矩阵的秩的几何意义
- 格式:pdf
- 大小:81.03 KB
- 文档页数:3
第三章 向量组的线性相关性与矩阵的秩向量是研究代数问题的重要工具。
在解析几何里,曾经讨论过二维与三维向量。
但是,在很多实际问题中,往往需要研究更多维的向量。
例如,描述卫星的飞行状态需要知道卫星的位置()z y x ,,、时间t 以及三个速度分量z y x v v v ,,,这七个量组成的有序数组()z yxv vv t z y x ,,,,,,称为七维向量。
更一般地,本章将引入n 维向量的概念,定义向量的线性运算,并在此基础上讨论向量组的线性相关性,研究向量组与矩阵的秩、向量组的正交化等问题。
这将为以后利用向量的线性关系来分析线性方程组解的存在性,化二次型为标准形等奠定理论上的基础。
§1 n 维向量作为二维向量、三维向量的推广,现给出n 维向量的定义定义1 n 个数n a a a ,,,21 组成的有序数组(n a a a ,,,21 ),称为n 维向量。
数i a 称为向量的第i 个分量(或第i 个分量)。
向量通常用希腊字母γβα,, ,等来表示。
向量常写为一行α=(n a a a ,,,21 )有时为了运算方便,又可以写为一列=α⎪⎪⎪⎪⎪⎭⎫⎝⎛na a a 21前者称为行向量,后者称为列向量。
行向量、列向量都表示同一个n 维向量。
设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,当且仅当它们各个对应的分 量相等,即),,2,1(n i b a i i ==时,称向量α与向量β相等,记作,βα=。
分量全为零的向量称为零向量,记为0,即 0=)0,,0,0(若),,,(21n a a a =α,则称),,,(21n a a a --- 为α的负向量,记为α-。
下面讨论n 维向量的运算。
定义2 设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,那么向量),,,(2211n n b a b a b a +++ 叫做向量α与β的和向量,记做βα+,即),,,(2211n n b a b a b a +++=+ βα 向量α与β的差向量可以定义为α+)(β-,即),,,()(2211n n b a b a b a ---=-+=- βαβα定义3 设),,,(21n a a a =α是n 维向量,λ是一个数,那么向量),,,(21n a a a λλλ 叫做数λ与向量α的数量乘积(简称数乘),记为λα,即),,,(21a a a λλλλα =向量的和、差及数乘运算统称为向量的线性运算。
线性代数的几何意义注解线性代数是优雅和有趣的一门学科,应用也很多,只是目前多数线性代数教材似乎都偏重"代数"而较少涉及"线性"一词包含的几何意义,所以可能给人印象较抽象,不容易让同学产生兴趣,有幸在以前偶然一次看到一位工程师自编的一本小册子叫《线性代数的几何意义》,加上后来阅读matlab 作者的书籍,才发现原来线性代数的几何含义真的印证了“数学之美”,的确很美,所以想借鉴这些零散的阅读,加上自己后来的理解,把它的部分几何意义注解一下,希望以前对线代没有很多兴趣的同学能喜欢上它,同时我也会保持更新,不断完善,一起体会数学无与伦比的美丽矩阵的几何意义1、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量的集合或由这些向量为基张成的空间(在力学分析,向量空间应用时常取此几何含义,后文把此类几何含义称作矩阵的向量空间)如矩阵5673⎛⎫⎪⎝⎭按照行向量可表示为如下形式2、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量终点组成的图形(在计算机图形学中常取此几何表示,后文把此类几何含义称作矩阵的图形),如矩阵579 635⎛⎫ ⎪⎝⎭按照列向量可表示为如下图形如下图是在matlab 中将z=sin(x)*cos(y)算得的离散点组成的矩阵表示成几何图形注1:如果单独查看一个矩阵m n A ⨯,可以有两种解读:矩阵A 由m 个n 维向量组成,或者由n 个m 维向量组成;在使用时会根据实际情或约定选择其中一种,而在参与变换或其他运算时,这两种解读一般不能混淆,一定要确定注2:当我们把矩阵表示成图形时,其作图没有固定标准,并不一定是把所有向量终点连接起来构成一个多边形,规则是使用者制定的,可以是网格,可以是离散面片等行列式的几何意义一个方阵n n A ⨯的行列式的绝对值是其行向量或列向量所张成的平行几何体的空间积,对于二阶行列式,就是向量张成的平行四边形的面积,对于三阶行列式,就是对应平行六面体的体积;如方阵5673⎛⎫ ⎪⎝⎭的行列式绝对值为27,它就是下图平行四边形的面积注:行列式其实是带有符号的,实际上,正负号表征了这些向量作为线性空间基的手性,正号表示右手系,负号表示左手系,在二阶矩阵的向量空间里,其判别方法是,伸出右手和矩阵的第一个列向量或行向量平行,然后调整手的正反使得能从此向量转过小于180度的角到达第二个向量,这时大拇指如果朝上(从纸面指向自己)则为右手系,矩阵的行列式为正,反之则为左手系,对应行列式为负;如果是三阶矩阵,则从第一个向量转向第二个向量时,如果大拇指指向第三个向量方向(不必重合),则为右手系,其行列式为正,反之为左手系,行列式为负;其实这一点上更广义的表述应是向量空间的基相对自然坐标系的顺序性(代数上可用逆序数表达)克拉默法则的几何意义以二维形式为例来说明其几何意义:方程A x =b ,设A=11122122a a a a ⎛⎫ ⎪⎝⎭,b =12b b ⎛⎫ ⎪⎝⎭,待求的x =12x x ⎛⎫ ⎪⎝⎭ 将A 的两个列向量分别表示为a1,a2,那么原方程可表示为1x a1+2x a2=b ,这样可以把1x 与2x 看作是列向量a1,a2的伸缩因子,经过伸缩后再叠加即得到和向量b ,故原方程可以看作已知列向量被伸缩并叠加后的向量b ,求伸缩因子i x我们已经知道行列式的几何意义,显然矩阵A 对应的平行四边形的面积就是|A|(这里以带符号的有方向面积表示,因为伸缩因子也是有符号的),当某一个向量被伸缩后,如图将OB 边伸长至OE ,形成新的平行四边形OAFE ,记其面积为OAFE S ,这样a1的伸缩因子1x 可表示为||OAFE S A ,显然只要求出OAFE S 即可解出未知量;图中OG 即向量b ,因为它是1x a1,2x a2的线性叠加,所以G 点必在EF 的延长线上,这样OG 和OE 相对OA 边的高就是相同的,故OA 与OG 组成的平行四边形面积和OAFE 相同,即OAFE S =|b a2|,所以可求得1x =|b a2|/|A|,同理可得2x =|a1 b |/|A|,可以看出此表达式和克拉默法则等价矩阵乘法的几何意义我们知道矩阵是由若干向量组成的,因此可自然地把矩阵乘法看作是两个矩阵的同维向量之间做内积(或点乘),而内积的意义是两向量同向投影的乘积,但这只是一个表面的几何含义,比较抽象(也有应用之处,后面会提到);实际上,对于矩阵乘法C=AB ,作用后得到的新矩阵C 可以看作是矩阵A 经过某种变换得到的,也可以看作是矩阵B 经过某种变换后得到的,而这种变换显然就是乘以另一个矩阵的过程,结合前面提到的矩阵的几何意义,故可以把矩阵乘法C=AB 看作是图形A (或B )经过变换B (或A )后得到新图形C ,或者是向量空间A (或B )经过变换B (或A )后得到新的向量空间C ,对于简单的变换矩阵这一点最容易感性体会到;例如变换矩阵100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原3D 图形向x-y 面投影,变换矩阵100010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原图形对x 轴镜像,变换矩阵cos30sin 30sin 30cos30-⎛⎫ ⎪⎝⎭会把原2D 图形相对原点逆时针旋转30度。
矩阵分析几何意义和透彻理解PCA勺一些整理这是几篇很不错的文章集合在一起的一篇文章,有些内容来自blog,有些来自文献和教程,解决了我遇到很多疑问,感谢把它推荐给我的人。
前四部分来自早期几篇blog,把空间描述的形象且易懂,适合我们这些非数学专业的人搞明白一些抽象的问题。
一、矩阵的特征值概述:矩阵特征值要讲清楚需要从线性变换入手,把一个矩阵当做一个线性变换在某一组基下的矩阵,最简单的是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比。
这样的一些向量就是特征向量,其实我们更矢心的是特征向量,希望把原先的线性空间分解成一些向量相矢的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理。
自相矢矩阵最大特征值和特征向量并没有和原来的哪个信号一一对应,而且特征分解本身的含义相当于对原来的信号做了这样的正交分解。
使得各个分量之间相互不相矢,也就是K-L展开,每一个特征值相当于原来各个信号导向矢量的线性组合,因此不能仅仅从某个特征矢量中直接对应原来某个信号的特征。
二、线性空间和矩阵的几个核心概念:空间(space):空间的数学定义是一个集合,在这个集合上定义某某概念,然后满足某些性质,就可以被称为空间。
我们所生活的空间是一个三维欧几里德空间,我们所生活空间的特点:(1)有很多(实际上是无穷多个)位置点组成(2 )这些点之间存在着相对尖系。
(3 )可以咋空间中定义长度、角度。
(4 )这个空间可以容纳运动(从一个点到一个点的移动,而不是微积分意义上的“连续”性运动)第(4)点是空间的本质特征,(1 )、( 2)两点是空间的基础而非性质,第(3)点在其他空间也行并不具备,自然更不是尖键的性质。
只有第(4)点是空间的本质。
把三维空间的认识拓展到其他空间。
事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规律的运动(变换)。
6.7 矩阵的秩 齐次线性方程组的解空间教学目的:1. 掌握矩阵的秩和它的行空间、列空间维数之间的关系。
2. 准确地确定齐次线性方程组解空间维数。
3. 熟练地求出齐次线性方程组基础解系及非齐次线性方程式组的任意解。
教学内容:1. 阵的秩的几何意义。
设给了数域F 上一个m*n 矩阵A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a aa aa a a a a mn m m n en............ (2)1222211211矩阵A 的每一行可以看成F n的一个向量,叫做A 的行向量。
A 的每一列可以看成F m的一个向量,叫做A 的列向量,令a 1,。
,am是A 的列向量,这里a i =(a 1i ,a 2i ,。
,a in ),I=1,。
,m 。
由a 1,a 2,。
,am所生成的F n的子空间£(a 1,a 2,。
, a m )叫做矩阵A 的行空间。
类似的,由A 的n 个列向量所生成的F M的子空间叫做A 的列空间。
当m ≠n 时,矩阵A 的行空间和列空间是不同的向量空间的子空间, 引理6.7.1 设A 是一个n*m 矩阵(i ) 如果B=PA ,P 是一个N 阶可逆矩阵,那么B 与A 有相同的行空间。
