优化设计-梯度法和共轭梯度法
- 格式:pdf
- 大小:507.71 KB
- 文档页数:17
优化设计梯度法和共轭梯度法梯度法和共轭梯度法是常用的数值优化算法,用于求解非线性优化问题。
它们在工程领域中的应用广泛,能够有效解决很多实际问题。
本文将对优化设计梯度法和共轭梯度法进行介绍,并比较它们的优劣。
1. 优化设计梯度法优化设计梯度法是一种通过调整设计变量来最小化给定目标函数的方法。
它基于梯度下降的思想,每一步都会更新设计变量的取值,使得目标函数在设计变量的邻域内最小化。
优化设计梯度法的具体步骤如下:1)初始化设计变量;2)计算目标函数在当前设计变量取值下的梯度;3)根据梯度方向和步长因子更新设计变量;4)重复步骤2和步骤3,直到满足收敛条件。
优化设计梯度法的优点是简单易用,容易实现。
但是它也存在一些问题,比如容易陷入局部最小值,收敛速度慢等。
2. 共轭梯度法共轭梯度法是一种通过迭代算法求解线性方程组的方法,也可以用于非线性优化问题。
它的特点是每一步迭代都要寻找一个新的搜索方向,使得每一次迭代都能够有效利用之前的搜索历史。
共轭梯度法的具体步骤如下:1)初始化设计变量和搜索方向;2)计算目标函数在当前设计变量取值下的梯度;3)根据搜索方向和步长因子更新设计变量;4)计算新的搜索方向,使其与上一次的搜索方向共轭;5)重复步骤2到步骤4,直到满足收敛条件。
共轭梯度法的优点是能够在较少的迭代次数内收敛到最优解,且具有较好的数值稳定性。
然而,共轭梯度法在非精确线搜索时有一定局限性,并且对于非二次凸函数可能陷入非全局最小值。
3. 优化设计梯度法与共轭梯度法的比较在实际应用中,选择合适的优化算法对于问题的解决和效率的提高至关重要。
下面对优化设计梯度法和共轭梯度法进行比较。
(1)收敛速度:在一般情况下,共轭梯度法比优化设计梯度法收敛速度更快。
这是由于共轭梯度法在搜索方向上的选择更加优化。
(2)算法复杂度:优化设计梯度法通常较为简单,易于实现,而共轭梯度法则相对复杂一些,需要额外计算共轭方向。
(3)全局最优解:共轭梯度法在处理非二次凸函数时可能陷入局部最小值,而优化设计梯度法的表现相对较差。
Krylov 子空间、优化问题与共轭梯度法自动化 富晓鹏工程实践中经常需要求解大型线性系统KU=F 。
在很多情况下矩阵K 是非常稀疏的,比如来自偏微分方程的离散化等,此时矩阵中每行仅有较少的非零元素。
面临这样的问题,我们首先面对的问题是,应该采用直接消元法还是迭代方法。
对前者来说,为充分利用系数特性,节点重编号是重要的;而对后者来说,适当的预处理是关键。
本文将重点放在后一类方法中的一种进行介绍与分析,即共轭梯度法。
共轭梯度法适用于矩阵K 为对称阵的情况,算法本身简洁高效,且与一些其他的数学理论、概念相紧密联系,本文分析了共轭梯度法与Krylov 子空间,以及优化问题之间隐含的联系,并简要给出算法框架。
1. 线性方程组迭代解法与Krylov 子空间我们考虑迭代法求解线性方程组Ax=b 。
假定未采用预处理矩阵P ,或P 矩阵已经隐含在A 与b 中。
迭代法求解格式如下:1()k k P x P A x b +⋅=-⋅+ (1)为说明问题,我们考虑简单的迭代格式P=I ,并且x 1=b 。
则迭代的最初几步为:2()2x I A b b b Ab =-+=- (2)232()33x I A x b b Ab A b =-+=-+ (3) …由上面几个式子可得,以上迭代格式第j 步的解x j 是b ,Ab ,…,A j -1b 的线性组合。
