,,AD是BC边上的中线,则=()A.﹣7B.C.D.7【分析】由已知及向量基本运算可知,,然后结合向量数量积的性质即可求解【解答】解:AD是BC边上的中线,∴,则====﹣故选:B .【点评】本题主要考查了平面向量的基本定理及向量数量积的性质的简单应用,属于基础试题.8.(5分)关于狄利克雷函数,下列叙述错误的是( )A .D (x )的值域是{0,1}B .D (x )是偶函数C .D (x )是奇函数D .任意x ∈R ,都有f [f (x )]=1【分析】根据分段函数的表达式,结合函数值域,奇偶性以及函数值的定义分别进行判断即可.【解答】解:A .函数的值域为{0,1},故A 正确,B .若x 是无理数,则﹣x 也是无理数,此时f (﹣x )=f (x )=0,若x 是有理数,则﹣x 也是有理数,此时f (﹣x )=f (x )=1,综上f (﹣x )=f (x )恒成立,故函数f (x )是偶函数,故B 正确, C .由B 知函数是偶函数,不是奇函数,故C 错误,D .当x ∈R 时,f (x )=1或0都是有理数,则f [f (x )]=1,故D 正确, 故选:C .【点评】本题主要考查命题的真假判断,涉及函数的值域,奇偶性以及函数值的判断,利用分段函数的解析式分别进行判断是解决本题的关键.9.(5分)已知函数,则f (﹣6)+f (log 26)=( ) A .6B .8C .9D .10【分析】根据题意,由函数的解析式求出f (﹣6)与f (log 26)的值,相加即可得答案.【解答】解:根据题意,函数,则f (﹣6)=log 3[3﹣(﹣6)]=log 39=2,f (log 26)=+1=7,则f (﹣6)+f (log 26)=2+7=9; 故选:C .【点评】本题考查分段函数函数值的计算,注意分段函数解析式的形式,属于基础题.10.(5分)已知向量,,其中||=1,,,则在方向上的投影为()A.B.C.﹣2D.2【分析】由,,两边同时平方可求,||,进而可求在方向上的投影.【解答】解:∵||=1,,,∴16=,4=,解可得,=,||=,则在方向上的投影为=,故选:A.【点评】本题主要考查了平面向量数量积的性质的简单应用,属于基础试题.11.(5分)设点A(x,y)是函数f(x)=sin(﹣x)(x∈[0,π])图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合),设线段AB的长为h(x),则函数h(x)的图象是()A.B.C.D.【分析】作出函数的图象,根据对称性求出A,B的坐标关系进行判断即可.【解答】解:f(x)=sin(﹣x)=﹣sin x,(x∈[0,π])设A(x,﹣sin x),则A,B关于x=对称,此时B(π﹣x,﹣sin x),当0≤x≤时,|AB|=π﹣x﹣x=π﹣2x,当≤x≤π时,|AB|=x﹣(π﹣x)=2x﹣π,则对应的图象为D,故选:D.【点评】本题主要考查函数的图象的识别和判断,利用三角函数的对称性求出A,B的坐标关系是解决本题的关键.12.(5分)已知定义在R上的奇函数,满足f(2﹣x)+f(x)=0,当x∈(0,1]时,f(x)=﹣log2x,若函数F(x)=f(x)﹣sinπx,在区间[﹣1,m]上有10个零点,则m的取值范围是()A.[3.5,4)B.(3.5,4]C.(3,4]D.[3,4)【分析】由方程的根与函数的零点问题的相互转化,结合函数的奇偶性、对称性、周期性,作图观察可得解【解答】解:由f(x)为奇函数,则f(x)=﹣f(﹣x),又f(2﹣x)+f(x)=0,得:f(2﹣x)=f(﹣x),即函数f(x)是其图象关于点(1,0)对称,且周期为2的奇函数,又y=sinπx的图象关于(k,0)对称,其图象如图所示:在区间[﹣1,m]上有10个零点,则实数m的取值范围为:[3.5,4),故选:A.【点评】本题考查了方程的根与函数的零点问题,函数的奇偶性、对称性、周期性,属中档题.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置.)13.(5分)已知向量=(﹣2,3),=(x ,1),若⊥,则实数x 的值是 .【分析】根据即可得出,进行数量积的坐标运算即可求出x 的值.【解答】解:∵;∴;∴.故答案为:.【点评】考查向量垂直的充要条件,向量坐标的数量积运算.14.(5分)已知a =1.010.01,b =ln 2,c =log 20.5,则a ,b ,c 从小到大的关系是 c <b <a .【分析】容易得出,1.010.01>1,0<ln 2<1,log 20.5<0,从而可得出a ,b ,c 的大小关系.【解答】解:∵1.010.01>1.010=1,0<ln 2<lne =1,log 20.5<log 21=0; ∴c <b <a .故答案为:c <b <a .【点评】考查指数函数、对数函数的单调性,以及增函数的定义.15.(5分)= 1 .【分析】利用指数、对数的性质、运算法则直接求解.【解答】解:=lg()﹣2+1=1.故答案为:1.【点评】本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.16.(5分)若f(x)=sin x+cos x在[0,a]是增函数,则a的最大值是【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的单调性,求得a 的最大值.【解答】解:∵f(x)=sin x+cos x=sin(x+)在[0,a]是增函数,∴a+≤,∴a≤,则a的最大值是,故答案为:.【点评】本题主要考查两角和的正弦公式,正弦函数的单调性,属于基础题.三、解答题(本大题共6小题,共72分.解答写在答题卡相应位置并写出文字说明,证明过程或演算步骤.)17.(10分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)若函数f(x)的值域为A,集合C={x|m﹣1≤x≤m+3}且A∪C=A,求实数m的取值范围.【分析】(Ⅰ)由题意根据五点法作图,将上表数据补充完整,并直接写出函数f(x)的解析式.(Ⅱ)由题意可得C⊆A,可得,由此求得实数m的取值范围.【解答】解:(Ⅰ)根据表中已知数据,解得A=4,ω=2,,函数表达式为.补全数据如下表:(Ⅱ)∵,∴A=[﹣4,4],又A∪C=A,∴C⊆A.依题意,∴实数m的取值范围是[﹣3,1].【点评】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,集合中参数的取值范围,属于基础题.18.(12分)已知sinα=,α∈().(Ⅰ)求sin2的值;(Ⅱ)若sin(α+β)=,β∈(0,),求β的值.【分析】(Ⅰ)直接利用二倍角公式,求得sin2的值.(Ⅱ)利用同角三角函数的基本关系,求得cos(α+β)的值,再利用两角差的正弦公式求得sinβ=sin[(α+β)﹣α]的值,可得β的值.【解答】解:(Ⅰ)因为sinα=,α∈(),所以cosα=﹣=﹣.从而sin2==.(Ⅱ)因为α∈(),β∈(0,),所以α+β∈(,),所以cos(α+β)=﹣=﹣.∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=•(﹣)﹣(﹣)•=,∴β=.【点评】本题主要考查二倍角公式,同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.19.(12分)已知函数f(x)=3.(Ⅰ)当a=1时,求函数f(x)的值域;(Ⅱ)若f(x)有最大值81,求实数a的值.【分析】(Ⅰ)当a=1时,求出f(x)的解析式,结合指数函数和二次函数的单调性的性质进行求解即可.(Ⅱ)利用换元法结合指数函数和二次函数的单调性的性质求出最大值,建立方程关系进行求解即可.【解答】解:(Ⅰ)当a=1时,f(x)==≥3﹣1=,∴函数f(x)的值域为[,+∞).(Ⅱ)令t=ax2﹣4x+3,当a≥0时,t无最大值,不合题意;当a<0时,∵t=ax2﹣4x+3=a(x﹣)2﹣+3,∴t≤3﹣,又f(t)=3t在R上单调递增,∴f(x)=3t≤=81=34,∴3﹣=4,∴a=﹣4.【点评】本题主要考查复合函数单调性和值域的求解,结合指数函数和二次函数的单调性的关系是解决本题的关键.20.(12分)若,且,(Ⅰ)求函数f(x)的解析式及其对称中心.(Ⅱ)函数y=g(x)的图象是先将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变得到的.求函数y=g(x),x∈[0,π]的单调增区间.【分析】(Ⅰ)利用两个向量的数量积公式,三角恒等变换,化简f(x)的解析式,再利用正弦函数的图象的对称性求得对称中心.(Ⅱ)利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的单调性,得出结论.【解答】解:(Ⅰ)依题意有=(2sin x,cos2x)•(cos x,﹣)=2sin x cos x﹣cos2x=sin2x﹣cos2x=2sin(2x﹣),令2x﹣=kπ,则,k∈Z,∴函数y=f(x)的对称中心为.(Ⅱ)由(Ⅰ)得,,∴将函数y=f(x)的图象向左平移个单位,再将所得图象横坐标伸长到原来的2倍,纵坐标不变,可得的图象.由,即,又x∈[0,π],∴g(x)的单调增区间为.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,正弦函数的图象的对称性、单调性、以及函数y=A sin(ωx+φ)的图象变换规律,属于中档题.21.(12分)已知定义在R上的奇函数f(x),对任意两个正数x1,x2,且x1<x2都有x1f (x1)﹣x2f(x2)<0,且f(2)=0.(Ⅰ)判断函数g(x)=xf(x)的奇偶性;(Ⅱ)若,是否存在正实数a,使得g(h(x))<0恒成立?若存在求a的取值范围,若不存在请说明理由.【分析】(Ⅰ)根据函数的奇偶性的定义判断即可;(Ⅱ)根据函数的单调性和奇偶性得到关于a的不等式,解出即可.【解答】解:(Ⅰ)∵f(x)为奇函数,∴f(﹣x)=﹣f(x)又∵g(﹣x)=﹣xf(﹣x)=﹣x•[﹣f(x)]=xf(x)=g(x),∴g(x)为偶函数;(Ⅱ)依题意有g(x)在(0,+∞)上单调递增,又g(x)为偶函数,∴g(x)在(﹣∞,0)上单调递减,又f(0)=f(﹣2)=f(2)=0,所以g(0)=g(﹣2)=g(2)=0,要使得g(x)<0,则x∈(﹣2,0)∪(0,2),由g(h(x))<0得h(x)∈(﹣2,0)∪(0,2)∵,∴,∴,∵a>0,,又h(x)∈(﹣2,0)∪(0,2),∴即,∴存在使得g(h(x))<0恒成立.【点评】本题考查了函数的单调性,奇偶性问题,考查转化思想,三角函数的性质,是一道综合题.22.(12分)某投资人欲将5百万元资金投人甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入资金的关系式分别为y1=t,y2=,其中a为常数且0<a≤5.设对乙种产品投入资金x百万元.(Ⅰ)当a=2时,如何进行投资才能使得总收益y最大;(总收益y=y1+y2)(Ⅱ)银行为了吸储,考虑到投资人的收益,无论投资人资金如何分配,要使得总收益不低于0.45百万元,求a的取值范围.【分析】(Ⅰ)当a=2时求出总收益y=y1+y2的解析式,结合一元二次函数最值性质进行求解即可.(Ⅱ)根据条件转化为y=+≥对任意x∈[0,5]恒成立,利用换元法转化为一元二次函数进行讨论求解即可.【解答】解:(Ⅰ)设对乙种产品投入资金x百万元,则对甲种产品投入资金5﹣x百万元当a =2时,y =y 1+y 2=(5﹣x )+•2=,(0≤x ≤5),令t =,则0≤t ≤,y =﹣(t 2﹣2t ﹣5),其图象的对称轴t =1∈[0,],∴当t =1时,总收益y 有最大值,此时x =1,5﹣x =4.即甲种产品投资4百万元,乙种产品投资1百万元时,总收益最大……………(5分)(Ⅱ)由题意知y =+=≥对任意x ∈[0,5]恒成立,即﹣2x +2a+1≥0对任意x ∈[0,5]恒成立,令g (x )=2x +2a +1,设t =,则t ∈[0,],则g (t )=﹣2t 2+2at +1,其图象的对称轴为t =,……………(7分)①当0<≤,即0<a ≤时,g (t )在[0,]单调递增,在[,]单调递减,且g (0)≥g (),∴g (t )min =g ()=2a ﹣9≥0,得a ≥,又0<a ≤∴≤a ≤②当<≤,即<a ≤2时,g (t )在[0,]单调递增,在[,]单调递减,且g (0)<g (),可得g (t )min =g (0)=1≥0,符合题意∴<a ≤2③当>,即2<a ≤5时,易知g (t )=﹣2t 2+2at +1在[0,]单调递增可得g (t )min =g (0)=1≥0恒成立,2<a ≤5综上可得≤a ≤5.∴实数a 的取值范围是[,5].……………(12分)【点评】本题主要考查函数的应用问题,利用换元法转化为一元二次函数,利用一元二次函数对称性与区间的关系是解决本题的关键.综合性较强,难度较大.。
