矩阵的秩的定义
- 格式:docx
- 大小:3.30 KB
- 文档页数:2
第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。
例如 共有个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k nk m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果求 a . 解或 例3 则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。
矩阵的秩的求法
矩阵秩是用来衡量矩阵行(列)列向量空间的维数,它也是描述矩阵线性变换能力的量,是矩阵分解的重要指标,它的求法有多种,主要有下面几种:
一、基本定义法:
秩(Rank)是一个矩阵中非零的最大线性无关列数,也就是说矩阵有n列向量,如果它们的线性组合能够得到任意的列向量,就称这n列向量线性无关,它们之间构成一种基,n就是该矩阵的秩。
二、行列式法
用行列式法求解矩阵秩,是把矩阵的秩定义为矩阵的行列式值的非零因子的个数,例如矩阵的行列式值是 = 31 + 42 + 53,那么矩阵的秩便是三个非零因子的个数。
三、矩阵初等行变换法
采用该法求解矩阵秩的目的是要把原矩阵变换为一个列向量极
简行阶梯形矩阵,然后该矩阵的秩就等于非零行的数量。
举例说明矩阵的秩
矩阵是数学中最重要的一个概念之一,它由行向量和列向量构成,是用来表示线性方程组的一种数据结构。
矩阵的秩是用来描述矩阵中有效系数个数及系数约束数目的一个重要概念,它可以确定矩阵的解的存在或唯一性。
矩阵的秩可以归纳为两个方面:秩的定义和秩的求解。
首先,秩的定义可以分为三类,分别是定义秩,最大满秩和最小秩。
定义秩就是将矩阵表示成由其最少行数全称式等价的式子,而未小满秩是指能使矩阵表达式被压缩至指定的行数和列数的最大值;最小秩则是表达式中系数约束的最小值。
这三种秩的定义在其实质上涉及到的因素相似,但在细节上有很大的差异。
接下来,对于矩阵的秩的求解则是采用消元法和行列式法。
消元法是以零行为基础,去掉所有的零行,然后按照一定的规律去掉行,从而求得矩阵的定义秩;而行列式法则是计算一个特定的行列式值,比如3阶矩阵的行列式值是一个数,用来表示它的秩,通常会以 3 阶矩阵为例来说明,当这个行列式值不为0时,它的秩就是3。
总的来说,矩阵的秩是用来描述矩阵的条件,以此确定矩阵的解的存在或唯一性,概括起来就是在确定矩阵解的情况下,确定矩阵的系数个数和约束数目,计算矩阵秩也就变得尤为重要,使得秩也成为矩阵概念的重要内容。
矩阵的秩的定义
矩阵的秩是线性代数中一个重要的概念,它描述了矩阵中线性无关的行或列的个数。
矩阵秩的定义可以通过矩阵的行阶梯形式来描述,即将矩阵化简为上三角形式时,非零行的个数就是矩阵的秩。
矩阵的秩在很多应用中都扮演着重要的角色。
首先,在线性方程组的求解中,矩阵的秩可以用来判断方程组的解的情况。
当矩阵的秩等于方程组的未知数个数时,方程组有唯一解;当矩阵的秩小于方程组的未知数个数时,方程组有无穷多解;当矩阵的秩小于方程组的未知数个数时,方程组无解。
在线性映射和线性变换中,矩阵的秩也起着重要的作用。
对于一个线性映射或线性变换,矩阵的秩等于其定义域的维数和值域的维数中的较小值。
这个结论可以用来判断线性映射或线性变换是否是一一对应的。
在求解矩阵的逆和矩阵的特征值等问题中,矩阵的秩也是一个重要的参考指标。
矩阵的逆存在的充分必要条件是矩阵的秩等于其行(或列)的个数;而矩阵的特征值的个数等于矩阵的秩。
矩阵的秩还与矩阵的行列式有密切的关系。
对于一个n阶矩阵,它的秩r等于其非零行列式的最高次数。
这个结论可以用来求解矩阵的秩,特别是对于较大的矩阵,可以利用行列式的性质来简化计算。
总结来说,矩阵的秩是一个非常重要的概念,它在线性代数中有着
广泛的应用。
通过矩阵的秩,我们可以判断线性方程组的解的情况,判断线性映射或线性变换是否是一一对应的,求解矩阵的逆和矩阵的特征值等等。
了解和掌握矩阵的秩的定义和性质,对于深入理解线性代数的基本概念和方法是非常重要的。
希望通过这篇文章的阐述,读者能够对矩阵的秩有一个清晰的认识,并在实际问题中能够灵活运用矩阵的秩来解决各种线性代数相关的问题。
通过深入理解矩阵的秩的定义和性质,读者可以更好地理解线性代数的基本概念和方法,从而提高数学思维能力和问题解决能力。