当A 矩阵稀疏时,这些向量可以采用矩阵向量乘法的稀疏技巧很快得到。
以上发现自然与Krylov 子空间的概念相联系起来。
Krylov 矩阵: K j = [b Ab A 2b … A j -1b]Krylov 子空间:K j = b ,Ab ,…,A j -1b 的所有线性组合Krylov 命名了向量b ,Ab ,…,A j -1b 的全部线性组合构成的子空间,并认为在这一子空间中,有比上例中特定元素更与线性方程组的解相接近的元素。
共轭梯度法就是在这一子空间中,每一步迭代都依照某种标准寻求最优元素的线性方程组解法。
16梯度法和共轭梯度法基本原理和特点?梯度法又称最速下降法,基本原理是在迭代点附近采用使目标函数值下降最快的负梯度方向作为搜索方向,求目标函数的极小值,特点;迭代计算简单,只需求一阶偏导数,所占的存储单元少,对初始点的要求不高,在接近极小点位置时收敛速度很慢,共轭的特点为在梯度法靠近极值点收敛速度放慢时,它可以构造共轭方向使其收敛速度加快,迭代计算比较简单,效果好,在每一步迭代过程中都要构造共轭的、方向,比较繁琐。
17迭代终止准则有哪三种?1)当设计变量在相邻两点之间的移动距离充分小时,可用相邻两点的矢量差的模作为终止的判据,2)当相邻两点目标函数值之差达到充分小时,可用两次迭代的目标函数之差作为终止判据。
3)当迭代点逼近极值点时,目标函数在该点的梯度已达到充分小时,可用梯度的模作为终止判据。
18.无约束设计法,1)powell法,它是在下降迭代过运算中只需计算和比较目标函数值的大小,不需计算偏导数的方法,是较好的一种直接搜索算法。
2)梯度法,又称最速下降法,它是采用使目标函数值下降最快的负梯度方向作为搜索方向来求目标函数的极小值。
3)共轭梯度法,又称FR法,是利用目标函数的梯度确定共轭方向,使得计算简便而效果好,只需利用相邻两点的梯度就可以构造一个共轭方向,这种方式产生共轭方向并进行迭代的算法称为共轭梯度法。
4)变尺度法,又称DFP法,为了得到既有快速收敛的性质,又能避免计算二阶导数矩阵及逆矩阵,减少计算工作量。
迭代公式X=X+aS,19有约束设计法?1)复合形法,在可行域中选取k个设计点作为初始复合形的顶点,然后比较复合形个各项目标函数值的大小,其中目标函数值最大的点为坏点,以坏点之外其余各点的中心为映射中心,寻坏点的映射点,以映射点替换坏点,并与原复合型除坏点之外其余各点构成就k 顶点的新的复合型,这样反复迭代直到达到精度找到最优点,2)简约梯度法,用来解决线性约束非线性规划问题。
3)罚函数法,是把一个有约束的问题转化为一系列无约束的问题求解,逐渐逼近最优值。
共轭梯度法详细解读
嘿,朋友们!今天咱就来好好唠唠共轭梯度法。
你想想啊,咱平常解决问题就像走迷宫似的,有时候会在里面转来转去找不到出路,而共轭梯度法呀,就像是在迷宫里给咱指了一条明路!比如说你想找一条最快从山这头到那头的路,共轭梯度法就能帮上大忙啦!
它可不是随随便便就出现的哦,那可是数学家们绞尽脑汁研究出来的宝贝呢!就好比一个超级英雄,专门来打救我们这些在复杂问题里苦苦挣扎的人。
在实际应用里,它可厉害着呢!比如说在工程计算中,要设计一个最完美的结构,共轭梯度法就能迅速算出最优解。
哇塞,这不就相当于有个超厉害的军师在帮咱出谋划策嘛!