2019-2020学年上海中学高一(上)期末数学试卷一、填空题1. 函数f(x)=√2−x +ln (x −1)的定义域为________.2. 设函数f(x)=(x+1)(x−a)x 为奇函数,则实数a 的值为________.3. 已知y =log a x +2(a >0且a ≠1)的图象过定点P ,点P 在指数函数y =f(x)的图象上,则f(x)=________.4. 方程92x+1=(13)x 的解为________.5. 对任意正实数x ,y ,f(xy)=f(x)+f(y),f(9)=4,则f(√3)=________.6. 已知幂函数f(x)=(m 2−5m +7)x m 是R 上的增函数,则m 的值为________.7. 已知函数f(x)={2x (x ≤0)log 2x(0<x ≤1)的反函数是f −1(x),则f −1(12)=________.8. 函数y =log 34|x 2−6x +5|的单调递增区间为________.9. 若函数f(x)=log a (x 2−ax +2)(a >0且a ≠1)满足:对任意x 1,x 2,当x 1<x 2≤a 2时,f(x 1)−f(x 2)>0,则a 的取值范围为________√2) .10. 已知x >0,定义f(x)表示不小于x 的最小整数,若f (3x +f(x))=f(6.5),则正数x 的取值范围为________.11. 已知函数f(x)=log a (mx +2)−log a (2m +1+2x )(a >0且a ≠1)只有一个零点,则实数m 的取值范围为________.12. 已知函数f(x)={log 12(1−x),−1≤x ≤n 22−|x−1|−3,n <x ≤m ,(n <m)的值域是[−1, 1],有下列结论:(1)n =0时,m ∈(0, 2];(2)n =12时,m ∈(12,2];(3)n =[0,12)时,m ∈(n, 2],其中正确的结论的序号为________.二、选择题下列函数中,是奇函数且在区间(1, +∞)上是增函数的是( )A.f(x)=3|x|B.f(x)=1x −xC.f(x)=−x 3D.f(x)=−log 2x+1x−1已知f(x)是定义在R 上的偶函数,且在区间(−∞, 0)上单调递增,若实数m 满足f(|m −1|)>f(−1),则m 的取值范围是( )A.(−∞, 0)∪(2, +∞)B.(−∞, 0)C.(0, 2)D.(2, +∞)如果函数f(x)在其定义域内存在实数x 0,使得f(x 0+1)=f(x 0)+f(1)成立,则称函数f(x)为“可拆分函数”,若f(x)=lg a 2x +1为“可拆分函数”,则a 的取值范围是( )A.(32,3)B.(12,32)C.(32,3]D.(3, +∞]定义在(−1, 1)上的函数f(x)满足f(x)=1f(x−1)+1,当x ∈(−1, 0]时,f(x)=1x+1−1,若函数g(x)=|f(x)−12|−mx −m 在(−1, 1)内恰有3个零点,则实数m 的取值范围是( )A.[14,916)B.(14,916)C.[14,12)D.(14,12) 三.解谷题已知函数f(x)=2x −1的反函数是y =f −1(x),g(x)=log 4(3x +1).(1)画出f(x)=2x −1的图象;(2)解方程f −1(x)=g(x).已知定义在R 上的奇函数f(x)=ka x −a −x ((a >0且a ≠1),k ∈R).(1)求k 的值,并用定义证明当a >1时,函数f(x)是R 上的增函数;(2)已知f(1)=32,求函数g(x)=a 2x +a −2x 在区间[0, 1]上的取值范围.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为Q =6p(t)−1500t −60(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?对于定义域为D 的函数y =f(x),若存在区间[a, b]⊂D ,使得f(x)同时满足,①f(x)在[a, b]上是单调函数,②当f(x)的定义域为[a, b]时,f(x)的值域也为[a, b],则称区间[a, b]为该函数的一个“和谐区间”.(1)求出函数f(x)=x 3的所有“和谐区间”[a, b];(2)函数f(x)=|4x −3|是否存在“和谐区间”[a, b]?若存在,求出实数a ,b 的值;若不存在,请说明理由;(3)已知定义在(2, k)上的函数f(x)=2m −4x−1有“和谐区间”,求正整数k 取最小值时实数m 的取值范围.定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2.(1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1, 1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.参考答案与试题解析2019-2020学年上海中学高一(上)期末数学试卷一、填空题1.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【解析】此题暂无解析此题暂无解答7.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答三.解谷题【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答。
2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22题,满分150分,考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、考号填写在答题卡与试卷上,并将考号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷,草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,只交答题卡.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】B【解析】【分析】先由可求出,再结合即可求得.【详解】解:因为,所以,又,所以,故选:B.【点睛】本题考查了集合的交、并、补的混合运算,属基础题.2.已知点O为四边形ABCD所在平面内一点,且向量,满足等式,则四边形ABCD是( ) A. 等腰梯形 B. 正方形 C. 菱形 D. 平行四边形【答案】D【解析】【分析】由向量的减法运算可得,再结合相等向量的定义即可得解.【详解】解:由,得,即,故,得四边形ABCD是平行四边形,故选:D.【点睛】本题考查了向量的减法运算及相等向量,属基础题.3.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则函数的最小正周期是( )A. B. C. D.【答案】C【解析】【分析】先由三角函数图像的平移变换求出,再结合三角函数的周期的求法求解即可.【详解】解:将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则,即函数的最小正周期是,故选:C.【点睛】本题考查了函数图像的平移变换,重点考查了三角函数的周期,属基础题.4.函数零点所在的区间是( )A. B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来探究函数的图象特征,如函数的图象大致是( )A. B. C.D.【答案】A【解析】【分析】由,可得是偶函数,且,,再判断即可得解.【详解】解:由,有,即是偶函数,则的图像关于轴对称,结合特殊值,,即可判断选项A符合题意,故选:A.【点睛】本题考查了函数的奇偶性及函数图像的性质,重点考查了数形结合的数学思想方法,属基础题.6.若函数是幂函数,且在上单调递增,则( )A. B. C. 2 D. 4【答案】D【解析】【分析】由幂函数的定义及幂函数的单调性可得,再求值即可得解.【详解】解:因为函数是幂函数,所以,解得或.又因为在上单调递增,所以,所以,即,从而,故选:D.【点睛】本题考查了幂函数的定义及幂函数的单调性,重点考查了求值问题,属基础题.7.设,,,则a,b,c的大小关系为( )A. B. C. D.【答案】B【解析】【分析】结合指数幂及对数值的求法可得,得解.【详解】解:因为,,,所以.故选:B.【点睛】本题考查了求指数幂及对数值,属基础题.8.已知函数是定义在上的奇函数,则( )A. B. C. 2 D. 5【答案】B【解析】【分析】由函数,则其定义域关于原点对称且,再求解即可.【详解】解:由函数是定义在上的奇函数,则其定义域关于原点对称且,得,所以,即,则,故选:B.【点睛】本题考查了函数的奇偶性,重点考查了求值问题,属基础题.9.在平面坐标系中,,,,是单位圆上的四段弧(如图),点在其中一段上,角以轴的非负半轴为始边,为终边,若,且,则所在的圆弧是( )A. B.C. D.【答案】D【解析】【分析】假设点在指定象限,得到的符号,验证,是否成立即可【详解】若点在第一象限,则,,则,与题意不符,故排除A,B;若点在第二象限,则,,则,与题意不符,故排除C;故选:D【点睛】本题考查象限角的三角函数值的符号的应用,考查排除法处理选择题10.函数在R上单调递增,则a的取值范围是( )A. B. C. D.【答案】D【解析】【分析】由函数在R上单调递增,可得不等式组,求解即可得解.【详解】解:由函数在R上单调递增,则,得,故选:D.【点睛】本题考查了分段函数的单调性,重点考查了函数的性质,属基础题.11.在平行四边形中,点E,F分别在边,上,满足,,连接交于点M,若,则()A. B. 1 C. D.【答案】C【解析】【分析】由,,将用向量表示,再由,把向量用向量表示,根据E,F,M 三点共线的关系式特征,即可求得结论.【详解】因为,所以.因为,所以.因为E,F,M三点共线,所以,所以.故选:C.【点睛】本题考查向量的线性表示和向量基本定理,考查三点共线的向量结构特征,属于中档题.12.已知函数,若在区间内没有零点,则的取值范围是( )A. B.C. D.