2013高考数学(理)一轮复习课件:9-6
- 格式:ppt
- 大小:943.50 KB
- 文档页数:33
第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
第9讲函数与方程最新考纲考向预测结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.命题趋势利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根)的存在情况求相关参数的范围,是高考的热点,题型以选择、填空题为主,也可和导数等知识交汇出现解答题,中高档难度.核心素养直观想象、逻辑推理1.函数零点(1)定义:对于函数y=f(x)(x∈D),我们把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系(3)存在性定理2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴(x1,0),(x2,0)(x1,0)无交点的交点零点x1,x2x1无常用结论有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.常见误区1.函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象等综合考虑.1.判断正误(正确的打“√”,错误的打“×”)(1)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(2)只要函数有零点,我们就可以用二分法求出零点的近似值.()(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.()(4)若函数f(x)在(a,b)上连续单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)√(4)√2.(易错题)(多选)下列说法中正确的是()A.函数f(x)=x+1的零点为(-1,0)B.函数f(x)=x+1的零点为-1C.函数f(x)的零点,即函数f(x)的图象与x轴的交点D.函数f(x)的零点,即函数f(x)的图象与x轴的交点的横坐标解析:选BD.根据函数零点的定义,可知f(x)=x+1的零点为-1.函数y =f (x )的零点,即函数y =f (x )的图象与x 轴的交点的横坐标,因此B ,D 正确,A ,C 错误.3.函数f (x )=ln x -2x 的零点所在的大致范围是( ) A .(1,2)B .(2,3)C .⎝⎛⎭⎪⎫1e ,1和(3,4)D .(4,+∞)解析:选B.易知f (x )为增函数,由f (2)=ln 2-1<0,f (3)=ln 3-23>0,得f (2)·f (3)<0.故选B.4.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y =f 解析:依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.答案:35.已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是________.解析:依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1.答案:(-∞,-3)∪(1,+∞)函数零点所在区间的判断(一题多解)函数f(x)=log3x+x-2的零点所在的区间为() A.(0,1)B.(1,2)C.(2,3) D.(3,4)【解析】方法一(定理法):函数f(x)=log3x+x-2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=-1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x-2有唯一零点,且零点在区间(1,2)内.方法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h(x)=-x+2图象交点的横坐标所在的范围.作出两个函数的图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.【答案】 B判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象1.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选 B.因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a -1-b <0,f (0)=1-b >0,由零点存在性定理可知f (x )在区间(-1,0)上存在零点.2.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均有零点 B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点 解析:选D.令f (x )=0得13x =ln x . 作出函数y =13x 和y =ln x 的图象,如图,显然y =f (x )在区间⎝⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点.函数零点个数的判断(一题多解)函数f (x )=⎩⎨⎧x2+x -2,x≤0,-1+ln x ,x>0的零点个数为( )A .3B .2C .1D .0【解析】 方法一(方程法):由f (x )=0,得⎩⎪⎨⎪⎧x≤0,x2+x -2=0或⎩⎪⎨⎪⎧x>0,-1+ln x =0, 解得x =-2或x =e. 因此函数f (x )共有2个零点.方法二(图形法):函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点. 