你再想想,我们日常生活中很多事情都可以类比成用共轭梯度法来解决问题呀。
比如说你要规划一次旅行,怎么安排路线最合理,不就是在找那个最优的旅行路径嘛,这时候共轭梯度法的思路就能派上用场啦!它就像一个隐藏在幕后的高手,默默地为我们排忧解难。
而且哦,一旦你掌握了它,那种感觉就像是你突然掌握了一种绝世武功,能在各种难题面前游刃有余。
这可太酷了吧!
哎呀呀,共轭梯度法真的是太神奇、太有用啦!大家可一定要好好去了
解它、运用它呀,你绝对会被它的魅力折服的!相信我,没错的!。
共轭梯度法在优化问题中的应用共轭梯度法是一种高效的优化算法,在许多优化问题中都得到了广泛的应用。
它是一种迭代方法,用于解决最小化二次函数的优化问题。
在本文中,我将介绍共轭梯度法的原理和算法,并探讨它在优化问题中的应用。
一、共轭梯度法的原理共轭梯度法的核心思想是通过迭代的方式,找到一个与之前迭代步骤方向相互垂直的搜索方向,以加快收敛速度。
在每一次迭代中,共轭梯度法根据当前的搜索方向更新搜索点,直到找到最优解或达到预定的收敛标准。
具体来说,共轭梯度法从一个初始搜索点开始,计算对应的梯度,并沿着负梯度方向进行搜索。
通过一定的方法找到一个与之前搜索方向相互垂直的新搜索方向,并以一定步长更新搜索点。
迭代过程将重复进行,直到满足收敛标准或达到最大迭代次数。
二、共轭梯度法的算法共轭梯度法的算法包括以下几个步骤:1. 初始化搜索点x0和梯度g0,设置迭代次数k=0。
2. 计算当前搜索方向d_k=-g_k(k为当前迭代次数)。
3. 通过一维搜索方法找到最佳步长α_k。
4. 更新搜索点x_k+1 = x_k + α_k * d_k。
5. 计算更新后的梯度g_k+1。
6. 判断是否满足收敛标准,若满足则算法停止,否则转到步骤7。
7. 计算新的搜索方向β_k+1。
8. 将迭代次数k更新为k+1,转到步骤3。
这个算法保证了每一次迭代中的搜索方向都是彼此相互垂直的,从而加快了收敛速度。
三、共轭梯度法的应用共轭梯度法在优化问题中有广泛的应用,特别是在二次规划、线性规划和非线性规划等领域。
在二次规划问题中,共轭梯度法可以高效地求解线性系统Ax=b,其中A是一个对称正定的矩阵。
由于共轭梯度法的特性,它只需要进行n 次迭代,其中n是问题的维度,就能得到精确的解。
这使得共轭梯度法在大规模线性系统求解中具有重要的应用价值。
在线性规划问题中,共轭梯度法可以用于求解带有线性约束的最小二乘问题。
共轭梯度法通过将线性约束转化为一系列的正交子空间,从而在求解最小二乘问题时能够更快地收敛。
梯度下降法、牛顿迭代法、共轭梯度法(参见:神经网络->PGM-ANN-2009-C09性能优化)优化的目的是求出目标函数的最大值点或者最小值点,这里讨论的是迭代的方法梯度下降法首先,给定一个初始猜测值 ,然后按照等式k k k k ΡαΧ+=X +1 (1)或kk k k k P =X -X =∆X +α)(1 (2)逐步修改猜测。
这里向量 kP 代表一个搜索方向,一个大于零的纯量kα 为学习速度,它确定了学习步长。
当用 k k k k ΡαΧ+=X +1 进行最优点迭代时,函数应该在每次迭代时都减小,即)()(1k k F F X <X +考虑(3)的)(X F 在k X 的一阶泰勒级数展开:kTk k k k k g F F F ∆X +X ≈∆X +X =X +)()()(1(4)其中,Tk g 为在旧猜测值k X 处的梯度kF g k X =X X ∇≡)( (5) 要使)()(1k k F F X <X +只需要(4)中右端第二项小于0,即<P =∆X k T kk k T k g g α (6)选择较小的正数k α。
这就隐含0<k Tk P g 。
满足0<k Tk P g 的任意向量成为一个下降方向。
如果沿着此方向取足够小步长,函数一定递减。