【答案】B【解析】【分析】由函数在区间内没有零点,可得,再结合求解即可.【详解】解:因为,,所以.因为在区间内没有零点,所以.解得.因为,所以,因为.所以或.当时;当时,,故选:B.【点睛】本题考查了函数的零点问题,重点考查了三角函数图像的性质,属中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数则______.【答案】5【解析】【分析】先将代入解析式可得,再求即可【详解】由题,,所以故答案为:5【点睛】本题考查分段函数求值,考查指数、对数的运算14.已知角的终边经过点,则____________.【答案】【解析】【分析】结合三角函数的定义求解即可.【详解】解:因为,则,所以,故答案为:.【点睛】本题考查了三角函数的定义,属基础题.15.已知为第三象限角,则____________.【答案】【解析】【分析】由同角三角函数的关系可将原式变形为,再结合三角函数象限角的符号求解即可.【详解】解:,又为第三象限角,则,故原式,故答案为:.【点睛】本题考查了三角函数象限角的符号问题,重点考查了同角三角函数的关系,属基础题.16.定义在R上的偶函数满足,且当时,,则的零点个数为____________.【答案】10【解析】【分析】由函数的零点个数与函数图像的交点个数的关系,函数的零点个数等价于函数的图像与函数的图像的交点个数,再结合函数的性质作图观察即可得解.【详解】解:由于定义在R上的偶函数满足,所以的图象关于直线对称,画出时,部分的图象如图,在同一坐标系中画出的图象,由图可知:当时,有5个交点,又和都是偶函数,所以在上也是有5个交点,所以的零点个数是10,故答案为:10.【点睛】本题考查了函数的性质,重点考查了函数的零点个数与函数图像的交点个数的相互转化,属中档题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知角的终边经过点,求下列各式的值.(1);(2).【答案】(1)-2 (2)【解析】【分析】(1)由三角函数的定义可得,再结合同角三角函数的商数关系即可得解.(2)由同角三角函数的平方关系及诱导公式化简即可得解.【详解】解:(1)由角的终边经过点,可知,则.(2)由已知有,所以.【点睛】本题考查了三角函数的定义及同角三角函数的关系,重点考查了运算能力,属基础题.19.已知函数(且).(1)判断并证明奇偶性;(2)求使的的取值范围.【答案】(1)奇函数,证明见解析(2)当时,;当时,【解析】分析】(1)先判断函数的定义域关于原点对称,再判断,得解.(2)由对数函数的单调性求解对数不等式即可.【详解】解:(1)由,得,解得,即函数的定义域为,显然关于原点对称.又,所以是定义域上的奇函数.(2)由,得,即,当时,不等式等价于,解得,当时,不等式等价于,解得,综上,当时, 的取值范围为;当时, 的取值范围为.【点睛】本题考查了函数的奇偶性,重点考查了对数不等式的解法,属中档题.20.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)【答案】(1)(2)6次【解析】【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得,,所以当时,,即,解得,所以,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意可得,,整理得,,即,两边同时取常用对数,得,整理得,将代入,得,又因为,所以.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.21.已知函数的最大值是2,函数的图象的一条对称轴是,一个对称中心是.(1)求的解析式;(2)已知B是锐角,且,求.【答案】(1)(2)【解析】【分析】(1)由三角函数图像的性质及函数的最值列方程,分别求出即可;(2)由B是锐角,结合求解即可.【详解】解:(1)设的最小正周期为T,∵图象的一条对称轴是,一个对称中心是,,,,,,∴.图象的一条对称轴是,,.,.又∵的最大值是2,∴,从而.(2)∵,∴,又,∴,∴.∴.【点睛】本题考查了三角函数解析式的求法,重点考查了三角函数求角问题,属中档题.22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴在上单调递增;(2)总存在,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22题,满分150分,考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、考号填写在答题卡与试卷上,并将考号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷,草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,只交答题卡.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】B【解析】【分析】先由可求出,再结合即可求得.【详解】解:因为,所以,又,所以,故选:B.【点睛】本题考查了集合的交、并、补的混合运算,属基础题.2.已知点O为四边形ABCD所在平面内一点,且向量,满足等式,则四边形ABCD是( )A. 等腰梯形B. 正方形C. 菱形D. 平行四边形【答案】D【解析】【分析】由向量的减法运算可得,再结合相等向量的定义即可得解.【详解】解:由,得,即,故,得四边形ABCD是平行四边形,故选:D.【点睛】本题考查了向量的减法运算及相等向量,属基础题.3.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则函数的最小正周期是( )A. B. C. D.【答案】C【解析】【分析】先由三角函数图像的平移变换求出,再结合三角函数的周期的求法求解即可.【详解】解:将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则,即函数的最小正周期是,故选:C.【点睛】本题考查了函数图像的平移变换,重点考查了三角函数的周期,属基础题.4.函数零点所在的区间是( )A. B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来探究函数的图象特征,如函数的图象大致是( )A. B. C.D.【答案】A【解析】【分析】由,可得是偶函数,且,,再判断即可得解.【详解】解:由,有,即是偶函数,则的图像关于轴对称,结合特殊值,,即可判断选项A符合题意,故选:A.【点睛】本题考查了函数的奇偶性及函数图像的性质,重点考查了数形结合的数学思想方法,属基础题.6.若函数是幂函数,且在上单调递增,则( )A. B. C. 2 D. 4【答案】D【解析】【分析】由幂函数的定义及幂函数的单调性可得,再求值即可得解.【详解】解:因为函数是幂函数,所以,解得或.又因为在上单调递增,所以,所以,即,从而,故选:D.【点睛】本题考查了幂函数的定义及幂函数的单调性,重点考查了求值问题,属基础题.7.设,,,则a,b,c的大小关系为( )A. B. C. D.【答案】B【解析】【分析】结合指数幂及对数值的求法可得,得解.【详解】解:因为,,,所以.故选:B.【点睛】本题考查了求指数幂及对数值,属基础题.8.已知函数是定义在上的奇函数,则( )A. B. C. 2 D. 5【答案】B【解析】【分析】由函数,则其定义域关于原点对称且,再求解即可.【详解】解:由函数是定义在上的奇函数,则其定义域关于原点对称且,得,所以,即,则,故选:B.【点睛】本题考查了函数的奇偶性,重点考查了求值问题,属基础题.9.在平面坐标系中,,,,是单位圆上的四段弧(如图),点在其中一段上,角以轴的非负半轴为始边,为终边,若,且,则所在的圆弧是( )A. B.C. D.【答案】D【解析】【分析】假设点在指定象限,得到的符号,验证,是否成立即可【详解】若点在第一象限,则,,则,与题意不符,故排除A,B;若点在第二象限,则,,则,与题意不符,故排除C;故选:D【点睛】本题考查象限角的三角函数值的符号的应用,考查排除法处理选择题10.函数在R上单调递增,则a的取值范围是( )A. B. C. D.【答案】D【解析】【分析】由函数在R上单调递增,可得不等式组,求解即可得解.【详解】解:由函数在R上单调递增,则,得,故选:D.【点睛】本题考查了分段函数的单调性,重点考查了函数的性质,属基础题.11.在平行四边形中,点E,F分别在边,上,满足,,连接交于点M,若,则()A. B. 1 C. D.【答案】C【解析】【分析】由,,将用向量表示,再由,把向量用向量表示,根据E,F,M三点共线的关系式特征,即可求得结论.【详解】因为,所以.因为,所以.因为E,F,M三点共线,所以,所以.故选:C.【点睛】本题考查向量的线性表示和向量基本定理,考查三点共线的向量结构特征,属于中档题.12.已知函数,若在区间内没有零点,则的取值范围是( )A. B.C. D.【答案】B【解析】【分析】由函数在区间内没有零点,可得,再结合求解即可.【详解】解:因为,,所以.因为在区间内没有零点,所以.解得.因为,所以,因为.所以或.当时;当时,,故选:B.【点睛】本题考查了函数的零点问题,重点考查了三角函数图像的性质,属中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数则______.【答案】5【解析】【分析】先将代入解析式可得,再求即可【详解】由题,,所以故答案为:5【点睛】本题考查分段函数求值,考查指数、对数的运算14.已知角的终边经过点,则____________.【答案】【解析】【分析】结合三角函数的定义求解即可.【详解】解:因为,则,所以,故答案为:.【点睛】本题考查了三角函数的定义,属基础题.15.已知为第三象限角,则____________.【答案】【解析】【分析】由同角三角函数的关系可将原式变形为,再结合三角函数象限角的符号求解即可.【详解】解:,又为第三象限角,则,故原式,故答案为:.【点睛】本题考查了三角函数象限角的符号问题,重点考查了同角三角函数的关系,属基础题.16.定义在R上的偶函数满足,且当时,,则的零点个数为____________.【答案】10【解析】【分析】由函数的零点个数与函数图像的交点个数的关系,函数的零点个数等价于函数的图像与函数的图像的交点个数,再结合函数的性质作图观察即可得解.【详解】解:由于定义在R上的偶函数满足,所以的图象关于直线对称,画出时,部分的图象如图,在同一坐标系中画出的图象,由图可知:当时,有5个交点,又和都是偶函数,所以在上也是有5个交点,所以的零点个数是10,故答案为:10.【点睛】本题考查了函数的性质,重点考查了函数的零点个数与函数图像的交点个数的相互转化,属中档题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知角的终边经过点,求下列各式的值.(1);(2).【答案】(1)-2 (2)【解析】【分析】(1)由三角函数的定义可得,再结合同角三角函数的商数关系即可得解.(2)由同角三角函数的平方关系及诱导公式化简即可得解.【详解】解:(1)由角的终边经过点,可知,则.(2)由已知有,所以.【点睛】本题考查了三角函数的定义及同角三角函数的关系,重点考查了运算能力,属基础题.19.已知函数(且).(1)判断并证明奇偶性;(2)求使的的取值范围.【答案】(1)奇函数,证明见解析(2)当时,;当时,【解析】分析】(1)先判断函数的定义域关于原点对称,再判断,得解.