【答案】 B判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)图形法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.已知函数f (x )=⎩⎪⎨⎪⎧x2-2x ,x≤0,1+1x ,x>0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3解析:选C.令f (x )+3x =0,则⎩⎪⎨⎪⎧x≤0,x2-2x +3x =0或⎩⎨⎧x>0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.2.函数f (x )=3x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2D .3解析:选 B.由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点个数为( ) A .0 B .1 C .2D .3解析:选 C.由题意可知f (x )的定义域为(0,+∞).在同一平面直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象.如图所示.由图可知函数f (x )在定义域内的零点个数为2.故选C.函数零点的应用(1)函数f (x )=x 2-ax +1在区间⎝⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞)C .⎣⎢⎡⎭⎪⎫2,52D .⎣⎢⎡⎭⎪⎫2,103(2)已知函数f (x )=⎩⎨⎧ex , x≤0,ln x , x>0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是________.【解析】 (1)由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解,即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解,设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3,则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.(2)函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1.【答案】 (1)D (2)[-1,+∞)根据函数零点的情况求参数有三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.1.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2)解析:选C.由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a<0,4-1-a>0,解得0<a <3,故选C.2.若函数f (x )=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( )A .(0,4)B .(0,+∞)C .(3,4)D .(3,+∞)解析:选C.令g (x )=|2x -4|,其图象如图所示,若f (x )=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4).思想方法系列6 破解嵌套函数的零点问题函数的零点是高考命题的热点,主要涉及判断函数零点的个数或范围,常考查三次函数与复合函数相关零点,与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.类型一 嵌套函数零点个数的判断(2021·沈阳市教学质量监测(一))已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,且当x ∈(0,+∞)时,f (x )=⎩⎨⎧(x -1)2,0<x≤2f (x -2)+1,x>2,则函数g (x )=f 2(x )-f (x )的零点个数为( )A .4B .5C .6D .7【解析】 因为当x ∈(0,2]时,f (x )=(x -1)2,当x >2时,f (x )=f (x -2)+1,所以将f (x )在区间(0,2]上的图象向右平移2个单位长度,同时再向上平移1个单位长度,得到函数f (x )在(2,4]上的图象.同理可得到f (x )在(4,6],(6,8],…上的图象.再由f (x )的图象关于y 轴对称得到f (x )在(-∞,0)上的图象,从而得到f (x )在其定义域内的图象,如图所示:令g (x )=0,得f (x )=0或f (x )=1,由图可知直线y =0与y =1和函数y =f (x )的图象共有6个交点,所以函数g (x )共有6个零点.故选C.【答案】 C破解此类问题的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f (t )=0,求t ,代入t =g (x )求出x 的值或判断图象交点个数. 类型二 求嵌套函数零点中的参数函数f (x )=⎩⎨⎧ln (-x -1),x<-1,2x +1,x≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是________.【解析】 设t =f (x ),令g (x )=f (f (x ))-a =0,则a =f (t ).在同一平面直角坐标系内作y =a ,y =f (t )的图象(如图).当a ≥-1时,y =a 与y =f (t )的图象有两个交点.设交点的横坐标为t 1,t 2(不妨设t 2>t 1),则t 1<-1,t 2≥-1.当t 1<-1时,t 1=f (x )有一解;当t 2≥-1时,t 2=f (x )有两解.综上,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【答案】 [-1,+∞)(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.