1 一、矩阵秩的概念
- 格式:ppt
- 大小:552.50 KB
- 文档页数:18
第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。
矩阵秩的证明方法及技巧矩阵的秩是描述矩阵行(列)向量空间维数的重要指标,广泛应用在线性代数和矩阵理论中。
下面将介绍矩阵秩的定义、性质以及一些证明方法和技巧。
一、矩阵秩的定义和性质:1. 矩阵秩的定义:对于任意一个m×n矩阵A,它的秩(rank)定义为其所有非零行(列)向量的极大无关组的向量个数,即r(A) = r(A^T),其中A^T为A的转置矩阵。
2.矩阵秩的基本性质:a) r(A) ≤ min(m, n),即矩阵秩r(A)不会超过矩阵的行数m和列数n的较小值。
b)如果r(A)=m,即矩阵的秩与行数相等,则称矩阵为满秩矩阵。
c)两个矩阵的行等价(列等价),它们的秩相等。
d)对于一个n阶方阵A,如果A可逆,则r(A)=n,即满秩方阵。
e)若A和B为同型矩阵,则r(A+B)≤r(A)+r(B)。
二、矩阵秩的证明方法和技巧:1.行变换法证明矩阵秩:行变换可以通过初等行变换来实现,包括交换两行、行乘以一个非零常数、行加上另一行的k倍。
行变换不改变矩阵的秩,因此可以通过行变换来找到矩阵的极大无关组,从而确定矩阵的秩。
2.列空间法证明矩阵秩:列空间是由矩阵的所有列向量张成的向量空间,可以通过检查矩阵的列向量组是否线性无关来确定矩阵的秩。
如果列向量组线性无关,则矩阵的秩等于列向量组的向量个数;否则,删除线性相关的列向量,再次检查新的列向量组是否线性无关,直至找到一个线性无关的列向量组为止。
3.奇异值分解法证明矩阵秩:对于任意一个m×n矩阵A,可以进行奇异值分解为A=UΣV^T,其中U和V为正交矩阵,Σ为对角矩阵,其对角元素为矩阵A的奇异值。
矩阵A的秩等于非零奇异值的个数。
4.行列式法证明矩阵秩:矩阵A的秩等于其最高阶非零子式的阶数。
通过计算矩阵A的各个阶数的子式的行列式是否为零,可以确定矩阵的秩。
5.矩阵的分解法证明矩阵秩:常用的矩阵分解方法包括LU分解、QR分解和SVD分解等。
通过对矩阵进行适当的分解,可以得到新的矩阵形式,从而更容易确定矩阵的秩。
矩阵秩的概念矩阵秩的概念矩阵是线性代数中的重要概念,它是由若干行和列组成的矩形数组。
在矩阵中,每个元素都可以用一个行列坐标来表示。
而矩阵秩则是描述了一个矩阵所包含的信息量大小的指标。
一、定义在数学中,一个m×n(m行n列)的矩阵A的秩,也称为矩阵A的维数或者等级,通常记作rank(A)。
它表示该矩阵所包含信息量大小的指标。
简单来说,就是该矩阵所包含非零行或非零列的最大个数。
二、求解方法1. 高斯消元法高斯消元法就是将一个增广矩阵通过初等变换化为行最简形式,然后统计出非零行(列)个数即可得到该矩阵的秩。
2. 初等变换法初等变换法就是将一个矩阵通过初等变换化为行最简形式,然后统计出非零行(列)个数即可得到该矩阵的秩。
3. 行列式法对于一个n*n方阵A,在进行初等变换时如果其主对角线上有0,则可以通过行列式法将其转化为一个上三角矩阵。
此时,该矩阵的秩就等于其主对角线上非零元素的个数。
三、性质1. 对于任意矩阵A,rank(A) <= min(m,n),其中m和n分别表示A 的行数和列数。
2. 对于任意矩阵A,rank(A) = rank(A^T),其中A^T表示A的转置矩阵。
3. 对于任意矩阵A和B,有rank(AB) <= min(rank(A), rank(B))。
4. 对于任意矩阵A和B,有rank(A+B) <= rank(A) + rank(B)。
四、应用1. 线性方程组求解对于一个线性方程组Ax=b,如果rank(A)=rank([A|b]),则该方程组有唯一解;如果rank(A)<rank([A|b]),则该方程组无解;如果rank(A)<n且rank([A|b])=n,则该方程组有无限多解。
2. 线性变换求解对于一个线性变换T:V→W(其中V和W分别表示两个向量空间),其维数为dim(V)*dim(W),而T的秩则是指T所映射出来的向量空间的维数。