(2)由对数函数的单调性求解对数不等式即可.【详解】解:(1)由,得,解得,即函数的定义域为,显然关于原点对称.又,所以是定义域上的奇函数.(2)由,得,即,当时,不等式等价于,解得,当时,不等式等价于,解得,综上,当时, 的取值范围为;当时, 的取值范围为.【点睛】本题考查了函数的奇偶性,重点考查了对数不等式的解法,属中档题.20.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)【答案】(1)(2)6次【解析】【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得,,所以当时,,即,解得,所以,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意可得,,整理得,,即,两边同时取常用对数,得,整理得,将代入,得,又因为,所以.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.21.已知函数的最大值是2,函数的图象的一条对称轴是,一个对称中心是.(1)求的解析式;(2)已知B是锐角,且,求.【答案】(1)(2)【解析】【分析】(1)由三角函数图像的性质及函数的最值列方程,分别求出即可;(2)由B是锐角,结合求解即可.【详解】解:(1)设的最小正周期为T,∵图象的一条对称轴是,一个对称中心是,,,,,,∴.图象的一条对称轴是,,.,.又∵的最大值是2,∴,从而.(2)∵,∴,又,∴,∴.∴.【点睛】本题考查了三角函数解析式的求法,重点考查了三角函数求角问题,属中档题. 22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴在上单调递增;(2)总存在,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).。
2019-2020学年高一上学期期末考试数学试卷一、选择题(本大题共12小题,共48.0分)1.点(1,-1)到直线y=x+1的距离是()A. B. C. D.2.已知圆的方程为x2+y2-2x+6y+8=0,那么通过圆心的一条直线方程是()A. B. C. D.3.已知两条平行直线l1:3x+4y+5=0,l2:6x+by+c=0间的距离为3,则b+c=()A. B. 48 C. 36 D. 或484.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A. 1B. 2C. 3D. 45.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是()A. B. C. D.7.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.B.C.D.8.一个正方体截去两个角后所得几何体的正视图(又称主视图)、侧视图(又称左视图)如右图所示,则其俯视图为()A. B. C.D.9.已知a,b满足a+2b=1,则直线ax+3y+b=0必过定点()A. B. C. D.10.过点(1,2)且与原点距离最大的直线方程是()A. B. C. D.11.如果一个正四面体的体积为9dm3,则其表面积S的值为()A. B. C. D.12.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A. 2:1B. 3:1C. 3:2D. 4:3二、填空题(本大题共4小题,共16.0分)13.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.14.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是______.15.已知正四棱锥的底面边长为2,侧棱长为,则侧面与底面所成的二面角为______.16.已知两点A(-3,2),B(2,1),点P(x,y)为线段AB上的动点,假设m=,则m的取值范围为______.三、解答题(本大题共5小题,共56.0分)17.求斜率为,且与坐标轴所围成的三角形的面积是6的直线方程.18.△ABC中,已知C(2,5),角A的平分线所在的直线方程是y=x,BC边上高线所在的直线方程是y=2x-1,试求顶点B的坐标.19.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.20.当0<a<2时,直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4和两坐标轴围成一个四边形,问a取何值时,这个四边形面积最小,并求这个最小值.21.如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为.(1)求侧面PAD与底面ABCD所成的二面角的大小;(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.答案和解析1.【答案】D【解析】解:点(1,-1)到直线y=x+1的距离:d==.故选:D.利用点到直线的距离公式直接求解.本题考查点到直线方程的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.2.【答案】C【解析】解:因为圆的方程为x2+y2-2x+6y+8=0,所以圆心坐标(1,-3),代入选项可知C正确.故选:C.求出圆的圆心坐标,验证选项即可.本题考查圆的一般方程,点的坐标适合直线方程;也可认为直线系问题,是基础题.3.【答案】D【解析】解:将l1:3x+4y+5=0改写为6x+8y+10=0,因为两条直线平行,所以b=8.由=3,解得c=-20或c=40.所以b+c=-12或48故选D.将l1:3x+4y+5=0改写为6x+8y+10=0,利用两条直线平行及距离为3,即可求得结论.本题考查两条平行线间距离的计算,考查学生的计算能力,属于基础题.4.【答案】B【解析】解:①若直线a不在α内,则a可能和α相交,所以①错误.②a和α相交时,直线l上有无数个点不在平面α内,但此时l∥α不成立,所以②错误.③若直线l与平面α平行,则l与α内的任意一条直线都没有公共点,所以直线可能平行或异面,所以③错误.④根据线面平行的定义可知,若l与平面α平行,则l与α内任何一条直线都没有公共点,以④正确.⑤根据线面平行的性质可知平行于同一个平面的两两条直线可能相交,可能平行,也可能是异面直线,所以⑤正确.故正确的是:④⑤.故选B.①根据直线和平面的位置关系判断.②利用直线和平面的位置关系判.③利用线面平行的定义判断.④利用线面平行的性质判断.⑤根据线面平行的性质判断.本题主要考查空间直线和平面平行判定和性质,要求熟练掌握线面平行的定义和性质.5.【答案】B【解析】解:由题意可知B≠0,故直线的方程可化为,由AB>0,BC>0可得>0,<0,由斜率和截距的几何意义可知直线不经过第二象限,故选:B.化直线的方程为斜截式,由已知条件可得斜率和截距的正负,可得答案.本题考查直线的斜率和截距的几何意义,属基础题.6.【答案】A【解析】解:B是经过正方体对角面的截面;C是经过球心且平行于正方体侧面的截面;D是经过一对平行的侧面的中心,但不是对角面的截面.故选:A.对选项进行分析,即可得出结论.本题考查用过球心的平面去截这个组合体的截面图,考查学生分析解决问题的能力,比较基础.解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.8.【答案】C【解析】解:根据主视图和左视图可知正方体截取的两个角是在同一个面上的两个相对的角,∴它的俯视图是一个正方形,正方形的右下角是以实线画出的三角形,左上角是一个实线画出的三角形,依题意可知该几何体的直观图如图,其俯视图应选C.故选C.正方体截取的两个角是在同一个面上的两个相对的角,它的正视图外围是一个正方形,正方形的左上角是以虚线画出的三角形,右上角是一个实线画出的三角形,看出结果.本题考查简单空间图形的三视图,本题解题的关键是通过两个视图,想象出正方体的形状和位置,注意虚线和实线的区别.解:因为a,b满足a+2b=1,则直线ax+3y+b=0化为(1-2b)x+3y+b=0,即x+3y+b(-2x+1)=0恒成立,,解得,所以直线经过定点().故选:B.利用已知条件,消去a,得到直线系方程,然后求出直线系经过的定点坐标.本题考查直线系方程的应用,考查直线系过定点的求法,考查计算能力.10.【答案】A【解析】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于-,由点斜式求得所求直线的方程为y-2=-(x-1),化简可得x+2y-5=0,故选A.先根据垂直关系求出所求直线的斜率,由点斜式求直线方程,并化为一般式.本题考查用点斜式求直线方程的方法,求出所求直线的斜率,是解题的关键.11.【答案】B【解析】解:设正四面体P-ABC,棱长为a,高为PO,O为底面正三角形外心(重心),∴底面正三角形高为AD=,S△ABC=,∵AO=,∴PO=,∴V===9,解得a=3(dm),∴表面积S=4×=18(dm2).故选:B.先由正四面体的体积为9dm3,计算正四面体的棱长,即可计算表面积S的值.本题考查正四面体的体积、表面积,考查学生的计算能力,属于中档题.12.【答案】A【解析】解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选:A.设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.本题主要考查直线与平面所成的角以及线面的垂直关系,要用到勾股定理及直角三角形中的边角关系.有一定的难度13.【答案】6【解析】解:如下图示,在三棱柱ABC-A1B1C1中,过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线有:DE、DG、DF、EG、EF、FG共有6条.故答案为:6本题考查的知识点为空间中直线与平面之间的位置关系,要判断过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线,我们可以利用数型结合的思想,画出满足条件的三棱柱ABC-A1B1C1,结合图象分析即可得到答案.要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.14.【答案】160【解析】解:设直四棱柱ABCD-A1B1C1D1中,对角线A1C=9,BD1=15,∵A1A⊥平面ABCD,AC⊂平面ABCD,∴A1A⊥AC,Rt△A1AC中,A1A=5,可得AC==,同理可得BD===10,∵四边形ABCD为菱形,可得AC、BD互相垂直平分,∴AB===8,即菱形ABCD的边长等于8.因此,这个棱柱的侧面积S侧=(AB+BC+CD+DA)×A1A=4×8×5=160.故答案为:160根据线面垂直的定义,利用勾股定理结合题中数据算出底面菱形的对角线长分别为和10,再由菱形的性质算出底面的边长为8,根据直棱柱的侧面积公式加以计算,可得该棱柱的侧面积.本题给出直棱柱满足的条件,求它的侧面积.着重考查了线面垂直的定义、菱形的性质和直棱柱的侧面积公式等知识,属于中档题.15.【答案】60°【解析】解:过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,由三垂线定理知CD⊥SE,所以∠SEO为侧面与底面所成二面角的平面角,在Rt△SOE中,SE===2,OE=1,所以cos∠SEO=,则∠SEO=60°,故答案为:60°.