设定义域为R 的函数f (x )=⎩⎨⎧|lg|x -2||,x≠2,0,x =2.若b <0,则关于x 的方程[f (x )]2+bf (x )=0的不同实数根共有( )A .4个B .5个C .7个D .8个解析:选C.由[f (x )]2+bf (x )=0,得f (x )=0或f (x )=-b .所以方程[f (x )]2+bf (x )=0的根的个数即为函数y =f (x )与函数y =0,y =-b (b <0)的图象的交点个数.作出函数f (x )的图象如图所示,结合图象可知,f (x )=0有3个实数根,f (x )=-b (b <0)有4个实数根,所以[f (x )]2+bf (x )=0共有7个不同的实数根.故选C.[A 级 基础练]1.(2021·河南商丘九校联考)函数f (x )=(x 2-1)·x2-4的零点个数是( ) A .1 B .2 C .3D .4解析:选B.要使函数有意义,则x 2-4≥0,解得x ≥2或x ≤-2.由f (x )=0得x 2-4=0或x 2-1=0(不成立舍去),即x =2或x =-2.所以函数的零点个数为2.故选B.2.(2021·重庆模拟)函数f (x )=⎝ ⎛⎭⎪⎫12x -15x 的零点位于区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.函数f (x )在R 上为减函数,其图象为一条不间断的曲线. 因为f (1)=12-15=310>0,f (2)=14-25=-320<0,所以f (1)·f (2)<0,所以由零点存在性定理可知,函数f (x )的零点位于区间(1,2).故选B.3.(2021·南充市第一次适应性考试)函数f (x )=⎩⎨⎧1-x2,|x|≤1,|x|,|x|>1,若方程f (x )=a 有且只有一个实数根,则实数a 满足( )A .a =1B .a >1C .0≤a <1D .a <0解析:选A.方程f (x )=a 有且只有一个实数根,即直线y =a 与f (x )的图象有且只有一个交点,作出函数f (x )的图象如图所示,当a =1时,直线y =a 与函数f (x )的图象有且只有一个交点,故选A.4.(多选)给出以下四个方程,其中有唯一解的是( ) A .ln x =1-x B .e x =1x C .2-x 2=lg |x |D .cos x =|x |+1解析:选ABD.对于A ,设f (x )=ln x +x -1,易知y =f (x )为增函数,又f (1)=0,故ln x =1-x 有唯一解,符合题意;对于B ,设g (x )=e x -1x ,易知y =g (x )为增函数,又g ⎝ ⎛⎭⎪⎫12=e -2<0,g (1)=e -1>0,由函数零点存在定理可得e x =1x 有唯一解,符合题意;对于C ,设h (x )=x 2+lg x -2,易知y =h (x )为增函数,由h (1)=1-2<0,h (2)=2+lg 2>0,由函数零点存在定理可得h (x )=x 2+lg x -2有唯一零点,又h (x )=2-x 2-lg|x |为偶函数,则2-x 2=lg|x |有两个解,不符合题意;对于D ,因为cos x ∈[-1,1],|x |+1≥1,当且仅当x =0时,cos x =x +1,即cos x =|x |+1有唯一解,符合题意.5.已知函数f (x )=⎩⎪⎨⎪⎧1,x≤0,1x ,x>0,则使方程x +f (x )=m 有解的实数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)解析:选D.当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x =m ,解得m ≥2,即实数m 的取值范围是(-∞,1]∪[2,+∞).故选D.6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-127.函数f (x )=⎩⎨⎧ln x -x2+2x ,x>0,4x +1,x≤0的零点个数是________.解析:当x >0时,作出函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零点;当x ≤0时,由f (x )=0,得x =-14. 综上,f (x )有3个零点. 答案:38.若函数f (x )=⎩⎨⎧2x -a ,x≤0,ln x ,x>0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解:(1)如图所示.(2)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 10.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).[B 级 综合练]11.已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14B .18C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.故选C 项.12.(多选)已知函数f (x )=⎩⎨⎧-x2-2x ,x≤0,|log2x|,x>0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( )A .x 1+x 2=-1B .x 3x 4=1C .1<x 4<2D .0<x 1x 2x 3x 4<1解析:选BCD.由函数f (x )=⎩⎪⎨⎪⎧-x2-2x ,x≤0,|log2x|,x>0,作出其函数图象:由图可知,x 1+x 2=-2,-2<x 1<-1; 当y =1时,|log 2x |=1,有x =12,2,所以12<x 3<1<x 4<2;由f (x 3)=f (x 4),有|log 2x 3|=|log 2x 4|, 即log 2x 3+log 2x 4=0, 所以x 3x 4=1,则x 1x 2x 3x 4=x 1x 2=x 1(-2-x 1)=-(x 1+1)2+1∈(0,1).