(ii ) 如果C=AQ ,Q 是一个n 阶可逆矩阵,那么C 与A 有相同的列空间。
证:我们只证明(I ),因为(ii )的证明完全类似。
A=(a ij )mn , P=(p ij )mm ,B=(b ij )m n .令{a 1,a 2…a m }是A 的行向量,{b 1,b 2,…,b m }是B 的行向量。
B 的第I 行等于P 的第I 行等于P 的第P 的第I 行右乘以矩阵A :b i =(b i1,b i2…,b in )=(p i1,p i2,…p im )A=p i1a 1+p i2a 2,…+p im a m ,所以B 的每一个行向量都是A 的行向量的线性组合,但P 可逆,所以A=P-1B 。
图像处理之基础---矩阵和特征向量的⼏何意义转载⾃:长时间以来⼀直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。
知道它的数学公式,但却找不出它的⼏何含义,教科书⾥没有真正地把这⼀概念从各种⾓度实例化地进⾏讲解,只是⼀天到晚地列公式玩理论——有个屁⽤啊。
根据特征向量数学公式定义,矩阵乘以⼀个向量的结果仍是同维数的⼀个向量,因此,矩阵乘法对应了⼀个变换,把⼀个向量变成同维数的另⼀个向量,那么变换的效果是什么呢?这当然与⽅阵的构造有密切关系,⽐如可以取适当的⼆维⽅阵,使得这个变换的效果就是将平⾯上的⼆维向量逆时针旋转30度,这时我们可以问⼀个问题,有没有向量在这个变换下不改变⽅向呢?可以想⼀下,除了零向量,没有其他向量可以在平⾯上旋转30度⽽不改变⽅向的,所以这个变换对应的矩阵(或者说这个变换⾃⾝)没有特征向量(注意:特征向量不能是零向量),所以⼀个特定的变换特征向量是这样⼀种向量,它经过这种特定的变换后保持⽅向不变,只是进⾏长度上的伸缩⽽已(再想想特征向量的原始定义Ax=cx, cx是⽅阵A对向量x进⾏变换后的结果,但显然cx和x的⽅向相同)。
这⾥给出⼀个特征向量的简单例⼦,⽐如平⾯上的⼀个变换,把⼀个向量关于横轴做镜像对称变换,即保持⼀个向量的横坐标不变,但纵坐标取相反数,把这个变换表⽰为矩阵就是[1 0;0 -1](分号表⽰换⾏),显然[1 0;0 -1]*[a b]'=[a -b]'(上标'表⽰取转置),这正是我们想要的效果,那么现在可以猜⼀下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持⽅向不变,显然,横轴上的向量在这个变换下保持⽅向不变(记住这个变换是镜像对称变换,那镜⼦表⾯上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其⽅向反向,但仍在同⼀条轴上,所以也被认为是⽅向没有变化,所以[0 b]'(b不为0)也是其特征向量。
这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)?1 关于面积:一种映射大家会说,面积,不就是长乘以宽么,其实不然。
我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。
平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。
然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。
注意到以下事实:面积是一个标量,它来自于(构成其相邻边)两个矢量。
因此,我们可以将面积看成一个映射:其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。
下面我们将说明这个映射是一个线性映射。
从最简单的例子出发。
如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。
因此有:如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。
如果同时缩放,很显然,面积将会变成原面积的ab倍。
这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。
因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。
这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。
显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0):假定面积映射是一个关于矢量加法的线性映射,那么我们有:注意计算过程中用到了上面的结论。
这说明:也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。
孰正孰负取决于认为的定义。
一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y轴张成的一个平行四边形的面积,取做正号。
1.1 右手定则由此我们引入右手定则。
百度文库-让每个人平等地提升自我3 矩阵秩的研究与应用[摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。
矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。
而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。