过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,易证∠SEO为侧面与底面所成二面角的平面角,通过解直角三角形可得答案.本题考查二面角的平面角及其求法,考查学生推理论证能力,属中档题.16.【答案】(-∞,-1]∪[1,+∞),【解析】解:设C(0,-1),则m==k PC,表示PC的斜率观察图形,直线PA的倾斜角总是钝角,由此可得当P与A重合时,k PC==-1达到最大值;当P与B重合时,k PC==1达到最小值∴k PC∈(-∞,-1]∪[1,+∞),即m∈(-∞,-1]∪[1,+∞),故答案为:(-∞,-1]∪[1,+∞),根据直线的倾斜公式,设C(0,-1)得m=,表示PC的斜率.由此作出图形并观察PC倾斜角的变化,即可得到m=,的取值范围.本题给出线段AB,求直线斜率的范围并求距离和的最小值.着重考查了直线的基本量与基本形式、点关于直线对称和两点的距离公式等知识,属于基础题.17.【答案】解:设直线方程为:y=x+b.可得此直线与坐标轴的交点(0,b),(-b,0).由=6,化为:b2=9,解得b=±3.∴要求的直线方程为:y=x±3.【解析】设直线方程为:y=x+b.可得此直线与坐标轴的交点(0,b),(-b,0).由=6,解得b即可得出.本题考查了直线方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.【答案】解:依条件,由解得A(1,1).因为角A的平分线所在的直线方程是y=x,所以点C(2,5)关于y=x的对称点C'(5,2)在AB边所在的直线上.AB边所在的直线方程为y-1=(x-1),整理得x-4y+3=0.又BC边上高线所在的直线方程是y=2x-1,所以BC边所在的直线的斜率为-.BC边所在的直线的方程是y=-(x-2)+5,整理得x+2y-12=0.联立x-4y+3=0与x+2y-12=0,解得B(7,).【解析】首先求出A点的坐标,进而求出AB边所在的直线方程,然后根据两直线垂直求出BC边所在的直线的斜率和方程,最后联立方程即可求出B得的坐标.考查了直线的一般方程和直线的截距方程、直线的位置关系等知识,属于基础题.19.【答案】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积△ .因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积△ .由V A-PBC=V P-ABC,△ ,得,故点A到平面PBC的距离等于.【解析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC 的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;方法二,等体积法:连接AC,则三棱锥P-ACB与三棱锥A-PBC体积相等,而三棱锥P-ACB体积易求,三棱锥A-PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.20.【答案】解:如图,由已知l1:a(x-2)-2(y-2)=0,l2:2(x-2)+a2(y-2)=0.∴l1、l2都过定点(2,2),且l1的纵截距为2-a,l2的横截距为a2+2.∴四边形面积S=×2×(2-a)+×2×(2+a2)=a2-a+4=(a-)2+,又0<a<2,故当a=时,S min=.【解析】=S△BCE-S△OAB即可得出S=(a-)2+,结合二次函数最值根据S四边形OCEA的求法解答.本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.21.【答案】解:(1)取AD中点M,连接MO,PM,依条件可知AD⊥MO,AD⊥PO,则∠PMO为所求二面角P-AD-O的平面角.∵PO⊥面ABCD,∴∠PAO为侧棱PA与底面ABCD所成的角.∴tan∠PAO=,设AB=a,AO=a,∴PO=AO•tan∠POA=a,tan∠PMO==.∴∠PMO=60°.(2)连接AE,OE,∵OE∥PD,∴∠OEA为异面直线PD与AE所成的角.∵AO⊥BD,AO⊥PO,∴AO⊥平面PBD.又OE⊂平面PBD,∴AO⊥OE.∵OE=PD==a,∴tan∠AEO==;(3)延长MO交BC于N,取PN中点G,连BG,EG,MG.∵BC⊥MN,BC⊥PN,∴BC⊥平面PMN∴平面PMN⊥平面PBC.又PM=PN,∠PMN=60°,∴△PMN为正三角形.∴MG⊥PN.又平面PMN∩平面PBC=PN,∴MG⊥平面PBC.∴F是AD的4等分点,靠近A点的位置.【解析】(1)取AD中点M,连接MO,PM,由正四棱锥的性质知∠PMO为所求二面角P-AD-O的平面角,∠PAO为侧棱PA与底面ABCD所成的角,则tan∠PAO=,设AB=a,则AO=a,PO=AO•tan∠POA=a,MO=a,tan∠PMO=,∠PMO=60°;(2)依题意连结AE,OE,则OE∥PD,故∠OEA为异面直线PD与AE所成的角,由正四棱锥的性质易证OA⊥平面POB,故△AOE为直角三角形,OE=PD==a,所以tan∠AEO==;(3)延长MO交BC于N,取PN中点G,连BG,EG,MG,易得BC⊥平面PMN,故平面PMN⊥平面PBC,而△PMN为正三角形,易证MG⊥平面PBC,取MA 的中点F,连EF,则四边形MFEG为平行四边形,从而MG∥FE,EF⊥平面PBC,F是AD的4等分点,靠近A点的位置.本题考查二面角及平面角的求法,异面直线所成角的正切值的求法,难度较大,解题时要认真审题,注意空间思维能力的培养.。
上海中学2019-2020学年高一上学期期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )A. f(x)=−1xB. f(x)=3xC. f(x)=x 2+1D. f(x)=sinx2. 已知f(x)是偶函数,且在(−∞,0]上是增函数.若f(lnx)<f(1),则x 的取值范围是( )A. (e,+∞)B. (1e ,e)C. (e,+∞)∪(0,1e )D. (1e ,e)∪(e,+∞) 3. 若定义在R 上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x +λ)+λf(x)=0对任意的实数x 都成立,则称f(x)是一个“λ−特征函数”.下列结论中正确的个数为( ) ①f(x)=0是常数函数中唯一的“λ−特征函数”; ②f(x)=2x +1不是“λ−特征函数”; ③“13−特征函数”至少有一个零点; ④f(x)=e x 是一个“λ−特征函数”. A. 1 B. 2 C. 3 D. 44. 已知函数f(x)=x|x|−mx +1有三个零点,则实数m 的取值范围是( )A. (0,2)B. (2,+∞)C. (−∞,−2)D. [2,+∞)二、填空题(本大题共12小题,共36.0分)5. 函数y =√3x −1+lg (1−x )的定义域是__________.6. 若函数f(x)=x 2+(a+1)x+a x 为奇函数,则实数a =______.7. 函数f(x)=log a (2x −3)+1(a >0且a ≠1)的图像过定点________________8. 已知3a =4,3b =5则3a+b 的值为__________.9. 已知定义在R 上的函数f(x)满足:对于任意的实数x ,y ,都有f(x −y)=f(x)+y(y −2x +1),且f(−1)=3,则函数f(x)的解析式为________.10. 若幂函数f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,则m 的值为________.11. 已知函数f(x)={−x 2,x ≥02−x −1,x <0,则f −1[f −1(−9)]=______12. 已知函数f(x)=log 12(x 2−6x +5)在(a,+∞)上是减函数,则函数a 的取值范围是________ .13. 已知函数f(x)=log 2(−x 2+ax +3)在(2,4)上是单调递减的,则a 的取值范围是_____________.14. 已知函数f (x )={−x,x ≤0,x 2−2x,x >0,则满足f(x)<1的x 的取值范围是________ 15. 已知函数f(x)=log 12(x +1)+log 2(x −1),对任意x ∈[3,5],f(x)≥m −2x 恒成立,则实数m 取值范围是__________.16. 已知函数,有如下结论:①,有;②,有;③,有;④,有.其中正确结论的序号是__________.(写出所有正确结论的序号)三、解答题(本大题共5小题,共60.0分) 17. 求下列函数的反函数:(1)y =1+log 2(x −1)(2)y =x 2−1(−1≤x ≤0)18. 已知函数f(x)=a x −1a x +1(a >1).(1)根据定义证明:函数f(x)在(−∞,+∞)上是增函数;(2)根据定义证明:函数f(x)是奇函数.19.为了在夏季降温和冬季供暖时减少能源消耗,可在建筑物的外墙加装不超过10厘米厚的隔热层.某幢建筑物要加装可使用20年的隔热层,每厘米厚的隔热层的加装成本为6万元,该建筑(0≤物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:厘米)满足关系:C(x)=k3x+5 x≤10).若不加装隔热层,每年能源消耗费用为8万元,设f(x)为隔热层加装费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式;(Ⅱ)隔热层加装厚度为多少厘米时,总费用f(x)最小?并求出最小总费用.20.已知函数f(x)=√x2−1+p.(1)求函数f(x)的定义域;(2)若存在区间,当x∈[m,n]时以f(x)的值域为[m2,n2],求实数p的取值范围.21. 已知函数f(x)={2x −1,x ≥0ax 2+bx,x <0,且f(−1)=f(1)、f(−2)=f(0), (1)求函数f(x)的解析式;(2)若函数g(x)=f(x)−m 有3个零点,求m 的取值范围.-------- 答案与解析 --------1.答案:A解析:本题考查函数的奇偶性和单调性判断,属于基础题.逐项判断即可.是奇函数,且在(0,+∞)上单调递增,∴该选项正确;解:A.f(x)=−1xB.f(x)=3x是非奇非偶函数,∴该选项错误;C.f(x)=x2+1是偶函数,不是奇函数,∴该选项错误;D.f(x)=sinx在(0,+∞)上没有单调性,∴该选项错误.故选:A.2.答案:C解析:解:∵f(x)是偶函数,且在(−∞,0]上是增函数,∴f(lnx)<f(1),等价为f(|lnx|)<f(1),即|lnx|>1,得lnx>1或lnx<−1,解得x>e或0<x<1,e故选C根据函数奇偶性和单调性之间的关系,即可得到结论.本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行等价转化是解决本题的关键.3.答案:C解析:本题考查函数的概念及构成要素,考查函数的零点,正确理解λ−特征函数的概念是关键,属于中档题.利用新定义“λ−特征函数”,对A、B、C、D四个选项逐个判断即可得到答案.解:对于①设f(x)=C是一个“λ−特征函数”,则(1+λ)C=0,当时,可以取实数集,因此f(x)=0不是唯一一个常数“λ−特征函数”,故①错误;对于②,∵f(x)=2x+1,∴f(x+λ)+λf(x)=2(x+λ)+1+λ(2x+1)=0,即,∴当时,;λ≠−1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴f(x)=2x+1不是“λ−特征函数”,故②正确;对于③,令x=0得f(13)+13f(0)=0,所以,若f(0)=0,显然f(x)=0有实数根;若f(x)≠0,.