气固催化反应工程
- 格式:ppt
- 大小:1.45 MB
- 文档页数:30
固定床气固相催化反应工程引言固定床气固相催化反应工程是一种重要的化学工程领域,广泛应用于石化、生物质转化和环保领域。
本文将介绍固定床气固相催化反应工程的基本概念、原理及其在实际应用中的重要性。
固定床气固相催化反应工程是指在固定床催化剂上进行的气固相催化反应过程,其特点是催化剂稳定性高,反应产物易于分离,反应条件易于控制。
基本概念固定床气固相催化反应工程是指将气体在固定床催化剂上进行气相催化反应的一种工程化技术。
通常,固定床催化反应器由反应器壳体、催化剂床层、进料装置、催化剂床层和出料装置等组成。
固定床催化剂是反应器中的核心部件,其选择应考虑催化剂的活性、选择性、稳定性和成本等因素。
常用的固定床催化剂包括金属催化剂、金属氧化物催化剂、分子筛催化剂等。
在反应过程中,气体通过催化剂床层与催化剂进行接触,发生催化反应,生成所需的产物。
原理固定床气固相催化反应工程的原理基于气体在催化剂床层中与催化剂发生接触与化学反应的过程。
反应过程可以分为吸附、扩散和反应三个步骤。
首先,气体组分通过物理吸附或化学吸附附着在催化剂表面。
随着反应进行,反应物逐渐被吸附到催化剂表面,形成活性吸附物种。
然后,吸附在催化剂表面上的反应物分子通过表面扩散进入催化剂内部,与催化剂中的活性中心发生反应。
在扩散过程中,反应物分子移动到催化剂内部,并在催化剂孔隙中扩散。
最后,反应物在催化剂内部与催化剂活性中心发生反应,生成所需的产物。
反应产物可以通过物理吸附或化学反应从催化剂表面解吸并释放出来。
应用领域固定床气固相催化反应工程广泛应用于石化、生物质转化和环保领域。
具体应用包括以下几个方面:1.石化领域:固定床气固相催化反应工程在石化行业中广泛应用于合成氨、氢气制备、甲醇制备、乙烯制备等重要化学反应过程中。
通过优化反应条件,提高催化剂的活性和选择性,可以提高反应效率,减少能源消耗和废物排放。
2.生物质转化:固定床气固相催化反应工程在生物质转化领域中起到重要作用。
第六章、多相系统中的化学反应与传递现象1、气-固催化反应A (g)→B (g)包括七个步骤:①反应物A 由气相主体扩散到颗粒外表面;②A 由外表面向孔内扩散,到达吸附反应活动中心;③进行A 的吸附;④A 在表面上反应生成B ;⑤产物B 自表面脱附;⑥B 由内表面扩散到外表面;⑦B 由颗粒外表面扩散到气相主体。
2、外扩散有效因子ηx :显然,CAS 总是小于CAG ,因此,只要反应级数为正,则ηx ≤1;反应级数为负时,ηx ≥1。
3、Da 称丹克莱尔数,是化学反应速率与外扩散速率之比,Da 越大,外扩散阻力越大。
当kw 一定时,此值越小,即外扩散影响越小。
除反应级数为负外,外扩散有效因子总是随丹克莱尔数的增加而降低;且α越大,ηx 随Da 增加而下降得越明显;无论α为何值:Da 趋于零时,ηx 总是趋于1。
4、孔扩散分为以下两种形式:当λ/2ra ≤102时,孔内扩散属正常分子扩散,这时的孔内扩散与通常的气体扩散完全相同。
扩散速率主要受分子间相互碰撞的影响,与孔半径尺寸无关。
当λ/2ra ≥10时,孔内扩散为努森扩散,这时主要是气体分子与孔壁的碰撞、故分子在孔内的努森扩散系数DK 只与孔半径ra 有关,与系统中共存的其他气体无关。
5、梯尔模数表示表面反应速率与内扩散速率的相对大小6、当φ<0.4 时, η≈1,当φ>3.0 时,η=1/φ (5.4-23) η是φ的函数,总是随φ值的增大而单调地下降,提高η办法有: ①减小催化剂颗粒的尺寸,φ值减小,η值可增大。
②增大催化剂的孔容和孔半径,可提高有效扩散系数De 的值,使φ值减小,η值增大。
7、Bi m =kGL /De ,称为传质的拜俄特数,它表示内外扩散阻力的相对大小。
当Bim → ∞ 时,外扩散阻力可不计,η0=tanh (φ)/φ=η当Bim → 0 时,内扩散阻力可忽略, tanh (φ)/φ=1,η0=1/(1+Da )=ηx8、内扩散的判定:减小催化剂粒度,测反应速率。