故选BCD. 13.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1. (1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.解:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧5+m>0,2-2m<0,10-4m>0,解得1<m <52.所以m 的取值范围为⎝ ⎛⎭⎪⎫1,52. 14.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x>0,x +1,x≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)上有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.[C 级 创新练]15.已知a ,b ∈R ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b≤1,b ,a -b>1.设函数f (x )=2x +1⊗(2-4x ),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(0,1)B .(0,2)∪(2,3)C .(0,2)D .(0,3-1)∪(3-1,2)解析:选A.若2x +1-(2-4x )≤1,则(2x )2+2×2x -3≤0,即2x ≤1,解得x ≤0;若2x +1-(2-4x )>1,则(2x )2+2×2x -3>0,解得2x >1或2x <-3(舍去),即x >0.所以f (x )=⎩⎪⎨⎪⎧2x +1,x≤0,2-4x ,x>0.作出函数f (x )的图象和y =c 的图象如图所示.因为y =f (x )-c 有两个零点,所以f (x )=c 有两个解,所以0<c <1.故选A.16.定义:设不等式F (x )<0的解集为M ,若M 中只有唯一整数,则称M 是最优解.若关于x 的不等式|x 2-2x -3|-mx +2<0有最优解,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤23,74B.⎣⎢⎡⎭⎪⎫-72,-2 C.⎣⎢⎡⎦⎥⎤-72,-2∪⎣⎢⎡⎦⎥⎤23,74 D.⎣⎢⎡⎭⎪⎫-72,-2∪⎝⎛⎦⎥⎤23,74 解析:选D.|x 2-2x -3|-mx +2<0可转化为|x 2-2x -3|<mx -2,在同一平面直角坐标系中分别作出函数f (x )=|x 2-2x -3|,g (x )=mx -2的图象,如图所示.易知m =0时不满足题意.当m >0时,要存在唯一的整数x 0,满足f (x 0)<g (x 0), 则⎩⎪⎨⎪⎧f (2)≥g (2),f (3)<g (3),f (4)≥g (4),即⎩⎪⎨⎪⎧3≥2m -2,0<3m -2,5≥4m -2,解得23<m ≤74. 当m <0时,要存在唯一的整数x 0,满足f (x 0)<g (x 0), 则⎩⎪⎨⎪⎧f (0)≥g (0),f (-1)<g (-1),f (-2)≥g (-2),即⎩⎪⎨⎪⎧3≥-2,0<-m -2,5≥-2m -2,解得-72≤m <-2. 综上,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-72,-2∪⎝⎛⎦⎥⎤23,74.故选D.。
9-6空间向量及其运算(理)基础巩固强化1.(2011·芜湖模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x 、y 、z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15[答案] B[解析] ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC , ∴BP ⊥AB ,BP ⊥BC ,BC →=(3,1,4),则⎩⎪⎨⎪⎧x -1+5y +6=0,3x -1+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.2.(2011·日照模拟)若a =(2,-2,-2),b =(2,0,4),则a 与b 的夹角的余弦值为( )A.48585B.6985C .-1515D .0[答案] C[解析] cos 〈a ,b 〉=a ·b |a |·|b |=2×2-823×25=-1515.3.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直[答案] B[解析] AB →=(-3,-3,3),CD →=(1,1,-1), AB →=-3CD →,又BC →=(5,3,-5),AB →∥\'BC →, ∴AB ∥CD .4.(2011·天津模拟)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( )A.627B.637C.647D.657[答案] D[解析] 由于a 、b 、c 三向量共面,所以存在实数m ,n ,使得c =m a +n b , 即有⎩⎪⎨⎪⎧7=2m -n ,5=-m +4n ,λ=3m -2n ,解得m =337,n =177,λ=657.5.(2011·济宁月考)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,AM →=12MC 1→,点N 为B 1B 的中点,则|MN |=( )A.216a B.66a C.156a D.153a [答案] A[解析] MN →=AN →-AM →=AN →-13AC 1→=AB →+BN →-13⎝ ⎛⎭⎪⎫AB →+AD →+AA 1→=23AB →+16AA 1→-13AD →. ∴|MN →|=49|AB →|2+136|AA 1→|2+19|AD →|2=216a . 