又∵f(x)的函数图象是连续不断的,∴f(x)在(0,13)上必有实数根,因此任意的“λ−特征函数”必有根,即任意“13−特征函数”至少有一个零点,故③正确;对于④,假设f(x)=e x是一个“λ−特征函数”,则e x+λ+λe x=0对任意实数x成立,则有e x+λ= 0,而此式有解,所以f(x)=e x是“λ−特征函数”,故④正确.综上所述,结论正确的是②③④,共3个.故选C.4.答案:B解析:本题主要考查函数与方程的应用,考查利用参数分离法以及数形结合思想,属于中档题.f(x)=x|x|−mx+1得x|x|+1=mx,利用参数分离法得m=|x|+1x ,构造函数g(x)=|x|+1x,转化为两个函数的交点个数问题进行求解即可.解:由f(x)=x|x|−mx+1得x|x|+1=mx,当x =0时,方程不成立,即x ≠0,则方程等价为m =|x|+1x ,设g(x)=|x|+1x ,当x <0时,g(x)=−x +1x 为减函数,当x >0时,g(x)=x +1x ,则g(x)在(0,1)上为减函数,则(1,+∞)上为增函数,即当x =1时,函数取得最小值g(1)=1+1=2,作出函数g(x)的图象如图:要使f(x)=x|x|−mx +1有三个零点,则等价为m =|x|+1x 有三个不同的根,即y =m 与g(x)有三个不同的交点,则由图象知m >2,故实数m 的取值范围是(2,+∞),故选:B . 5.答案:[13,1)解析:本题考查函数的定义域,根据题意可得{3x −1≥01−x >0,解不等式组即可求得结果. 解:根据题意可得{3x −1≥01−x >0, 解得13≤x <1,因此函数的定义域为[13,1).故答案为[13,1). 6.答案:−1解析:利用奇函数的性质即可得出.本题考查了函数的奇偶性,属于基础题.解:∵函数f(x)=x2+(a+1)x+ax为奇函数,∴f(−x)+f(x)=x2−(a+1)x+a−x +x2+(a+1)x+ax=0,化为(a+1)x=0,∴a+1=0,解得a=−1.故答案为:−1.7.答案:(2,1)解析:本题考查对数函数恒过定点问题,属于基础题.熟练掌握是解决此类问题的关键.解:∵当2x−3=1即x=2时,此时y=1,∴函数f(x)=log a(2x−3)+1(a>0且a≠1)的图象恒过定点(2,1).故答案为(2,1).8.答案:20解析:本题考查指数的运算.由同底数幂的运算法则进行计算即可.解:∵3a=4,3b=5,∴3a+b=3a×3b=20.故答案为20.9.答案:f(x)=x2−x+1解析:本题考查抽象函数解析式的求解,属于中档题目.解:令x=0,y=−x,得f(x)=f(0)+x2−x.把x=−1代入上式,得f(0)=f(−1)−2=1,从而有f(x)=x 2−x +1.故答案为f(x)=x 2−x +1.10.答案:1解析:本题考查了幂函数的定义与性质,由函数f(x)为幂函数可知m 2−4m +4=1,解出m 的值,再根据函数在(0,+∞)上为增函数判断出满足条件的m 值.解:函数f(x)为幂函数,所以m 2−4m +4=1,解得m =1或m =3,又因为f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,所以m 2−6m +8>0,解得m >4或m <2,综上可知m =1,故答案为1.11.答案:−2解析:解:∵函数f(x)={−x 2,x ≥02−x −1,x <0, ∴x ≥0时,y =−x 2,x =√−y ,x ,y 互换,得f −1(x)=√−x ,x ≤0,x <0时,y =2−x −1,x =−log 2(y +1),x ,y 互换得f −1(x)=−log 2(x +1),x >0,∴f −1(x)={√−x,x ≤0−log 2(x +1),x >0, ∴f −1(−9)=3,f −1[f −1(−9)]=f −1(3)=−2.故答案为:−2.推导出f −1(x)={√−x,x ≤0−log 2(x +1),x >0,从而f −1(−9)=3,进而f −1[f −1(−9)]=f −1(3),由此能求出结果.本题考查函数值的求法,考查函数性质、反函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.答案:[5,+∞)解析:本昰考查对数函数的单调区间的求法,解题时要认真审题,仔细解答,注意对数函数性质的灵活运用.设t=x2−6x+5,由x2−6x+5>0,解得x<1或x>5.在(5,+∞)t=x2−6x+5是递增的,y=log12x也是递减的,所以f(x)=log 12(x2−6x+5)在(5,+∞)上是单调递减的,由此求得a≥5.解:设t=x2−6x+5x2−6x+5>0,解得x<1或x>5.在(−∞,1)上t=x2−6x+5是递减的,y=log 12x也是递减的,所以f(x)=log 12(x2−6x+5)在(−∞,1)上是单调递增的,在(5,+∞)t=x2−6x+5是递增的,y=log 12x也是递减的,所以f(x)=log12(x2−6x+5)在(5,+∞)上是单调递减的,所以a≥5.故答案为[5,+∞).13.答案:[134,4]解析:本题考查了复合函数的单调性及对数函数的性质,是基础题.由复合函数的单调性可知内函数在(2,4)上为减函数,则需要其对称轴小于等于2且当函数在x=4时的函数值大于等于0,由此联立不等式组得答案.解:令t=−x2+ax+3,则原函数化为y=log2t,为增函数,∴t=−x2+ax+3在(2,4)是单调递减,对称轴为x=a2,∴a2⩽2且−42+4a+3⩾0,解得:134⩽a⩽4,∴a的范围是[134,4].故答案为[134,4].14.答案:解析:本题考查了一元二次不等式的解法,考查了分类讨论的数学思想方法,属中档题.解:因为函数f (x )={−x,x ≤0,x 2−2x,x >0,则f(x)<1等价于{x ≤0−x <1①或{x >0x 2−2x <1②. 解得①得−1<x ≤0,解②得0<x <1+√2√2.所以f(x)<1的x 的取值范围是(−1,1+√2).故答案为.15.答案:(−∞,7]解析:函数f(x)的定义域是(1,+∞),f(x)=log 12(x +1)+log 2(x −1)=log 2x−1x+1=log 2(1−2x+1),因为y =1−2x+1在(1,+∞)上递增,所以函数f(x)在(1,+∞)上递增,f(x)≥m −2x ,即m ≤f(x)+2x ,知y =f(x)+2x 在[3,5]上递增,所以m ≤7. 16.答案:②③④解析:因为:,所以,所以①不正确,②正确;因为y =ln(1+x)在(−1,1)递增,y =ln(1−x)在(−1,1)递减,所以函数在 上为增函数,所以③正确;又因为,所以在是增函数且函数图象上升的越来越快,呈下凸状态,所以,有,所以④正确.所以答案应填:②③④. 17.答案:解:(1)由y =1+log 2(x −1),化为:x −1=2y−1,即x =1+2y−1,把x 与y 互换可得反函数:y =1+2x−1,(y >1).(2)y =x 2−1,−1≤x ≤0,可得y ∈[−1,0],解得x =−√y +1.把x 与y 互换可得反函数为:y =−√x +1,x ∈[−1,0],解析:(1)(2)利用方程的解法,用y 表示x ,求出其范围,再把x 与y 互换即可得出.本题考查了反函数的求法、函数的单调性,考查了推理能力与计算能力,属于中档题.18.答案:证明:(1)f(x)=1−2a x+1,令m<n,则f(m)−f(n)=1−2a m+1−1+2a n+1=2(a m−a n)(a n+1)(a m+1),∵a>1,m<n,则a m<a n,(a n+1)(a m+1)>0,故2(a m−a n)(a n+1)(a m+1)<0,故f(m)−f(n)<0,故f(x)在R递增;(2)由题意函数的定义域是R,关于原点对称,又f(−x)=a −x−1a−x+1=−a x−1a x+1=−f(x),故f(x)是奇函数.解析:(1)根据函数的单调性的定义证明函数的单调性即可;(2)根据函数的奇偶性的定义证明函数的奇偶性即可.本题考查了函数的单调性和函数的奇偶性问题,考查定义的应用,是一道基础题.19.答案:解:(Ⅰ)由已知,当x=0时,C(x)=8,即k5=8,∴k=40.则C(x)=403x+5,又加装隔热层的费用为:D(x)=6x,∴f(x)=20C(x)+D(x)=20×403x+5+6x=8003x+5+6x,x∈[0,10];(Ⅱ)∵0≤x≤10,∴3x+5>0,f(x)=8003x+5+6x=8003x+5+(6x+10)−10≥2√8003x+5⋅(6x+10)−10=80−10=70.当且仅当8003x+5=6x+10,即x=5取等号.∴当隔热层加装厚度为5厘米时,总费用f(x)最小,最小总费用为70万元.解析:(Ⅰ)由C(0)=8求得k ,得到C(x)=403x+5,又加装隔热层的费用为:D(x)=6x ,可得f(x)的解析式;(Ⅱ)直接利用基本不等式求最值得答案.本题考查简单的数学建模思想方法,训练了利用基本不等式求最值,是中档题. 20.答案:解:(1)依题意,x 2−1≥0,解得x ≤−1或x ≥1,故函数f(x)的定义域为(−∞,−1]∪[1,+∞).(2)任取x 1,x 2∈[1,+∞)且x 1<x 2,则f (x 1)−f (x 2)=√x 12−1−√x 22−1=1212√x 1−1+√x 2−1<0,即f (x 1)<f (x 2), ∴f(x)在[1,+∞)上单调递增.若存在区间[m,n]⊆[1,+∞),当x ∈[m,n ]时,f(x)的值域为[m 2,n 2],可转化为f (m )=m 2,f (n )=n 2,∴g (x )=x 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根.令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,即u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根.记ℎ(u )=u 2−u +1−p ,ℎ(u )的对称轴为直线u =12,∴{Δ=1−4(1−p )>0ℎ(0)≥0,解得34<p ≤1, 即P 的范围为(34,1].解析:本题主要考查定义域和值域,属于中档题.(1)根据被开方数非负可得x 2−1≥0,进而得出定义域即可;(2)根据题意可得f (m )=m 2,f (n )=n 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根,令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,进而得出u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根,进而得出不等式组{Δ=1−4(1−p )>0ℎ(0)≥0,解出a 即可.21.答案:解:(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0, 解得,a =−1,b =−2;故f(x)={2x −1,x ≥0−x 2−2x,x <0; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作f(x)的图象如下,则由图象可知,0<m <1.解析:本题考查了函数解析式的求法及函数图象的作法及应用,属于中档题.(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0,从而解出a ,b ; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作出f(x)的图象,从而由图象可得.。