并且,最速下降的情况发生在k T k P g 最小的时候,容易知道,当k k -g P =时k Tk P g 最小,此时,方向向量与梯度方向相反。
在(1)式中,令k k -g P =,则有k k k k g αΧ-=X +1 (7)对于式(7)中学习速率k α的选取通常有两种方法:一种是选择固定的学习速率k α,另一种方法是使基于学习速率k α的性能指数或目标函数)(1k +X F 在每次迭代中最小化,即沿着梯度反方向实现最小化:k k k k g X X α-=+1。
注意:1、对于较小的学习速度最速下降轨迹的路径总是与轮廓线正交,这是因为梯度与轮廓线总是正交的。
共轭梯度法(Conjugate Gradient Method)总结1. 引言共轭梯度法是一种用于求解线性方程组或优化问题的迭代算法。
它在大规模问题上具有较高的效率和收敛速度,并且不需要存储完整的矩阵。
共轭梯度法最早由Hestenes和Stiefel于1952年提出,后来经过多次改进和推广,成为求解稀疏线性方程组和优化问题的重要工具。
2. 基本原理共轭梯度法的基本思想是利用共轭方向的性质,通过一系列迭代来逼近最优解。
对于一个对称正定矩阵A和一个向量b,我们希望找到一个向量x使得Ax=b成立。
通过引入残差r=b-Ax,我们可以将问题转化为求解残差最小化的问题。
定义两个向量d和g满足以下关系:d_i^TAd_j=0 (i≠j),则称d_i与d_j是关于矩阵A共轭的。
在每次迭代中,选择与之前所有搜索方向都共轭的搜索方向,并沿着该方向进行搜索。
3. 算法流程步骤1:初始化给定初始解x_0,计算初始残差r_0=b-Ax_0,并令搜索方向d_0等于r_0。
步骤2:迭代重复以下步骤直到满足收敛条件: - 计算当前搜索方向的梯度g_k=Ad_k。
- 计算步长alpha_k=r_k Tr_k/(d_k TAd_k)。
- 更新解x_{k+1}=x_k+alpha_k d_k。
- 更新残差r_{k+1}=r_k-alpha_k Ad_k。
- 计算新的搜索方向d_{k+1}=r_{k+1}+beta_{k+1}d_k,其中beta_{k+1}=r_{k+1}^T r_{k+1}/(r_k^T*r_k)。
步骤3:输出结果返回近似解x。
4. 关键观点和发现共轭梯度法具有以下几个关键观点和发现: - 共轭方向的选择:在每次迭代中,选择与之前所有搜索方向都共轭的搜索方向。
这样可以保证每次迭代都能沿着一个新的、不再相关的搜索方向前进,从而避免了无谓的震荡和重复计算。
- 最优解性质:对于一个n维问题,共轭梯度法最多需要n步就可以达到最优解,即解决了一个n维线性方程组的问题。
共轭梯度法算法
共轭梯度法算法是一种优化算法,用于解决大型线性方程组的求解问题。
它的核心思想是在每一步迭代中,将搜索方向沿着前一次迭代的残差与当前梯度的线性组合方向上进行,以达到更快的收敛速度。
共轭梯度法算法可以用于求解矩阵方程 Ax=b,其中 A 是一个对称正定矩阵,b 是一个列向量。
在求解过程中,需要先初始化解向量 x0 和残差向量 r0,然后通过不断迭代更新解向量和残差向量,直到满足一定的收敛条件。
共轭梯度法算法的优点是可以在迭代次数较少的情况下得到较好的解,而且不需要存储大型矩阵,可以节省内存空间。
它常被应用于求解优化问题、信号处理和机器学习等领域。
- 1 -。
共轭梯度法在优化问题中的应用
共轭梯度法是一种迭代优化算法,主要应用于解决大规模线性方程组和最小化二次函数的优化问题。
具体应用包括以下几个方面:
1. 线性方程组求解:共轭梯度法可以用于求解大规模线性方程组的解。
对于线性方程 Ax = b,共轭梯度法通过迭代的方式寻找一个最优解x,使得Ax与b之间的误差最小化。
2. 凸优化问题:共轭梯度法可以用于解决凸优化问题,特别是当目标函数为二次函数时。
