第四章 共轭梯度法
- 格式:ppt
- 大小:407.50 KB
- 文档页数:20
共轭梯度法公式
共轭梯度法是一种用于求解线性方程组的迭代算法。
其主要思想是通过利用前一次迭代的信息来加速当前迭代的速度,从而减少迭代次数和计算量。
共轭梯度法公式包括以下几个步骤:
1. 初始化:设初始解为x0,残量b0为Ax0-b,共轭方向d0=b0。
2. 迭代求解:对于第k次迭代,计算步长αk,使得xk+1=xk+αkd,其中d是共轭方向,满足dTkAd=0,即d是A的共轭向量。
3. 更新残量:计算新的残量bk+1=Axk+1-b,如果bk+1小于预设精度,则停止迭代。
4. 更新共轭方向:计算新的共轭方向dk+1=bk+1+βkdk,其中βk=(bk+1)Tbk+1/(bk)Tbk,保证dk+1与之前的共轭方向都是A的共轭向量。
5. 重复迭代,直到满足收敛条件,返回最终解xk+1。
共轭梯度法是一种高效的求解大型线性方程组的方法,尤其适用于稀疏矩阵和对称正定矩阵。
公式简单易懂,容易实现,且具有较快的收敛速度。
- 1 -。
一、共轭梯度法共轭梯度法(Conjugate Gradient)是共轭方向法的一种,因为在该方向法中每一个共轭向量都是依靠赖于迭代点处的负梯度而构造出来的,所以称为共轭梯度法。
由于此法最先由Fletcher和Reeves (1964)提出了解非线性最优化问题的,因而又称为FR 共轭梯度法。
由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用于实际问题中。
共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向d仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便,效果好。
二、共轭梯度法的原理设有目标函数f(X)=1/2X T HX+b T X+c 式1 式中,H作为f(X)的二阶导数矩阵,b为常数矢量,b=[b1,b2,b3,...b n]T 在第k次迭代计算中,从点X(k)出发,沿负梯度方向作一维搜索,得S(K)=-∆f(X(k))式2 X(k+1)=X(k)+ɑ(k)S(k) 式3在式中,ɑ(k)为最优步长。
设与S(k)共轭的下一个方向S(k+1)由点S(k)和点X(k+1)负梯度的线性组合构,即S (k+1)=-∆f (X (k+1))+β(k)S (k) 式4 根据共轭的条件有[S (k)]T ∆2f (X (k))S (k+1)=0 式5 把式2和式4带入式5,得-[∆f(X (k))]T ∆2f (X (k))[-∆f (X (k+1))+β(k)S (k) ]=0 式6 对于式1,则在点X (k)和点X (k+1)的梯度可写为∆f(X (k))=HX (k)+b 式7 ∆f (X (k+1))=HX (k+1)+b 式8 把上面两式相减并将式3代入得ɑ(k)H S (k)=∆f (X (k+1))-∆f(X (k)) 式9 将式4和式9两边分别相乘,并代入式5得-[∆f (X (k+1))+β(k)∆f(X (k))]T [∆f (X (k+1))-∆f(X (k)]=0 式10 将式10展开,并注意到相邻两点梯度间的正交关系,整理后得 β(k )=22||))((||||))1((||k X f k X f ∆+∆ 式11把式11代入式4和式3,得 S (k+1)=-∆f (X (k))+β(k )S (k )X (k+1)=X (k )+ɑ(k )S (k )由上可见,只要利用相邻两点的梯度就可以构造一个共轭方向。
4.3共轭梯度法4.3.1共轭方向法定义4.3.1设A 是n ×n 对称正定矩阵,d 1,d 2,是n 维非零矢量,如果d 1T Ad 2=0则称d 1和d 2是A-共轭的,简称共轭的设d 1,d 2,...,d m 是R n 中一组非零向量,如果d i T Ad j =0,i ≠j ,j,i=1,2,...,k则d 1,d 2,...,d m 是A-共轭的,简称共轭的,也称它们是一组A 共个方向定理4.3.3设x 0∈Rn 是任意初始点,对于极小化二次函数min f(x)=1/2 x T Ax-b T x 共轭方向法至多经n 步精确线性搜索终止;且每一x i+1都是f(x)在x 0和方向d 1,d 2,....,di, 所张成的线性流形{|x x=x 0+,0j i j j da ∑=j a ∀}中的极小点。
4.3.4共轭梯度法共轭梯度法是一个典型的共轭方向法,他的每一个搜索方向是相互共轭的,而这些搜索方向d k 仅仅是负梯度方向-g k 与上一次迭代的搜索方向d k-1组合。
因此,存储量小,计算方便。
定理4.3.6对于正定二次函数,采用精确线性搜索的共轭梯度法在m ≦n 步后终止,且对1≦i≦n成立下列关系式:d i T Ad j=0,j=0,1,...,i-1,g i T Ag j=0,j=0,1-1,d i T Ag i= - g i T g I[g0,g1,...,g i]=[g0,Ag0,,...,A i g0][d0,d1,...,d i]=[g0,Ag0,,...,A i g0]其中[g0,g1,...,g i]和[d0,d1,...,d i]分别表示g0,g1,...,g i及d0,d1,...,d i张成的子空间,[g0,Ag0,,...,A i g0]表示g0的i阶Krylov子空间。
定理4.3.9(FR共轭梯度法的总体收敛性定理)假定f R n R在有界水平集L={x R n|f(x)≦f(x0)}上连续可微,且有下界,那么采用精确线性搜索的F-R共轭梯度法产生的序列{x k}至少有一个聚点是驻点,即1当{x k}是有穷数列时,其最后一个点是f(x)的驻点;2当{x k}是无穷数列时,它必有聚点,且任一聚点都是f(x)的驻点。
共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
共轭梯度法
数学上,共轭梯度法是求解特定线性系统的数值解的方法,其中那些矩阵为对称和正定。
共轭梯度法是一个迭代方法,所以它适用于稀疏矩阵系统,因为这些系统对于象乔莱斯基分解这样的直接方法太大了。
这种系统在数值求解偏微分方程时相当常见。
共轭梯度法也可以用于求解无约束的最优化问题。
双共轭梯度法提供了一种处理非对称矩阵情况的推广。
方法的表述
设我们要求解下列线性系统
Ax = b,,
其中n-×-n矩阵A是对称的(也即,A T = A),正定的(也即,x T Ax > 0对于所有非0向量x属于R n),并且是实系数的。
将系统的唯一解记作x*。
最后算法
经过一些简化,可以得到下列求解Ax = b的算法,其中A是实对称正定矩阵。
x
:= 0
k := 0
r
:= b
repeat until r k is "sufficiently small":
k := k + 1
if k = 1
p
:= r0
1
else
end if
x
:= x k-1 + αk p k k
r
:= r k-1 - αk A p k k
end repeat
结果为x k。