6.(2012·丽水调研)如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则点E 的坐标为( )A .(1,1,1)B .(1,1,12)C .(1,1,32)D .(1,1,2)[答案] A[解析] 由题意知A (2,0,0),B (2,2,0),设P (0,0,2m )(m >0),则E (1,1,m ),∴AE →=(-1,1,m ),DP →=(0,0,2m ),∴|AE →|=2+m 2,|DP →|=4m 2,AE →·DP →=2m 2,∵cos 〈DP →,AB →〉=33,∴2m 22+m 2·4m 2=33, 解之得m =1,故选A.7.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =______.[答案] 2[解析] ∵a =(1,1,x ),b =(1,2,1),c =(1,1,1),∴(c -a )·(2b )=(0,0,1-x )·(2,4,2)=2(1-x )=-2,解得x =2.8.若a =(3x ,-5,4)与b =(x,2x ,-2)之间夹角为钝角,则x 的取值范围为________.[答案] ⎝ ⎛⎭⎪⎫-23,4[解析] ∵a 与b 的夹角为钝角, ∴a ·b <0,∴3x 2-10x -8<0,∴-23<x <4,又当a 与b 方向相反时,a ·b <0, ∴存在λ<0,使a =λb ,∴(3x ,-5,4)=(λx,2λx ,-2λ),∴⎩⎪⎨⎪⎧3x =λx ,-5=2λx ,4=-2λ,此方程组无解,∴这样的λ不存在,综上知-23<x <4.9.正方体ABCD -A 1B 1C 1D 1的棱长为1,M 、N 分别在直线AA 1和BD 1上运动.当M 、N 在何位置时,|MN |最小,且|MN |的最小值是________.[答案]22[解析] 建立如图所示空间直角坐标系,则A (1,0,0),A 1(1,0,1),B (1,1,0),D 1(0,0,1),设M (1,0,t ),BN →=λBD 1→,则0≤t ≤1,0≤λ≤1,设N (x 0,y 0,z 0),则(x 0-1,y 0-1,z 0)=λ(-1,-1,1),∴⎩⎪⎨⎪⎧x 0-1=-λ,y 0-1=-λ,z 0=λ,∴N (1-λ,1-λ,λ),∴MN →=(-λ,1-λ,λ-t ),|MN →|2=λ2+(1-λ)2+(λ-t )2=2λ2-2λ+1+(λ-t )2=2(λ-12)2+(λ-t )2+12,当且仅当λ=12=t 时,|MN →|2取到最小值12,∴|MN →|的最小值为22.10.(2011·福州模拟)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB →、AC →为边的平行四边形的面积;(2)若|a |=3且a 分别与AB →、AC →垂直,求向量a 的坐标. [解析] AB →=(-2,-1,3),AC →=(1,-3,2). (1)因为cos 〈AB →,AC →〉=AB →·AC→|AB →|·|AC →|=-2+3+64+1+9·1+9+4=12.所以sin 〈AB →,AC →〉=32.所以S =|AB →|·|AC →|sin 〈AB →,AC →〉=7 3. 即以AB →、AC →为边的平行四边形面积为7 3. (2)设a =(x ,y ,z ),由|a |=3,a ⊥AB →,a ⊥AC →,可得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,⇒⎩⎪⎨⎪⎧ x =1,y =1,z =1,或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1.所以a =(1,1,1)或(-1,-1,-1).能力拓展提升11.三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,已知CA =CB =CC 1,AC ⊥BC ,E 、F 分别是A 1C 1、B 1C 1的中点.则AE 与CF 所成角的余弦值等于( )A.45B.1213C.35D.513[答案] A[解析] 以C 为原点,CA →、CB →、CC 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,设AC =1,则A (1,0,0),B 1(0,1,1),C (0,0,0),C 1(0,0,1),A 1(1,0,1),∵E 、F 分别为A 1C 1、B 1C 1的中点,∴E (12,0,1),F (0,12,1),∴AE →=(-12,0,1),CF →=(0,12,1),∴cos 〈AE →,CF →〉=AE →·CF →|AE →|·|CF →|=152×52=45,故选A.12.(2011·天津模拟)正四面体ABCD 的棱长为2,E 、F 分别为BC 、AD 的中点,则EF 的长为( )A .1 B.52 C. 2 D .2[答案] C[解析] EF →=EA →+AF →=-12(AB →+AC →)+12AD →,由条件知|AB →|=|AC →|=|AD →|=2,AB →·AC →=AB →·AD →=AC →·AD →=2,∴|EF →|2=14[|AD →|2+|AB →|2+|AC →|2+2AB →·AC →-2AB →·AD →-2AC →·AD →]=2,∴|EF →|= 2.13.(2012·中山市模拟)如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c [答案] A[解析] BM →=BB 1→+B 1M →=AA 1→+12(B 1A 1→+B 1C 1→)=AA 1→+12(-AB →+AD →)=c -12a +12b ,故选A.14.(2011·泰安模拟)如图,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →等于________.