2019-2020学年上海市高一(上)期末数学试卷第I卷(选择题)一、选择题(本大题共4小题,共12.0分)1.“x2<1”是“x<1”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2.下列函数中,既是偶函数,又在(−∞,0)上单调递减的是()A. y=1xB. y=e−xC. y=1−x2D. y=x23.设函数f(x)=e x−e−x,g(x)=lg(mx2−x+14),若对任意x1∈(−∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A. −13B. −1 C. −12D. 04.设f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},如果A是只有一个元素的集合,则A与B的关系为()A. A=BB. A⫋BC. B⫋AD. A∩B=⌀第II卷(非选择题)二、填空题(本大题共12小题,共36.0分)5.函数y=ln(3−2x)的定义域是______ .6.函数f(x)=x2,(x<−2)的反函数是______ .7.设实数a满足log2a=4.则log a2=______ .8.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为减函数,则m=______ .9.函数y=log2[(x−2)2+1]的单调递增区间是________10.方程:log2(22x+1−6)=x+log2(2x+1)的解为______ .11.已知关于x的方程2kx2−2x−5k−2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是______.12. 已知a >0且a ≠1,设函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1,则实数a 的取值范围为____________.13. 设f(x)的反函数为f −1(x),若函数f(x)的图象过点(1,2),且f −1(2x +1)=1,则x =__________.14. 已知函数f(x)=2|x |+x 2在区间[−2,m]上的值域是[1,8],则实数m 的取值范围是__________.15. 若关于x 的方程ln(x −2)+ln(5−x)=ln(m −x)有实根,实数m 的取值范围是______ .16. 函数f(x)=lnx −14x +34x −1.g(x)=−x 2+2bx −4,若对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立,则实数b 的取值范围是 .三、解答题(本大题共5小题,共60.0分)17. 设函数f (x )=4x 2+4x, (1)用定义证明:函数f (x )是R 上的增函数;(2)化简f (t )+f (1−t ),并求值:f (110)+f (210)+f (310)+⋯+f (910);(3)若关于x 的方程k ⋅f (x )=2x 在(−1,0]上有解,求k 的取值范围.18. 设集合A ={x|log 12(x 2−5x +6)=−1},B ={x|a x−2<(1a )2x−7,a >1},求A ∩B .19.某商场经调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.20.求下列函数的定义域(1).f(x)=log3(x−5)(2)f(x)=√x+2+11−x21.已知函数g(x)=ax2−2ax+1+b,(a≠0,b>1)在区间[2,3]上的最大值为4,最.小值为1,设函数f(x)=g(x)x(1)求a,b的值及函数f(x)的解析式;(2)若不等式f(2x)−2x−k≥0在x∈[−1,1]时恒成立,求实数k的取值范围.答案和解析1.【答案】A【解析】【分析】本题主要考查充分条件与必要条件,基础题.根据充分必要条件的定义,分别证明充分性,必要性,从而得出答案.【解答】解:由x2<1解得−1<x<1⇒x<1,但x<1不能推出−1<x<1,所以“x2<1”是“x<1”成立的充分不必要条件.故选A.2.【答案】D是奇函数;y=e−x,不是偶函数;y=1−x2是偶函数,但是在(−∞,0)【解析】解:y=1x上单调递增,y=x2满足题意.故选:D.判断函数的奇偶性以及函数的单调性即可.本题考查二次函数的性质,函数的奇偶性以及函数的单调性,是基础题.3.【答案】A【解析】解:∵f(x)=e x−e−x在(−∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2−x+1)的值域包含(−∞,0],4),显然成立;当m=0时,g(x)=lg(−x+14)的值域包含(−∞,0],当m≠0时,要使g(x)=lg(mx2−x+14的最大值大于等于1,则mx2−x+14∴{m<04m×14−(−1)24m≥1,解得−13≤m<0,综上,−13≤m≤0,∴实数m的最小值−13故选:A.由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于m的不等式组求解.本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.4.【答案】A【解析】【分析】本题考查集合的相等,但关键难点是二次函数和复合函数的的解的问题,属中高档试题,难度较大,A只有一个元素,所以f(x)=x只有一个实数解,记作x0,则f(x)−x= (x−x0)2,f(x)=(x−x0)2+x,由此得出f[f(x)]=x,化简并提取公因式,可以证明此方程也有且只有一个零点x0,即可证明A=B.【解答】解:∵A只有一个元素,∴f(x)=x只有一个实数解,记作x0,则f(x)−x=x2+(b−1)x+c=(x−x0)2,∴f(x)=(x−x0)2+x,∴f[f(x)]=[(x−x0)2+x−x0]2+[(x−x0)2+x]=(x−x0)4+2(x−x0)3+2(x−x0)2+x,令f[f(x)]=x,即(x−x0)4+2(x−x0)3+2(x−x0)2+x=x(∗),则(x−x0)4+2(x−x0)3+2(x−x0)2=0,即[(x−x0)2+2(x−x0)+2](x−x0)2=0,∵(x−x0)2+2(x−x0)+2=0的判别式△=4−8=−4<0,∴无解,∴方程(∗)也只有一个实数解x0,综上所述A=B,故选A.5.【答案】(−∞,32)【解析】解:由3−2x>0,得x<32.∴原函数的定义域为(−∞,32).故答案为:(−∞,32).直接由对数式的真数大于0求解x的取值范围得答案.本题考查了函数的定义域及其求法,是基础题.6.【答案】y=−√x,(x>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数f(x)=x2,(x<−2),则y>4.可得x=−√y,所以函数的反函数为:y=−√x,(x>4).故答案为:y=−√x,(x>4).7.【答案】14【解析】解:∵实数a满足log2a=4,∴a=24=16,∴log a2=log162=lg2lg16=lg24lg2=14.故答案为:14.利用对数性质、运算法则、换底公式求解.本题考查对数式求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.8.【答案】−1【解析】解:知m2−m−1=1,则m=2或m=−1.当m=2时,f(x)=x3在(0,+∞)上为增函数,不合题意,舍去;当m=−1时,f(x)=x−3在(0,+∞)上为减函数,满足要求.故答案为−1根据幂函数的定义列出方程求出m的值;将m的值代入f(x)检验函数的单调性.本题考查幂函数的定义:形如y=xα的函数是幂函数;考查幂函数的单调性与α的正负有关.9.【答案】[2,+∞)【解析】【分析】本题主要考查复合函数的单调性.设t=(x−2)2+1,则y=log2t,分别找出函数t和y 的单调区间,利用同增异减即可求出结果.【解答】解:∵函数y=log2[(x−2)2+1],∴函数的定义域为R,设t=(x−2)2+1,则y=log2t,∵t在x∈(−∞,2)上单调递减,在[2,+∞)上单调递增,又∵y=log2t在定义域上单调递增,∴函数y=log2[(x−2)2+1]的单调增区间为[2,+∞).故答案为[2,+∞).10.【答案】{log23}【解析】解:由22x+1−6>0,得2×4x>6,即4x>3,则方程等价为log2(22x+1−6)=x+log2(2x+1)=log22x+log2(2x+1)=log22x(2x+1),即22x+1−6=2x (2x +1),即2(2x )2−6=(2x )2+2x ,即(2x )2−2x −6=0,则(2x +2)(2x −3)=0,则2x −3=0即2x =3,满足4x >3,则x =log 23,即方程的解为x =log 23,故答案为:{log 23}根据对数的运算法则进行化简,指数方程进行求解即可.本题主要考查对数方程的求解,根据对数的运算法则进行转化,结合指数方程,一元二次方程进行转化求解是解决本题的关键.11.【答案】(−∞,−43)∪(0,+∞)【解析】【分析】本题考查二次函数根的分布问题,属于中档题.利用二次函数的性质即可求解.【解答】解:令f(x)=2kx 2−2x −5k −2,因为关于x 的方程2kx 2−2x −5k −2=0的两个实数根一个小于1,另一个大于1, 则函数f(x)有两个不同的零点,且一个小于1,一个大于1.显然k ≠0,且{k <0f(1)=−3k −4>0或{k >0f(1)=−3k −4<0, 解出k <−43或k >0.故答案为(−∞,−43)∪(0,+∞). 12.【答案】[13,1)【解析】【分析】本题主要考查了分段函数,函数的最值,以及对数函数的性质,属于中档题.直接求解即可.【解答】解:∵函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1, ∴函数f(x)存在最大值,则由对数函数的性质可知0< a <1,且, 即,即a ≥13, 所以13≤a <1,故答案为[13,1). 13.【答案】12【解析】由题意函数f(x)的图象过点(1,2),则其反函数的性质一定过点(2,1),又f −1(2x +1)=1,故2x +1=2,解得x =12. 14.【答案】[0,2]【解析】【分析】本题考查根据函数值域求参数范围,属于基础题.判断f(x)的奇偶性,再根据单调性求解即可.【解答】解:函数f(x)=2|x |+x 2是R 上的偶函数,当−2≤x ≤0时,函数递减,所以f(−2)=8,f(0)=1,所以可得0≤m ≤2.故答案为[0,2].15.【答案】(2,6]【解析】解:由题意,{x −2>05−x >0, 解得,2<x <5;ln(x −2)+ln(5−x)=ln(m −x)可化为(x −2)(5−x)=m −x ;故m =−x 2+8x −10=−(x −4)2+6;∵2<x <5,∴2<−(x −4)2+6≤6;故答案为:(2,6].由题意得{x −2>05−x >0,从而解得2<x <5;从而化ln(x −2)+ln(5−x)=ln(m −x)为(x −2)(5−x)=m −x ;从而求解.