它反映矩阵固有特性的一个重要概念。
矩阵一旦确定秩也就确定了。
它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。
本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。
后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。
这里就不细说了,具体内容还得从文章中来了解。
[1][2][3][关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。
百度文库-让每个人平等地提升自我4 矩阵秩的研究与应用1 前言矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。
更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢?本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。
矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。
如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。
理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。
6.7矩阵的秩,齐次线性方程组的解空间一、教学思考1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。
2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。
3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。
二、内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。
2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。
三、教学过程1、矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫ ⎝⎛=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。
类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。
注:)(F M A n m ⨯∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。
引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。
分析:设()()()m m ij n m ij n m ij p P b B a A ⨯⨯⨯===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。
由题述关系PA B =得:⎪⎪⎪⎭⎫ ⎝⎛==m im i im i i p p A p p ααβ 111),,(),,( =),,2,1(;11m i p p m im i =++αα即B 的每个行向量都可以由A 的行向量线性表示;因为P 可逆,有B P A 1-=,同上得A 每个行向量都可以由B 的行向量线性表示,这样这两组向量等价。
/从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量就一定也线性无关或相关呢?行秩为何等于列秩?这本来应该是一个基本又简单的事实。
但是,请回忆一下你当初初学线性代数时的内容编排顺序,是怎么引入这个问题的,当时又是怎样解决这个问题的?传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用n元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。
总之,一切以方程组为核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。
在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个问题的解释当然也无法离开方程组或行列式。
下面简述两个典型的教材中的证明方法:第一个证明来自陈志杰《高等代数与解析几何》。
证明:首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。
这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向量上,都不改变向量组的线性相关或无关性。
接着证明矩阵的初等行变换不改变矩阵的列秩。
设A是m*n阶矩阵,任意从A的n个列向量中选取k个列向量a1,a2,…,ak,它们线性无关的充要条件是线性方程组a1×1+a2×2+…+akxk=0只有零解。
而对矩阵A进行初等行变换不改变此方程组的解,因此不改变这k个列向量的线性相关或无关性。
这说明A的列向量的秩在矩阵的初等行变换中不变。
同理矩阵的初等列变换不改变矩阵的行秩。
接下来,可以把A经过初等行变换和初等列变为只有对角线上有1或0,其它位置都为0的矩阵,在这个过程中行秩和列秩都不改变,从这个矩阵中看出行秩等于列秩,因此原来的矩阵行秩也等于列秩。