[答案] -23a +12b +12c[解析] MN →=ON →-OM →=12(OB →+OC →)-23OA →=12(b +c )-23a =-23a +12b +12c . [点评] 空间向量的线性表示及运算与平面向量类似,要结合图形灵活运用三角形法则和平行四边形法则.15.(2011·东营期末)若a =(1,5,-1),b =(-2,3,5). (1)若(k a +b )∥(a -3b ),求k ; (2)若(k a +b )⊥(a -3b ),求k .(3)以坐标原点O 为起点作向量OA →=a ,OB →=b ,求O 到直线AB 的距离. [解析] k a +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)∵(k a +b )∥(a -3b ), ∴k -27=5k +3-4=-k +5-16,解得k =-13. (2)∵(k a +b )⊥(a -3b ),∴(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0. 解得k =1063.(3)由条件知A (1,5,-1),B (-2,3,5), ∴AO →=(-1,-5,1),AB →=(-3,-2,6),AO →·AB →=19,|AB →|=7,∴O 到直线AB 的距离d =|AO →·AB →||AB →|=197.16.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE . [解析]由题设知,FA 、AB 、AD 两两互相垂直.如图,以A 为坐标原点,射线AB 为x 轴正半轴,建立如图所示的直角坐标系A -xyz .(1)设AB =a ,BC =b ,BE =c ,则由题设得A (0,0,0),B (a,0,0),C (a ,b,0),D (0,2b,0),E (a,0,c ),G (0,0,c ),H (0,b ,c ),F (0,0,2c ).所以,GH →=(0,b,0),BC →=(0,b,0),于是GH →=BC →.又点G 不在直线BC 上,则GH 綊BC , 所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下: 由题设知,F (0,0,2c ),所以 EF →=(-a,0,c ),CH →=(-a,0,c ),EF →=CH →, 又C ∉EF ,H ∈FD ,故C 、D 、F 、E 四点共面.(3)由AB =BE ,得c =a ,所以CH →=(-a,0,a ),AE →=(a,0,a ), 又AD →=(0,2b,0),因此CH →·AE →=0,CH →·AD →=0, 即CH ⊥AE ,CH ⊥AD ,又AD ∩AE =A ,所以CH ⊥平面ADE .故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .[点评] 如果所给问题中存在两两垂直的直线交于一点,容易将各点的坐标表示出来时,可用向量法求解.如果其所讨论关系不涉及求角,求距离或所求角、距离比较容易找(作)出时,可不用向量法求解,本题解答如下:(1)由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD ,故GH 綊BC ,所以四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点共面.理由如下:由BE 綊12AF ,G 是FA 的中点知,BE 綊GF , 所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面.又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE 綊AG ,及∠BAG =90°知四边形ABEG 是正方形, 故BG ⊥EA .由题设知,FA 、AD 、AB 两两垂直,故AD ⊥平面FABE ,因此EA 是ED 在平面FABE 内的射影,∴BG ⊥ED .又EC ∩EA =E ,所以BG ⊥平面ADE .由(1)知,CH ∥BG ,所以CH ⊥平面ADE .由(2)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .1.(2011·郑州一中月考)已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°[答案] C[解析] a +b =(-1,-2,-3)=-a ,故(a +b )·c =-a ·c =7,得a ·c =-7,而|a |=12+22+32=14,所以cos 〈a ,c 〉=a ·c |a ||c |=-12,〈a ,c 〉=120°. 2.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →的值为( )A .0 B.32 C .1D .无法确定[答案] A[解析] AB →·CD →+AC →·DB →+AD →·BC →=AB →·(BD →-BC →)+(BC →-BA →)·DB →+(BD →-BA →)·BC →=AB →·BD →-AB →·BC →+BC →·DB →-BA →·DB →+BD →·BC →-BA →·BC →=0,故选A.3.已知斜三棱柱ABC -A ′B ′C ′,设AB →=a ,AC →=b ,AA ′→=c ,在面对角线AC ′和棱BC 上分别取点M 、N ,使AM →=kAC ′→,BN →=kBC →(0≤k ≤1),求证:三向量MN →、a 、c 共面.[解析] AN →=AB →+BN →=AB →+kBC →=AB →+k (AC →-AB →)=a +k (b -a )=(1-k )a +k b ,AM →=kAC ′→=k (AA ′→+AC →)=k b +k c , MN →=AN →-AM →=(1-k )a -k c .∵向量a 和c 不共线,∴MN →、a 、c 共面.。