本题考查了方程的根与函数图象的关系应用,属于基础题.16.【答案】(−∞,√142]【解析】 【分析】本题考查不等式恒成立问题,利用导数求函数的定值 【解答】由对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立, 可得f min (x 1)⩾g max (x 2),又f(x)=lnx −14x +34x −1,易得f ′(x )=−(x−1)(x−3)4x 2,当0<x <1时,f ′(x )<0,故f (x )在(0,1)上递减, 当1<x <2时,f ′(x )>0,故f (x )在(1,2)上递增, 故f min (x )=f (1)=−12.g(x)=−x 2+2bx −4=−(x −b )2+b 2−4,当b ≤1时,g (x )在[1,2]上递减,故g max (x )=g (1)=2b −5≤−12,得b ≤94,又b ≤1,故b ≤1;当1<b <2时,g max (x )=g (b )=b 2−4≤−12,得−√142<b ≤√142,又1<b <2,故1<b ≤√142; 当b ≥2时,g (x )在[1,2]上递增,故g max (x )=g (2)=4b −8≤−12,得b ≤158,又b ≥2,故无解;综上所述,b 的取值范围是 (−∞,√142].17.【答案】(1)证明:设任意x 1<x 2,则f(x 1)−f(x 2)=4x 12+4x 1−4x 22+4x 2=2(4x 1−4x 2)(2+4x 1)(2+4x 2), ∵x 1<x 2,∴4x 1<4x 2,∴4x 1−4x 2<0,又2+4x 1>0,2+4x 2>0.∴f(x 1)−f(x 2)<0, ∴f(x 1)<f(x 2), ∴f(x)在R 上是增函数; (2)对任意t ,f(t)+f(1−t)=4t 2+4t +41−t 2+41−t =4t 2+4t +42⋅4t +4=2+4t 2+4t =1,∴对于任意t ,f(1)+f(1−t)=1,(110)+f(910)=1,f(210)+f(810)=1,∴f(110)+f(210)+f(310)+⋯+f(910)=4+f(510)=92,(3)根据题意可得4x 2+4x·k =2x ,∴k =2+4x 2x,令t =2x ∈(12,1],则k =t +2t ,且在(12,1]单调递减, ∴ k ∈[3,92).【解析】本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力. (1)根据函数单调性定义进行证明;(2)根据指数幂的运算法则进行化简可得f(1)+f(1−t)=1,即可求出f(110)+f(210)+f(310)+⋯+f(910)的值, 方程k ⋅f(x)=2x 可化为:4x 2+4x ·k =2x ,令t =2x ∈(12,1],则可分离出参数k ,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域.18.【答案】解:A ={x|log 12(x 2−5x +6)=−1}={x|x 2−5x +6=2}={1,4}, B ={x|a x−2<(1a )2x−7,a >1}={x|a x−2<a 7−2x }={x|x −2<7−2x}={x|x <3},∴A ∩B ={1}.【解析】解对数方程求得A ,解指数不等式求得B ,再根据两个集合的交集的定义求得A ∩B .本题主要考查对数方程、指数不等式的解法,两个集合的交集的定义,属于中档题.19.【答案】解:(1)由函数图象可知:当5⩽x ⩽8时,Q =−52x +25;当8<x ⩽12时,Q =−x +13;所以得到分段函数Q ={−52x +25,5⩽x ⩽8−x +13,8<x ⩽12; 设月利润与商品每吨定价x 的函数为f (x ),则根据题意得f (x )=Q (x −5)−10, 即f (x )={(−52x +25)(x −5)−10,5⩽x ⩽8−(x −9)2+6,8<x ⩽12={−52(x −152)2+458,5⩽x ⩽8−(x −9)2+6,8<x ⩽12,所以当5⩽x ⩽8时,在x =125,f (x )的取值最大,f (125)=458;当8<x ⩽12时,在x =9,f (x )取值最大,f (9)=6. 所以,当x =9时,f (x )取最大值为6.综上:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.【解析】本题考查了分段函数模型的应用,函数的最值,二次函数的性质,属于中档题. (1)看函数图象知,函数是分段函数,所以分别求两段区间的函数.(2)根据题意得到利润函数式为f (x )=Q (x −5)−10,然后把函数Q (x )展开就又得到利润的分段函数,再分别求两个区间的最大值,然后作比较就可以得到整个函数的最大值,即最大利润.20.【答案】(1)解:根据题意得,x −5>0,解得x >5,即定义域为{x|x >5}(2)解:根据题意可得,{x +2≥01−x ≠0,解得x ≥−2且x ≠1,即定义域为{x|x ≥−2且x ≠1}.故答案为{x|x ≥−2且x ≠1}.【解析】(1)本题主要考查了函数的定义域,属于基础题.(2)本题主要考查了函数的定义域,属于基础题.21.【答案】解:(1)由于二次函数g(x)=ax 2−2ax +1+b 的对称轴为x =1,由题意得:当a >0,{g(2)=1+b =1g(3)=3a +b +1=4,解得{a =1b =0(舍去)当a <0,{g(2)=1+b =4g(3)=3a +b +1=1,解得{a =−1b =3>1∴a =−1,b =3 故g(x)=−x 2+2x +4,f(x)=−x +4x +2 (2)法一:不等式f(2x )−2x −k ≥0,即−2x +42x +2−2x ≥k ,∴k ≤−2⋅2x +42x +2设g(x)=−2⋅2x+42x+2,在相同定义域内减函数加减函数为减函数所以g(x)在[−1,1]内是减,故g(x)min=g(1)=0.∴k≤0,即实数k的取值范围为(−∞,0].法二:不等式f(2x)−2x−k≥0,即−2x+42x+2−2x−k≥0,∴−2x⋅(2x)2+(2−k)⋅2x+4≥0,令t=2x∈[12,2],∴化为g(t)=−2⋅t2+(2−k)⋅t+4≥0恒成立,因为g(t)图像开口向下.故只需{g(12)≥0 g(2)≥0。
川沙中学高二期末数学试卷
2020.01
一.填空题
1.椭圆22
154
x y +=的焦距等于
2.双曲线22
1169
x y -=的渐近线方程是
3.若线性方程组的增广矩阵是122301c c ⎛⎫ ⎪
⎝
⎭,其解为1
1x y =⎧⎨=⎩,则12c c +=4.已知复数2i
2i
z +=,则z 的虚部为
5.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于
6.
若复数3
z =
(a ∈R ),若2
||3z =
,则a =7.已知向量(1,2)a =,(2,2)b =-,(1,)c λ=r ,若c r
∥(2)a b +r r ,则λ=
8.参数方程2
cos 2sin x y θ
θ=⎧⎨=+⎩
(θ为参数,且θ∈R )化为普通方程是9.已知直线0ax by c ++=与圆2
2
:1O x y +=相交于A 、B
两点,且||AB =,OA OB ⋅=
uur uuu r
10.若椭圆22
142
x y +=上一动点(,)M x y 到定点(,0)N m (02m <<)的距离||MN 的最小值为1,则m =11.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点P ,则||||PA PB ⋅的最大值是
12.在平面直角坐标系xOy 中,点O 是坐标原点,点
(2,1)A 、(0,2)B ,点P 在圆22(1)1x y -+=上运动,
若OA xOB yOP =+uur uuu r uuu r
,则2x y +的最小值为
二.选择题
13.关于x 、y 的二元一次方程组50
234x y x y +=⎧⎨+=⎩
,其中行列式x D 为(
)
A.
05
43
- B.
1024
C.
0543
D.
05
43
-14.已知复数113i z =+,23i z =+(i 为虚数单位),在复平面内,12z z -对应的点在(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
15.设M 、N 均在双曲线22
143
x y -=上运动,1F 、2F 分别为双曲线的左、右焦点,则12|2|MF MF MN +-uuur uuuu r uuur 的最
小值为(
)
A. B.4
C. D.
以上都不对
16.已知椭圆C 的焦点为1(1,0)F -、2(1,0)F ,过2F 的直线与C 交于A 、B 两点,若22||2||AF F B =,1||||AB BF =,则C 的方程为(
)
A.2
21
2
x y += B.22
132x y += C.22
143x y += D.22
154
x y +=三.解答题
17.设z 为关于x 的方程20x mx n ++=(,m n ∈R )的虚根,i 为虚数单位.(1)当1i z =-+时,求m 、n 的值;
(2)若1n =,在复平面上,设复数z 所对应的点为P ,复数24i +所对应的点为Q ,试求||PQ 的取值范围.
18.过抛物线24y x =的焦点F 的直线交抛物线于点A 、B (其中点A 在第一象限),交其准线l 于点C ,同时点
F 是AC 的中点.
(1)求直线AB 的倾斜角;(2)求线段AB 的长.
19.直线1y kx =+与双曲线2231x y -=相交于不同的两点A 、B .(1)求实数k 的取值范围;
(2)若以线段AB 为直径的圆经过坐标原点,求实数k 的值.
20.已知两点1(2,0)F -、2(2,0)F ,动点P 在y 轴上的射影是H ,且2
1212
PF PF PH ⋅=uuu r uuu r uuu r .
(1)求动点P 的轨迹方程;
(2)设直线1PF 、2PF 的两个斜率存在,分别记为1k 、2k ,若121
2k k =,求点P 的坐标;
(3)若经过点(1,0)N -的直线l 与动点P 的轨迹有两个交点T 、Q ,当4
||||||7
NT NQ -=
uuu r uuu r 时,求直线l 的方程.
21.已知两点1(F 、2F ,动点(,)M x y 满足12||||4MF MF +=,记M 的轨迹为曲线C ,直线:l y kx =(0k ≠)交曲线C 于P 、Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交曲线C 于点G .(1)求曲线C 的方程,并说明曲线C 是什么曲线;(2)若2k =,求△PQG 的面积;(3)证明:△PQG 为直角三角形.
参考答案
一.填空题1.2 2.34
y x =± 3.6 4.1
-
5.2
6.
7.
12
8.23y x =-+,[1,1]x ∈-9.12
-
10.111.5
12.1
二.选择题13.C
14.B
15.B
16.B
三.解答题
17.(1)2m n ==;(2)1]-+.18.(1)
3π;(2)163
.
19.(1)((U U ;(2)1a =±.
20.(1)22
184
x y +=;
(2)或1)-或(或(1)-;
(3)1)y x =+或1)y x =+.
21.(1)22
142
x y +=,轨迹是以、(为焦点的椭圆;
(2)4027;(3)证明略.。