对于目标函数 f(x) = (1/2)x^TQx - b^Tx + c,其中Q为对称正定矩阵,b为向量,c为常数,共轭梯度法可以通过迭代的方式快速找到最优解。
3. 非线性最小化:共轭梯度法可以用于非线性最小化问题。
通过将非线性最小化问题转化为等价的线性方程组求解问题,然后使用共轭梯度法进行求解。
4. 图像处理:共轭梯度法可以应用于图像处理中的一些问题,如图像恢复、图像去噪、图像平滑等。
通过将图像处理问题转化为优化问题,利用共轭梯度法进行求解。
总之,共轭梯度法在优化问题中的应用非常广泛,特别适用于大规模问题和二次函数优化问题。
它的优点包括收敛速度快、内存消耗低等。
《机械优化设计》习题与答案机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、⽬标函数之后,优化设计问题就可以表⽰成⼀般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x →且满⾜约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:⼆元函数f(x 1,x 2)在x 0点处的⽅向导数的表达式可以改写成下⾯的形式:??=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ??=????=?21]21[)0(,则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度⽅向是函数值变化最快⽅向,梯度模是函数变化率的最⼤值。
(2)梯度与切线⽅向d 垂直,从⽽推得梯度⽅向为等值⾯的法线⽅向。
梯度)0(x f ?⽅向为函数变化率最⼤⽅向,也就是最速上升⽅向。
负梯度-)0(x f ?⽅向为函数变化率最⼩⽅向,即最速下降⽅向。
2-2.求⼆元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最⼤的⽅向和数值。
解:由于函数变化率最⼤的⽅向就是梯度的⽅向,这⾥⽤单位向量p表⽰,函数变化率最⼤和数值时梯度的模)0(x f ?。
求f (x1,x2)在x0点处的梯度⽅向和数值,计算如下:()-=??+-==?120122214210x x x x f x f x f 2221)0(??+ =x f x f x f =5-=??????-=??=5152512)0()0(x f x f p ?2-3.试求⽬标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降⽅向,并求沿着该⽅向移动⼀个单位长度后新点的⽬标函数值。
共轭梯度最优化方法
共轭梯度法呢,它主要是用来解决最优化问题的。
想象一下,你在一个超级复杂的迷宫里找宝藏,这个宝藏就是那个最优解。
普通的方法可能就像没头苍蝇乱撞,但是共轭梯度法就像是有个小机灵鬼在给你指路。
它有个很厉害的地方,就是利用了之前搜索的信息。
就好比你前面走过的路不是白走的,它会根据之前的经验来决定下一步往哪走。
比如说,你第一次往左边走了一段,发现不太对,那这个方法就会把这个信息记下来,下一次就不会再傻乎乎地一直往左边走啦。
在数学上呢,它是基于一些向量之间的特殊关系,也就是共轭关系。
这就像是一群小伙伴,他们之间有着某种默契,互相配合来找到那个最优解。
共轭梯度法的优点可不少呢。
它比一些传统的最优化方法要快很多。
就像跑步比赛,别人还在慢悠悠地起步,它已经像小火箭一样冲出去了。
而且,它不需要太多的存储空间,就像一个很会整理东西的小能手,不会把空间弄得乱七八糟。
不过呢,它也不是完美无缺的。
有时候在一些特别复杂的情况下,它可能也会有点小迷糊。
但是总体来说,在很多领域都超级有用。
还有在机器学习里,要调整那些复杂的模型参数,让模型预测得更准。
共轭梯度法也能来帮忙,它就像一个小导师,告诉那些参数应该怎么调整才能让整个模型变得更优秀。